
A Note on Rooted Survivable Networks
∗

Zeev Nutov

Dept. of Computer Science

The Open University of Israel

nutov@openu.ac.il

Abstract

The (undirected) Rooted Survivable Network Design (Rooted SND) problem is: given a com-

plete graph on node set V with edge-costs, a root s ∈ V , and (node-)connectivity requirements

{r(t) : t ∈ T ⊆ V }, find a minimum cost subgraph G that contains r(t) internally-disjoint

st-paths for all t ∈ T . For large values of k = maxt∈T r(t) Rooted SND is at least as hard to ap-

proximate as Directed Steiner Tree [Lando & Nutov, APPROX 2008]. For Rooted SND [Chuzhoy

& Khanna, FOCS 08] gave recently an approximation algorithm with ratio O(k2 log n). Inde-

pendently, and using different techniques, we obtained at the same time a simpler primal-dual

algorithm with the same ratio.

1 Introduction

Let κG(u, v) denote the maximum number of internally-disjoint uv-paths in a graph G. We consider

the rooted variant of the following fundamental problem in network design:

Survivable Network Design (SND):

Instance: A complete graph on node-set V with edge-costs c(e) and connectivity requirements

{r(u, v) : u, v ∈ V }.

Objective: Find a minimum cost subgraph G = (V, E) so that κG(u, v) ≥ r(u, v) for all u, v ∈ V .

If all the requirement are “rooted”, namely from a specific node s, then we have the following

important particular case of SND:

Rooted SND:

Instance: A complete graph on node set V with edge-costs c(e), a root s ∈ V , a set T of terminals,

and requirements {r(t) > 0 : t ∈ T}.

Objective: Find a minimum cost subgraph G = (V, E) so that κG(s, t) ≥ r(t) for all t ∈ T .

∗Preliminary version of this paper is a part of [20].

1

All graphs are assumed to be undirected and simple, unless stated otherwise. For an instance

of SND at hand, let opt denote the optimal solution value, let k = maxu,v∈V r(u, v) denote the

maximum requirement, and let n = |V |.

While the edge-connectivity case – the so called Steiner Network problem – admits a 2-approxi-

mation algorithm [11], up to recently non-trivial approximation algorithms for SND were known

only for metric costs [6] by Cheriyan and Vetta, and for 0, 1-costs [14, 18, 17]. A hardness result

of Kortsarz et al. [12] suggests that for general costs SND is unlikely to admit a polylogarithmic

approximation; this is so even when the input graph is complete and the costs are in 0, 1 [19].

Chuzhoy & Khanna [2] extended this to Ω(kε)-hardness for any k ≥ k0, where k0 and ε > 0 are

universal constants. Y. Lando and the author [15] proved that for k = n/2 + k ′ SND is harder to

approximate than its directed variant with maximum requirement k′. This is so also for Rooted

SND, thus Rooted SND with k > n/2 is at least as hard to approximate as the notorious Directed

Steiner Tree problem; a long standing best known ratio for the latter is O(|T |ε/ε3) in O(|T |4/εn2/ε)

time [3]. For k′ = 2 no sublinear approximation for the directed rooted variant is known.

Some variants of SND were extensively studied, and in particular the k-Connected Subgraph

problem, which is the variant of SND with r(u, v) = k for all u, v ∈ V ; see [20] for the best known

ratio for this problem and the references therein. We refer the reader to [13] for a survey on

various connectivity problems, and here mention some literature relevant to this paper. Recently,

Rooted SND received some attention, because Chakraborty, Chuzhoy, and Khanna [2] obtained a

kO(k2) log4 n-approximation for it; prior to this, there was almost no literature on Rooted SND,

except for the case of 0, 1-costs [14, 18, 17]. Slightly later the ratio was improved to kO(k) log n

by Chekuri & Korula [5], and then to O(k2 log n) by Chuzhoy and Khanna [7]. Independently, we

obtained at the same time a much simpler primal-dual algorithm with the same ratio O(k2 log n).

Theorem 1.1 Rooted SND admits an O(k2 log |T |)-approximation algorithm, k = maxt∈T r(t).

We note that slightly later two additional different O(k2 log n)-approximation algorithms were

suggested by Chuzhoy and Kanna [8] and Chekuri and Korula [4]. The algorithm in [8] relies

on the iterative rounding algorithm of [9] for the so called element-connectivity problem, and is

not combinatorial. The algorithm of [4] relies on the non-trivial machinery developed in [4]. Our

algorithm is combinatorial, and our proof of Theorem 1.1 is relatively simple while being self

contained. Moreover, the algorithm presented in this paper was recently generalized by the author

in [16] to achieve the currently best knowm ratio O(k2) for Rooted SND. We also note that in

[8], Chuzhoy and Khanna gave an O(k3 log n)-approximation algorithm for SND with arbitrary

requirements, which is the currently best known ratio for the problem.

As an intermediate problem, we consider the Rooted SND Augmentation problem, which is the

restriction of Rooted SND to instances in which G contains a subgraph J = (V, EJ) of cost 0 so

that κJ(t, s) = ` and r(t) = ` + 1 for all t ∈ T ; namely, we seek to increase at minimum cost the

connectivity between s and the nodes in T from k − 1 = ` to k = ` + 1.

2

Theorem 1.2 Rooted SND Augmentation admits an O(` log |T |)-approximation algorithm.

It is easy to see that if Rooted SND Augmentation admits a ρ-approximation algorithm then

Rooted SND admits a kρ-approximation algorithm; thus Theorem 1.1 follows from Theorem 1.2,

so we only need to prove Theorem 1.2. To see this, consider the following algorithm for Rooted

SND. Start with J = (V, ∅) and continue with iterations. Iteration ` starts with a graph J with

κJ(s, t) = min{`, r(t)} for all t ∈ T , and seeks to increase the st-connectivity from ` to `+1 for every

t ∈ T with κJ(s, t) = ` and r(t) ≥ ` + 1; thus this is an instance of Rooted SND Augmentation. We

find an edge set I` of cost ρ·opt using the ρ-approximation algorithm for Rooted SND Augmentation.

After at most k iterations J satisfies the requirements, and its cost is ≤ kρ · opt.

Remark: For Rooted SND with requirements in {0, k}, namely, when r(t) = k for all t ∈ T , our

algorithm has ratio O(k log k · log |T |). This can be proved using standard LP scaling techniques, by

showing that at iteration ` the cost of the subgraph computed is O(opt/(k− `)). For this restricted

version, Chuzhoy and Khanna [7] obtained the slightly better ratio of O(k log |T |).

2 Proof of Theorem 1.2

Let ΓJ(X) = Γ(X) = {v ∈ V −X : uv ∈ EJ for some u ∈ X} denote the set of neighbors of X in

J , and let X∗ = V − (X ∪ΓJ(X)). To avoid considering “mixed” cuts that contain both nodes and

edges, we may assume that st /∈ EJ for all t ∈ T . One way to achieve this is to subdivide every

edge st ∈ EJ with t ∈ T by a new node.

Definition 2.1 A node subset X ⊆ V is t-tight for t ∈ T if t ∈ X, s ∈ X∗, and |ΓJ(X)| = `;

X is tight if it is t-tight for some t ∈ T . A tight set is a core if it does not contain two inclusion

minimal tight sets. An inclusion-minimal (inclusion-maximal) core is a min-core (max-core). Let

CJ = {C1, . . . , Cν} denote the set of min-cores in J .

We say that an edge e covers a tight set X if it has one endnode in X and the other in X∗.

By Menger’s Theorem, I is a feasible solution to an instance of Rooted SND Augmentation if, and

only if, I covers all tight sets (assuming st /∈ EJ for all t ∈ T). Thus our goal is to find such I

of low cost. Note that terminals not belonging to any min-core can be discarded, as any tight set

containing such a terminal also contains a terminal that belongs to some min-core. Hence from

now and on we assume that every terminal belongs to some min-core.

The following “sub-modular” and “posi-modular” properties of the function Γ(·) = ΓJ(·) are

well known, c.f., [19].

Proposition 2.1 For any X, Y ⊆ V the following holds:

|Γ(X)|+ |Γ(Y)| ≥ |Γ(X ∩ Y)|+ |Γ(X ∪ Y)| (1)

|Γ(X)|+ |Γ(Y)| ≥ |Γ(X ∩ Y ∗)|+ |Γ(Y ∩X∗)| (2)

3

Y*

s

Y

y

Γ()

X

Y Y

X

X

Γ()

Γ()X

Y*

X*

x

s

Γ()

X*

Y

t

(b)(a)

Figure 1: Illustration to the proof of Lemma 2.2.

(X ∩ Y)∗ = X∗ ∪ Y ∗, (X ∪ Y)∗ = X∗ ∩ Y ∗ if equality holds in (1) (3)

(X ∩ Y ∗)∗ = X∗ ∪ Y, (Y ∩X∗)∗ = X ∪ Y ∗ if equality holds in (2) (4)

Lemma 2.2 Let X be x-tight and let Y be y-tight. Then:

(i) If x ∈ X ∩ Y then X ∩ Y, X ∪ Y are x-tight, and if y ∈ X ∩ Y then X ∩ Y, X ∪ Y are y-tight.

Furthermore, in both cases equality holds in (1).

(ii) If x ∈ X ∩Y ∗, y ∈ Y ∩X∗ then X ∩Y ∗ is x-tight, Y ∩X∗ is y-tight, and equality holds in (2).

(iii) If none of (i),(ii) holds then y ∈ Γ(X) or x ∈ Γ(Y).

Proof: Part (iii) is obvious, so we prove parts (i),(ii) using (1) and (2), see Figure 2.

If x ∈ X ∩ Y (the proof of the case y ∈ X ∩ Y is similar) then by (1) (see Figure 2(a)):

` + ` = |Γ(X)|+ |Γ(Y)| ≥ |Γ(X ∩ Y)|+ |Γ(X ∪ Y)| ≥ ` + ` .

Hence equality holds everywhere, so X ∩ Y, X ∪ Y are x-tight.

If x ∈ X ∩ Y ∗ and y ∈ Y ∩X∗ then by (2) (see Figure 2(b)):

` + ` = |Γ(X)|+ |Γ(Y)| ≥ |Γ(X ∩ Y ∗)|+ |Γ(Y ∩X∗)| ≥ ` + ` .

Hence equality holds everywhere, so X ∩ Y ∗ is x-tight and Y ∩X∗ is y-tight. 2

In [10], a set-family F was called uncrossable if X ∩Y, X ∪Y ∈ F or X −Y, Y −X ∈ F for any

X, Y ∈ F . An edge e was said to cover a set X if e has one endnode in X and the other in V −X.

In [10] is given a 2-approximation primal-dual algorithm that computes a cover of an uncrossable

family F . In our case, we use the following modified definition:

Definition 2.2 A subfamily F of tight sets is bi-uncrossable if for any X, Y ∈ F at least one of

the following holds: X ∩ Y, X ∪ Y ∈ F and (3) holds, or X ∩ Y ∗, Y ∩X∗ ∈ F and (4) holds.

4

As we will show in the next section (to obtain a combinatorial and fast implementation), the

primal-dual algorithm of [10] can be adjusted to cover “setpair” families {{X, X∗} : X ∈ F},

provided F is bi-uncrossable. Alternatively, in [9] a 2-approximation algorithm was given for a

much more general setpair cover problem, generalizing the iterative rounding method of Jain [11].

Unfortunately, the family of tight sets may not be bi-uncrossable, but we will show a method

to decompose it into bi-uncrossable families.

Lemma 2.3 For any tight set X and any Ci ∈ CJ either Ci ∩X ∩ T = ∅ or (Ci ∩ T) ⊆ X. Thus

Ci ∩ Cj ∩ T = ∅ for any i 6= j.

Proof: Otherwise, Ci ∩X is tight, by Lemma 2.2 (i), contradicting the minimality of Ci. 2

Definition 2.3 For i = 1, . . . ν, let Ti = T ∩ Ci, let Mi be some max-core containing Ci, and let

Γi = Γ(Mi). Let MJ = {M1, . . . , Mν}. We say that Mi, Mj ∈ MJ are independent if the sets

Ti ∩M∗
j , Tj ∩M∗

i are both nonempty.

From Lemmas 2.2 and 2.3 we have:

Corollary 2.4 For any i the set Mi is unique. For any i 6= j, at least one of the following holds:

Mi, Mj are independent and thus Mi ∩M∗
j , Mj ∩M∗

i are tight, or Ti ⊆ Γj, or Tj ⊆ Γi.

We note that the families CJ and MJ can be computed using O(|T |) max-flow computations

as follows. It is well known that given t ∈ T , one max-flow computation suffices to find the unique

minimal t-tight set Ct, and the unique maximal t-tight set, or to determine that such sets do not

exist, e.g. see [18]. The family CJ is formed by the inclusion minimal members of the family

{Ct : t ∈ T}. To find the max-core Mi that contains a specific min-core Ci do the following. Add

to J an edge from s to every min-core Cj distinct from Ci. The added edges do not cover any core

containing Ci, but they cover all the other tight sets. Thus in the obtained graph, Mi is the largest

t-tight set for any t ∈ Ti.

Given a subfamily M⊆MJ , the subfamily of tight sets induced by M is

F(M) = {X : X ⊆M ∈M, X is tight} .

Lemma 2.5 If X, Y ⊆ Mi are tight then X ∩ Y, X ∪ Y are also tight, and (3) holds for X, Y . If

Mi, Mj with i 6= j are independent then for any tight X ⊆Mi and Y ⊆Mj the sets X ∩Y ∗, Y ∩X∗

are tight and (4) holds for X, Y . Thus if the members of M are pairwise independent, then the

family F(M) is uncrossable.

Proof: The first statement follows from Lemma 2.2 (i). The second statement follows from

Lemma 2.2 (ii) and the fact that if Ti ∩M∗
j 6= ∅ then Ti ∩ Y ∗ 6= ∅ for any Y ⊆Mj . 2

Lemma 2.6 The family MJ can be partitioned into at most 2` + 1 parts so that the members of

each part are pairwise independent, and such a partition can be found in polynomial time.

5

Proof: Construct an auxiliary directed graph J as follows. The node set of J is MJ . Add

an arc MiMj if Ti ⊆ Γj . The maximum indegree of every node in J is ≤ `. This implies that

every subgraph of the underlying graph of J has a node of degree ≤ 2`. A graph is d-degenerate

if every subgraph of it has a node of degree at most d. It is well known that any d-degenerate

graph is (d + 1)-colorable, and such coloring can be computed in polynomial time. Hence J is

(2` + 1)-colorable, thus its node set can be partitioned into at most 2` + 1 independent sets. 2

Lemma 2.7 If I covers F(MJ) then the number of min-cores in G + I is at most ν/2.

Proof: Every min-core of J + I is a tight set in J . Thus by Lemma 2.3 and by the definition of

Mi every min-core C of J + I contains the terminals of at least 2 distinct min-cores Ci, Cj of J ;

namely, Ti, Tj ⊆ C. As the min-cores of J + I are also disjoint on the terminals, by Lemma 2.3,

the statement follows. 2

Summarizing, we can find an edge set I of cost ≤ 2(2`+1) ·opt so that the number of min-cores

in G + I is ≤ ν/2. Such I is a union of 2-approximate covers of 2` + 1 uncrossable families as in

Lemma 2.6. We can apply this procedure iteratively, until no min-cores remain. The number of

iterations is at most 1+log ν = O(log |T |), and the overall cost over all iterations is O(` log |T |) ·opt.

The proof of Theorem 1.2, and thus also the proof of Theorem 1.1 is now complete.

3 Algorithm for covering bi-uncrossable families

We start with recalling some definitions. Let F be a set-family on a groundset V , so that ∅, V /∈ F .

Suppose that for every S ∈ F corresponds a unique nonempty set S∗ ⊆ V − S. We assume that F

is bi-uncrossable (w.r.t. the mapping S → S∗), see Definition 2.2. Let E be an edge set on V with

costs {c(e) : e ∈ E}. For I ⊆ E and S ∈ F let δI(S) denote the set of edges in I with one endnode

in S and the other in S∗, and let δ(S) = δE(S). An edge e covers a set S ∈ F if it has one endnode

in S and the other endnode in S∗.

Lemma 3.1 Let C(F) denote the family of minimal members in a bi-uncrossable family F . Then:

(i) X ⊆ Y implies Y ∗ ⊆ X∗ for any X, Y ∈ F .

(ii) If C ∈ C(F) and X ∈ F , then C ⊆ X or C ⊆ X∗; thus the sets in C(F) are pairwise disjoint.

Proof: For Part (i), note that if X ⊆ Y then X∩Y ∗ = ∅ /∈ F , hence we must have X∩Y, X∪Y ∈ F

and (3) holds. Consequently, by (3), Y ∗ = (X ∪ Y)∗ = X∗ ∩ Y ∗ ⊆ X∗ ∪ Y ∗ = (X ∩ Y)∗ = X∗. We

prove Part (ii). If (3) holds for C, X, then C ∩X ∈ F . If (4) holds for C, X, then C ∩X∗ ∈ F . By

the minimality of C, we must have C ⊆ X in the former case and C ⊆ X∗ in the latter case. 2

We describe a combinatorial 2-approximation algorithm for the problem of finding a minimum

cost edge-cover of a bi-uncrossable family F . The algorithm and the proof of the approximation

6

ratio are along the lines of (a simplification of) the ones given in [10] for the case X∗ = V − X,

using the primal-dual method. Alternatively, any LP interpretation can be avoided using the local

ratio technique of Bar-Yehuda and Rawitz [1].

Consider the following LP-relaxation for our problem (P) and its dual program (D):

min
∑

e∈E

cexe max
∑

S∈F

yS

(P) s.t.
∑

e∈δ(S)

xe ≥ 1 ∀S ∈ F (D) s.t.
∑

δ(S)3e

yS ≤ ce ∀e ∈ E

xe ≥ 0 ∀e ∈ E yS ≥ 0 ∀S ∈ F .

We now describe the algorithm. Given a solution y to (D), an edge e ∈ E is tight if the

corresponding inequality in (D) holds with equality. The algorithm has two phases. During the

algorithm, for a partial solution I, let FI denote the minimal members of F not covered by I. It

is easy to see that if F is uncrossable, so is FI , for any I.

Phase 1 starts with I = ∅ an applies a sequence of iterations. At the beginning of an iteration,

we compute the family C(FI). Then we raise the dual variables corresponding to the members of

C(FI) uniformly until some edge e ∈ E−I becomes tight, and add e to I. Phase I terminates when

C(FI) = ∅, namely when all F is covered.

Phase 2 applies on I “reverse delete”, which means the following. Let I = {e1, . . . , ej}, where

ei+1 was added after ei. For i = j downto 1, we delete ei from I if I − ei still covers F . At the end

of the algorithm, I is output.

It is easy to see that the produced dual solution is feasible, hence
∑

S∈F yS ≤ opt, by the Weak

Duality Theorem. We prove that at the end of the algorithm
∑

e∈I c(e) ≤ 2
∑

S∈F yS . As any

edge in I is tight, this is equivalent to
∑

e∈I

∑
δ(S)3e yS ≤ 2

∑
S∈F yS . By changing the order of

summation we get: ∑

S∈F

|δI(S)|yS ≤ 2
∑

S∈F

yS .

It is sufficient to prove that at any iteration the increase at the left hand side is at most the increase

in the right hand side. Let us fix some iteration, and let C be the the family of minimal sets among

the members of F not yet covered. The increase in the left hand side is ε ·
∑

C∈C |δI(C)|, where

ε is the amount by which the dual variables were raised in the iteration, while the increase in the

right hand side is ε · 2|C|. Consequently, it is sufficient to prove that
∑

C∈C |δI(C)| ≤ 2|C|. As the

edges were deleted in reverse order, the set I ′ of edges in I that were added after the iteration

(and “survived” the reverse delete phase), form an inclusion minimal edge-cover of the family F ′ of

members in F that are uncovered at the beginning of the iteration. Note also that
⋃

C∈C δI(C) ⊆ I ′.

Hence to prove the ratio of 2, it is sufficient to prove the following purely combinatorial statement,

in which we revise our notation to F ← F ′ and I ← I ′.

Lemma 3.2 Let I be an inclusion minimal edge-cover of an uncrossable family F and let C = C(F)

7

be the family of inclusion minimal members of F . Then

∑

C∈C

|δI(C)| ≤ 2|C| − 1 .

We note that the sufficiency of Lemma 3.2 for proving a ratio of 2 also follows from a local ratio

argument of Bar-Yehuda and Rawitz [1]. In the rest of this section we prove Lemma 3.2.

Definition 3.1 We say that an edge set F is a fit-cover of a subfamily L ⊆ F , or that L is a

fit-family for F , if |L| = |F | and for every e ∈ F there is a fit-set Se ∈ L so that δF (Se) = {e};

namely, e is the unique edge in F that covers Se.

A set-family L ⊆ F is bi-laminar (w.r.t. the mapping S → S∗) if for any distinct sets X, Y ∈ L

either X ⊂ Y , or Y ⊂ X, or X ⊆ Y ∗ and Y ⊆ X∗; note that the latter implies X ∩ Y = ∅.

Lemma 3.3 Let I be an inclusion minimal cover of a bi-uncrossable family F . Then there exists

a bi-laminar family L ⊆ F so that I is a fit-cover of L.

Proof: By the minimality of I, for every e ∈ I there exists Se ∈ F such that e is the unique edge

in I that covers Se. Thus there exists L ⊆ F so that I is a fit-cover of L. We prove that there

exists such bi-laminar L. Among all fit-families for I contained in F , let L be one with
∑

S∈L |S|

minimal. We claim that L is bi-laminar. Let X, Y ∈ L, where X is a fit-set for e and Y is a fit-set

for f . We claim that then at least one of the following holds:

(i) If X ∩ Y, X ∪ Y ∈ F and (3) holds, then X ∩ Y is a fit-set for one of e, f (and X ∪ Y is a

fit-set for the other); thus L−{X}+ {X ∩Y } or L−{Y }+ {X ∩Y } is also a fit-family for I.

Consequently, we must have X ⊂ Y or Y ⊂ X in this case, by the choice of L.

(ii) If X ∩ Y ∗, Y ∩X∗ ∈ F and (4) holds, then X ∩ Y ∗ is a fit-set for one of e, f and Y ∩X∗ is a

fit-set for the other; thus L − {X, Y }+ {X ∩ Y ∗, Y ∩X∗} is also a fit-family for I.

Consequently, we must have X ⊆ Y ∗ and Y ⊆ X∗ in this case, by the choice of L.

We prove that (i) or (ii) must hold. Suppose that X ∩ Y, X ∪ Y ∈ F and (3) holds; the proof

when X ∩ Y ∗, Y ∩X∗ ∈ F and (4) holds is similar. Then there is an edge in I covering X ∩ Y and

there is an edge in I covering X ∪ Y . However, if (3) holds for X, Y , then if an edge covers one of

X ∩ Y, X ∪ Y then it covers one of X, Y , and if some edge covers both X ∩ Y and X ∪ Y then it

covers both X and Y . Thus no edge in I − {e, f} can cover X ∩ Y or X ∪ Y , so one of e, f covers

X ∩ Y , and thus the other must cover X ∪ Y . 2

Let F =
⋃

C∈C δI(C). Note that δI(C) = δF (C) for any C ∈ C. As any subfamily of a bi-laminar

family is also bi-laminar, we conclude from Lemma 3.3 that there exists a bi-laminar family L ⊆ F

so that F is a fit-cover of L. Note that by Lemma 3.1 (ii), L∪C is bi-laminar, and for every S ∈ L

there is C ∈ C so that C ⊆ S. Thus to finish the proof, it is sufficient to prove:

8

Lemma 3.4 Let L, C be set families, so that L ∪ C is bi-laminar, the members of C are pairwise

disjoint, and for every S ∈ L there is C ∈ C so that C ⊆ S. Let F be an edge set that covers C,

fit-covers L, and and so that every edge in F covers some C ∈ C. Then

∑

C∈C

|δF (C)| ≤ 2|C| − 1 . (5)

We now prove Lemma 3.4. Let us say that C ∈ C is a leaf-set if |δF (C)| = 1. The following

statement shows, among others, that at least one leaf-set exists.

Claim 3.5 Let S be an inclusion minimal member of L, let C ∈ C so that C ⊆ S, and let e ∈ F

be an edge that covers C. Then S = Se. In particular, C is a leaf-set.

Proof: We cannot have Se ⊂ S by the minimality of S. We cannot have S ⊂ Se, or S ⊆ S∗
e and

Se ⊆ S∗, since then e covers both S, Se, by Lemma 3.1 (i). The statement follows. 2

For C ∈ C let LC be the family of sets in L that contain C and do not contain any other member

of C; note that C ∈ LC if C ∈ L. Let FC be the set of the fit-edges of the members of LC .

Claim 3.6 |LC | ≤ 2 for any leaf-set C.

Proof: Suppose to the contrary that there are sets C ⊆ Se ⊂ Sf ⊂ Sg in LC , where Se is

the inclusion minimal set in L with C ⊆ Se. By Claim 3.5, e covers C. Now consider a set

Cf ∈ C covered by f . We must have Cf 6= C, since otherwise f covers Se, by Lemma 3.1 (i). By

Lemma 3.1 (ii), Cf ⊆ Sg or Cf ⊆ S∗
g . Since Sg ∈ LC , we must have Cf ⊆ S∗

g . However then f

covers Sg, by Lemma 3.1 (i). This contradicts that g is the unique edge in F covering Sg. 2

Let C be a leaf-set as in Claim 3.5. A natural approach to prove Lemma 3.4 is by induction.

Obtain a triple C ′,L′, F ′ by removing C from C, LC from L, and FC from F . Then in inequality

(5), the decrease in the l.h.s. is at most 2, and the decrease in the r.h.s. is exactly 2. This implies

the bound
∑

C∈C |δF (C)| ≤ 2|C|. The improved bound in Lemma 3.2 follows from the observation

that if C = {C} then |δF (C)| = 1, by Claim 3.5. This approach works, except one case: we need

the triple C′,L′, F ′ to satisfy the assumptions of Lemma 3.4. A problem can occur only when an

edge f ∈ FC covers a leaf-set C ′ distinct from C, as then F ′ does not cover C ′ ∈ C. In this case,

we do not delete f , and add C ′ to L to be the fit-set for f instead of Sf .

Formally, the triple C ′,L′, F ′ is defined as follows. We set C ′ = C − {C}. Let Se be the minimal

and Sf the maximal set in L(C). Note that e covers C, and that e = f and Se = Sf if |LC | = 1. If

f covers a leaf set C ′ distinct from C, then we set F ′ = (F −{e})+{f} and L′ = (L−{Se})+{C ′};

otherwise, we set F ′ = F−{e, f} and L′ = L−{Se, Sf}. It is immediate to see that C ′,L′, F ′ satisfy

the assumptions of Lemma 3.4, and that
∑

C∈C |δF (C)|−
∑

C∈C′ |δF ′(C)| ≤ 2 (note that an equality

may hold, if f covers a member of C − {C} that is not a leaf-set). Together with the observation

that both sides of (5) equal 1 if |C| = 1, this implies the inequality (5).

9

This finishes the proof of Lemma 3.4, and thus the proof that the algorithm described in this

section has ratio 2 is also complete.

Acknowledgment: I thank two anonymous referees for many useful comments.

References

[1] R. Bar-Yehuda and D. Rawitz. One for the price of two: a unified approach for approximating

covering problems. Algorithmica, 37(2):131–144, 2000.

[2] T. Chakraborty, J. Chuzhoy, and S. Khanna. Network design for vertex connectivity. In STOC,

pages 167–176, 2008.

[3] M. Charikar, C. Chekuri, T. Cheung, Z. Dai, A. Goel, S. Guha, and M. Li. Approximation

algorithms for directed Steiner problems. Journal of Algorithms, 33:73–91, 1999.

[4] C. Chekuri and N. Korula. A graph reduction step preserving element-connectivity and appli-

cations. To appear in ICALP 2009.

[5] C. Chekuri and N. Korula. Single-sink network design with vertex connectivity requirements.

In FSTTCS, 2008.

[6] J. Cheriyan and A. Vetta. Approximation algorithms for network design with metric costs.

SIAM J. Discrete Math., 21(3):612–636, 2007.

[7] J. Chuzhoy and S. Khanna. Algorithms for single-source vertex-connectivity. In FOCS, pages

105–114, 2008.

[8] J. Chuzhoy and S. Khanna. An O(k3 log n)-approximation algorithms for vertex-connectivity

network design. Manuscript, 2009.

[9] L. Fleischer, K. Jain, and D. P. Williamson. Iterative rounding 2-approximation algorithms

for minimum-cost vertex connectivity problems. J. Comput. Syst. Sci., 72(5):838–867, 2006.

[10] M. Goemans, A. Goldberg, S. Plotkin, D. Shmoys, E. Tardos, and D. Williamson. Improved

approximation algorithms for network design problems. In SODA, pages 223–232, 1994.

[11] K. Jain. A factor 2 approximation algorithm for the generalized Steiner network problem.

Combinatorica, 21(1):39–60, 2001.

[12] G. Kortsarz, R. Krauthgamer, and J. R. Lee. Hardness of approximation for vertex-

connectivity network design problems. SIAM Journal on Computing, 33(3):704–720, 2004.

10

[13] G. Kortsarz and Z. Nutov. Approximating minimum-cost connectivity problems. In T. F.

Gonzalez, editor, Chapter 58 in Approximation Algorithms and Metaheuristics. Chapman &

Hall/CRC, 2007.

[14] G. Kortsarz and Z. Nutov. Tight approximation algorithm for connectivity augmentation

problems. J. Comput. Syst. Sci, 74(5):662–670, 2008.

[15] Y. Lando and Z. Nutov. Inapproximability of survivable networks. Theor. Comput. Sci.,

410(21-23):2122–2125, 2009.

[16] Z. Nutov. Approximating minimum cost connectivity problems via uncrossable bifamilies and

spider-cover decompositions. To appear in FOCS 2009.

[17] Z. Nutov. Approximating node-connectivity augmentation problems. To appear in APPROX

2009.

[18] Z. Nutov. Approximating rooted connectivity augmentation problems. Algorithmica, 44:213–

231, 2003.

[19] Z. Nutov. Approximating connectivity augmentation problems. In SODA, pages 176–185,

2005. To appear in Transactions on Algorithms.

[20] Z. Nutov. An almost O(log k)-approximation for k-connected subgraphs. In SODA, pages

912–921, 2009.

11

