
Information Processing Letters 109 (2009) 1125–1128
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Optimal online-list batch scheduling

Jacob Jan Paulus a, Deshi Ye b,∗, Guochuan Zhang b

a University of Twente, PO Box 217, 7500AE Enschede, The Netherlands
b College of Computer Science, Zhejiang University, Hangzhou 310027, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 February 2009
Received in revised form 29 June 2009
Accepted 15 July 2009
Available online 17 July 2009
Communicated by F.Y.L. Chin

Keywords:
Batch scheduling
Online algorithms
Competitive analysis

We consider the online-list batch scheduling problem. Jobs arrive one by one and have to
be assigned upon arrival to a scheduled batch such that the makespan is minimized. Each
batch can accommodate up to B jobs. We give a complete classification of the tractability
of this online problem.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

In this paper we consider online-list scheduling on one
batching machine. A set of jobs has to be scheduled on the
batching machine which processes jobs parallel in batches.
Each job j is characterized by its processing time p j . The
batching machine has capacity B , which gives the maxi-
mum number of jobs that can be scheduled in a single
batch. The processing time of a batch must be larger than
or equal to the maximum processing time of all jobs in the
batch. The objective is to minimize the makespan, i.e. the
completion time of the last batch. Note that the order of
the batches is of no importance, it does not influence the
objective function, only the processing times of the cre-
ated batches are of interest. The above type of batching
is referred to as parallel batching or p-batch, contrary to
an s-batch which processes jobs sequential with a start-
up time for each batch [3]. The model of parallel batch-
ing finds applications in, for example, scheduling burn-in
ovens used for circuit board manufacturing [8].

In the online-list version of this problem jobs from a se-
quence σ are presented one by one to the scheduler. Upon

* Corresponding author.
E-mail address: yedeshi@zju.edu.cn (D. Ye).
0020-0190/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2009.07.006
arrival, the processing time of the job becomes known and
the job has to be assigned immediately and irrevocably to
a batch. The job is either included in a non-full existing
batch (i.e. a batch with less than B jobs assigned to it) or
put in a new batch (created for this job). The processing
time of each batch has to be fixed upon its creation, and a
job j can only be assigned to a batch with processing time
at least p j .

In the corresponding offline problem, the scheduler has
all jobs available at t = 0, and an optimal offline schedule
can be found by applying the algorithm known as FBLPT
(Full Batch Longest Processing Time) [7]. This algorithm
schedules the B jobs with largest processing time in the
first batch, the next B jobs with largest processing time in
a second batch, etc.

For a sequence of jobs σ , we denote the makespan of
the optimal offline schedule by C∗(σ ) and the makespan
of the online schedule created by an online Algorithm A
by C A(σ ). The performance of an online Algorithm A is
measured by its competitive ratio defined as supσ {C A(σ )/

C∗(σ )}. An online algorithm is called optimal if it has the
smallest possible competitive ratio among all online algo-
rithms.

In the literature a number of related problems have
been studied. In [2] the online-list batching problem with

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:yedeshi@zju.edu.cn
http://dx.doi.org/10.1016/j.ipl.2009.07.006


1126 J.J. Paulus et al. / Information Processing Letters 109 (2009) 1125–1128
the objective to minimize the average flow time is stud-
ied and an optimal 4-competitive algorithm is given. The
considered model allows only to schedule the next job
in the last created batch or to create a new batch, and
the capacity of the batching machine is unlimited. Much
more work has been done on the online-time version of
the batching problem to minimize the makespan, where
jobs arrive at their release dates. For the case of unlimited
batch capacity, optimal (

√
5 + 1)/2-competitive algorithms

are independently given in [6] and [12] and generalized in
[10]. The tractability of the online-time problem has not
yet been resolved in case of bounded batch capacity. The
best known online algorithm is 2-competitive for any ca-
pacity B [12,11]. Only for the case B = 2 a better algorithm
is presented in [11], which is 7/4-competitive. We refer to
[9] for the more general problem with job families and a
more extensive overview of the results on the online-time
model.

The algorithms designed in this paper use what is
called the “doubling” strategy. The idea behind this strat-
egy is to use geometrically increasing batch processing
times to approximate the optimal offline solution. How-
ever, as mentioned in [4], the increase is not always done
by a factor of 2. An example of this principle is found in
online algorithms for the problem of searching a line in the
plane [1]. A short overview of other online problems solved
with the “doubling” strategy is given in [4].

If the batch capacity is infinite, the online-list batch
scheduling problem is the same as the online bidding prob-
lem, in which an optimal 4-competitive algorithm by “dou-
bling” strategy and an optimal e-competitive randomized
algorithm are given in [5]. The online bidding problem is
stated as follows: An online player submits bids bi un-
til it submits a bid larger than or equal to a threshold
T � 1. The online player pays the sum of all submitted
bids. It is not difficult to see that the two problems are
equivalent. The online scheduler determines a sequence of
batch lengths b1 < b2 < · · · < bk−1 < bk such that bk−1 <

pmax � bk , and has makespan
∑k

i=1 bi . Since the batch
capacity is unlimited, no reasonable algorithm creates a
batch for an arriving job that can be included in an ex-
isting batch. The online bidder determines a sequence of
bids b1 < b2 < · · · < bk−1 < bk such that bk−1 < T � bk ,
and pays

∑k
i=1 bi . Again, no reasonable bidder submits a

bid smaller than the previous bid. The offline costs are
pmax and T for the scheduling and bidding problem, re-
spectively.

If the batch capacity is bounded the problem becomes
different. In the next section we will give a full picture for
the bounded case.

2. Bounded capacity

Consider online-list batch scheduling with a fixed
bounded capacity B for each batch. To obtain an optimal
algorithm, we have to use a different growth rate in batch
lengths (different for each capacity B). Concretely we pro-
pose the following online strategy. If B � 3 we schedule
the jobs greedily. If B � 4, we use a growth rate of zB (to
be defined below) in batch lengths instead of 2.
Table 1
Values of zB and ρB .

B 2 3 4 5 6 7 8 ∞
zB 1 1 1.5214 1.7614 1.8768 1.9349 1.9651 2
ρB 2 3 3.6107 3.8344 3.9254 3.9651 3.9833 4

Algorithm A B

If B � 3, then always schedule a job j with processing
time p j in a non-full batch of length at least p j . If
such a batch does not exist, create a batch with length
p j at the end of the current schedule.

If B � 4, then schedule a job j with processing time p j ∈
(zi−1

B , zi
B ] in a non-full batch of length zi

B . If there is
no such a batch, create one at the end of the current
schedule.

We choose zB such that

zB = argmin
x�1

{
x + 1 + 1

x
+ 1

x2
+ · · · + 1

xB−2

}
, (1)

and show that the competitive ratio of Algorithm AB is

ρB = min
x�1

{
x + 1 + 1

x
+ 1

x2
+ · · · + 1

xB−2

}
.

Before we determine the competitive ratio of AB , we
point out that zB and ρB are unique for a given B , i.e.
the function in (1) is convex for x � 1. To indicate what
kind of growth rates and competitive ratios we are dealing
with, we display in Table 1 the values of zB and ρB for
some specific values of B .

Theorem 1. For online-list batch scheduling with capacity B,
Algorithm AB is ρB -competitive.

Proof. For B � 3, we know that each batch in the online
schedule contains at least one job with processing time
equal to the length of the batch. So, by a load argument
the offline makespan cannot be less than 1

B times the on-
line makespan. Thus, Algorithm AB is B-competitive.

Consider B � 4. Let σ be a worst-case instance for Al-
gorithm AB . By normalizing the job lengths let z1

B be the
smallest online batch and n such that zn

B is the largest on-
line batch. Thus the online schedule consists of batches
with lengths in {z1

B , z2
B , . . . , zn

B}. Note that for each i there
is at most one non-full batch of length zi

B . In the follow-
ing we derive three properties which we may assume for
worst-case instance σ :

(1) Each job j scheduled in a batch of length zi
B has

length p j = zi−1
B + ε , where ε > 0 is arbitrary small.

Decreasing the job lengths in a batch of length zi
B

to zi−1
B + ε does not affect the online makespan and

may decreases the offline makespan. All what follows
is subject to the small value ε in the construction of
σ adv, but by choosing ε appropriately small it does not
affect the outcome. So, we choose ε small enough and
leave it from the remainder of the analysis.



J.J. Paulus et al. / Information Processing Letters 109 (2009) 1125–1128 1127
(2) For each batch length zi
B , there is at most one batch.

If the worst case instance has more than B jobs in
batches of length zi

B , then B of these jobs are together
in a batch in both the online and offline schedule. Due
to property (1), removing these B jobs causes a de-
crease of zi

B in the online makespan and a decrease of

zi−1
B in the optimal offline makespan. Let σ̃ be the in-

stance resulting by removal of these B jobs from σ .
Since σ is a worst-case instance we have

C A(σ )

C∗(σ )
� C A(σ̃ )

C∗(σ̃ )
= C A(σ ) − zi

B

C∗(σ ) − zi−1
B

.

This implies that zB · C∗(σ ) � C A(σ ), and that the al-
gorithm has competitive ratio of at most zB < ρB . So,
we only have to consider instances which result in an
online schedule with for each batch length zi

B at most
one batch.

(3) Each batch consists of only one job. If the only batch
of length zi

B contains k jobs with 2 � k � B , then we
can remove k − 1 of these jobs without decreasing the
makespan.

By the above properties of σ , we get that the cumula-
tive length of the B largest batches in the online schedule
is at most zn

B + zn−1
B + · · · + zn−B+1

B . By (1) this is equal to
ρB · zn−1

B , that is ρB times the largest offline batch. As a
result the B largest batches in the online schedule have a
cumulative length of at most ρB times the largest batch in
the optimal offline schedule. By the repetition of this ar-
gument the next B largest batches in the online schedule
have a cumulative length of at most ρB times the second
largest batch in the optimal offline schedule, etc. Thus, Al-
gorithm AB is ρB -competitive. �

It remains to show the upper bound is best possible. To
this end, we consider a special job sequence:

Definition. The infinite job sequence σ adv has p1 = 1 and
each following job has length equal to the last created
batch by the online algorithm plus a small amount ε > 0.
The subsequence σ adv

k is given by the first k jobs of se-
quence σ adv. The next theorem, which is the main con-
tribution of this paper, uses the structure of the FBLPT
solution to prove that Algorithm AB is optimal. It also im-
plies the infinite capacity case by letting B go to infinity.

Theorem 2. For online-list batch scheduling with capacity B, no
online algorithm is (ρB − δ)-competitive, for any δ > 0 and B.

Proof. Suppose there exists a (ρB − δ)-competitive algo-
rithm A, which is presented with job sequence σ adv. Recall
that due to the construction of σ adv each job has its own
batch in the online schedule, regardless of the online al-
gorithm used. For simplicity we denote the optimal offline
makespan by C∗

k and the online makespan of Algorithm A

by C A
k for the subsequence σ adv

k . All what follows is sub-
ject to the small value ε in the construction of σ adv, but
by choosing ε appropriately small it does not affect the
outcome. So, we choose ε small enough and ignore it from
the remainder of the analysis.

The optimal offline and online makespan can be ex-
pressed, respectively, by

C∗
k = pk + pk−B + pk−2B + · · · ,

C A
k = pk+1 + pk + · · · + p2

= C∗
k+1 + C∗

k + · · · + C∗
k−B+2 − C∗

1 .

Let γk = C∗
k+1/C∗

k , be the ratio between the value of two
subsequent optimal offline makespans. Obviously the opti-
mal offline makespan increases in k, thus γk � 1. By Algo-
rithm A being (ρB − δ)-competitive, we have

C A
k

C∗
k

= C∗
k+1 + C∗

k + · · · + C∗
k−B+2 − C∗

1

C∗
k

= γk + 1 + 1

γk−1
+ 1

γk−1γk−2
+ · · ·

+ 1

γk−1γk−2 . . . γk−B+2
− C∗

1

C∗
k

� ρB − δ.

We assume k to be large enough such that
C∗

1
C∗

k
� δ

2 , thus

γk + 1 + 1

γk−1
+ 1

γk−1γk−2
+ · · · + 1

γk−1γk−2 . . . γk−B+2

� ρB − δ

2
. (2)

In the remainder of this proof we show that (2) and
γk � 1 are contradicting. To obtain this contradiction, we
introduce γ̃k := max{γk−1, . . . , γk−B+2} and show that γk <

γ̃k and γ̃k decreases to below 1.
By (2) and the definition of γ̃k we have

ρB − δ

2
� γk + 1 + 1

γk−1
+ 1

γk−1γk−2
+ · · ·

+ 1

γk−1γk−2 . . . γk−B+2

� γk + 1 + 1

γ̃k
+ 1

γ̃ 2
k

+ · · · + 1

γ̃ B−2
k

. (3)

Since zB minimizes x + 1 + 1
x + 1

x2 + · · · + 1
xB−2 and the

minimum is ρB , we have γk < γ̃k . This can be seen by as-
suming γk � γ̃k . The value of γk can then be decreased to
γ̃k without violating (3). So, this would yield a better min-
imum for x + 1 + 1

x + 1
x2 + · · · + 1

xB−2 than zB does.
As a consequence of γk < γ̃k for all k, we have γ̃k <

max{γ̃k−1, . . . , γ̃k−B+2}. Now assume that γ̃k converges to
some y. Then Eq. (2) holds when all γi ’s are substituted by
y, implying that y gives a better minimum in (1) than zB

does. Thus, γ̃k cannot converge.
By the above we have that the value γ̃k is an upper

bound on γk and decreases below any fixed value. Thus,
eventually γk < γ̃k � 1, contradicting C∗

k+1 � C∗
k . �

By Theorems 1 and 2, we obtain the optimality of on-
line Algorithm AB . From the proof of Theorem 2 we see



1128 J.J. Paulus et al. / Information Processing Letters 109 (2009) 1125–1128
that any optimal online algorithm presented with σ adv

must behave like Algorithm AB as k grows large. No mat-
ter which optimal algorithm is used, the upper bound γ̃k
must converge to zB . In order to let γ̃k converge to zB the
value γk must converge to zB . Therefore, as k grows large
the batch sizes grow with rate zB .

3. Concluding remarks

This paper presents an optimal online algorithm for
online-list batch scheduling with any batch capacity B . For
B � 3 this algorithm is a greedy type algorithm, i.e. each
batch has the same length as the first job scheduled in
it. As B goes to infinity the growth rate zB in the on-
line algorithm goes to 2 and its competitive ratio ρB to
4. Therefore, the known results for the unlimited capacity
case are implied by the new results for the bounded ca-
pacity case.

For the online bidding problem there exists an optimal
e-competitive randomized online algorithm [5]. This algo-
rithm starts by drawing a random variable ξ uniformly
from [0,1) and then submits bids bi = ei+ξ . This result
gives immediately the optimal scheduling strategy for the
online batch scheduling with unlimited capacity. It is an
interesting question whether such a nice randomization
of the algorithm presented here for the bounded capac-
ity case, results in an optimal randomized online algo-
rithm.

Acknowledgements

We thank Johann Hurink for helpful remarks. We are
also grateful to anonymous referees and editors for many
helpful suggestions. Part of this research was done while
the first author visited Zhejiang University, Hangzhou. He
is grateful for the hospitality received.

Part of this research has been funded by the Dutch
BSIK/BRICKS project, NSFC (60573020), NSFC (10601048)
and Chinese 973 project (2007CB310900).

References

[1] R.A. Baeza-Yates, J.C. Culberson, G.J.E. Rawlins, Searching in the plane,
Information and Computation 106 (2) (1993) 234–252.

[2] W.W. Bein, L. Epstein, L.L. Larmore, J. Noga, Optimally competitive
list batching, in: Algorithm Theory – SWAT2004, in: Lecture Notes in
Computer Science, vol. 3111, 2004, pp. 77–89.

[3] P. Brucker, Scheduling Algorithms, fourth edition, Springer-Verlag,
2004.

[4] M. Chrobak, C. Kenyon, Competitiveness via doubling, SIGACT
News 37 (4) (2006) 115–126.

[5] M. Chrobak, C. Kenyon, J. Noga, N.E. Young, Incremental medians via
online bidding, Algorithmica 50 (4) (2008) 455–478.

[6] X. Deng, C.K. Poon, Y. Zhang, Approximation algorithms in batch pro-
cessing, Journal of Combinatorial Optimization 7 (3) (2003) 247–257.

[7] C.Y. Lee, R. Uzsoy, Minimizing makespan on a single batch processing
machine with dynamic job arrivals, International Journal on Produc-
tion Research 37 (1) (1999) 219–236.

[8] C.Y. Lee, R. Uzsoy, L.A. Martin-Vega, Efficient algorithms for schedul-
ing semiconductor burn-in operations, Operations Research 40 (4)
(1992) 764–775.

[9] Q. Nong, J. Yuan, R. Fu, L. Lin, J. Tian, The single-machine parallel-
batch on-line scheduling problem with family jobs to minimize
makespan, International Journal of Production Economics 111 (2)
(2008) 435–440.

[10] C.K. Poon, W. Yu, A flexible on-line scheduling algorithm for
batch machine with infinite capacity, Annals of Operations Re-
search 133 (1) (2005) 175–181.

[11] C.K. Poon, W. Yu, On-line scheduling algorithms for a batch machine
with finite capacity, Journal of Combinatorial Optimization 9 (2)
(2005) 167–186.

[12] G. Zhang, X. Cai, C.K. Wong, On-line algorithms for minimizing
makespan on batch processing machines, Naval Research Logis-
tics 48 (3) (2001) 241–258.


	Optimal online-list batch scheduling
	Introduction
	Bounded capacity 
	Concluding remarks
	Acknowledgements
	References


