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Abstract
In many applications we are required to increasediéployment of a distributed monitoring
system on an evolving network. In this paper wes@né a new method for finding candidate
locations for additional deployment in the netwoikhis method is based on the Group
Betweenness Centrality (GBC) measure that is usezbtimate the influence of a group of
nodes over the information flow in the network. Thew method assists in finding the

location ofk additional monitors in the evolving network, subhat the portion of additional
traffic covered is at Ieaﬁ—%) of the optimal.
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1. Introduction

Distributed systems designed to work on wide aetawvorks are commonly used for network
monitoring tasks such as traffic measurements andusion detection and prevention.
Networks tend to evolve over time and there is mstant need to update the deployment of
monitors in order to maintain the system effectaan In many cases relocating the
deployment is not practical both from economicatl &rom technical perspectives (for
example when deployment involves infrastructuraistijents). In these cases, there is a need
to find candidate locations for additional deployref network monitors.

Several methods were proposed for optimizing theation of network monitors by
maximizing the number of network flows covered. Sethal. [1] proposed approximate
solutions for several monitor location problemsngsgreedy heuristics. Chaudet at el. [2]
presented a framework, based on Mixed Integer Brogring, for solving monitor placement
problems with additional “must deploy” constraifibe methods presented in [1, 2] operate
on the collection of paths utilized by each sousrget flow. Therefore, they are most
applicable when there are few arbitrary paths &mhesource-target flow. These methods are

evaluated on commercial internet service proviagdgworks and Point-of-Presence topologies.



The algorithm presented in this paper reducesdhgpatational effort required for optimizing
placement of passive traffic monitors in cases whetwork flows utilize all shortest paths
from source to target. We avoid enumerating shorigegths by exploiting efficient
computation of Shortest Path Group Betweennessré&lgnt{GBC) [3—6], which is roughly
defined as the total fraction of shortest paths ttzeverse at least one member of the group.
Betweenness centrality can easily be adapted tsid@nvariable communication patterns in
the form of traffic matrices [7]. Puzis et al. delse in [8] a greedy algorithm that, at every
stage, chooses the candidate that contributes tie# ta the GBC of the already chosen
candidates. The algorithm presented here, is argkzadion of this scheme which also
supports “must deploy” and “can not deploy” consitsa It allows optimizing monitors’
deployment on evolving networks whose topologyhiarging over time.

The following example describes a potential applicaof the algorithm. LeG(V,E) be a
communication network and cV be a set of nodes chosen for deployment of network
monitors. Assume that the network has evolved stheeinitial deployment intd&’'(V',E’)

and D cV'. Assume also that there is a budget for additiamabnitors chosen from a set of
candidate location€ cV . The additionak monitors should be deployed to cover the largest
possible portion of a traffic that is not coverdgtady byD. The proposed algorithm receives

G, D, C,andk as an input. It returns a group of noddscV suth thatD c M and the
portion of additional traffic covered by is at Ieast(l—}é) of the optimal. Note that this

approximation factor holds only when network floutdize all shortest paths from source to
target with equal probability. Nevertheless, it hbsen shown in the literature that
betweenness predicts well the traffic load on nodescommunication networks with

conventional shortest path routing [9].

The rest of the paper is structured as followssdation 2 we present the new computational

method. In section 3 we prove that the portiondwfigonal traffic covered is at Iea{;l— }é)

of the optimal. Section 4 presents experimentalltegnd section 5 concludes the paper with

a summary.



2. Incremental Deployment M ethod
2.1 Definitions of Shortest Path Betweenness Centrality Measures
Betweenness Centrality (BC) accounts for shorteghgp between all pairs of nodes in a

network. Lets andt be two nodes in a networks,, denotes the total number of different

shortest paths that connecandt. Letv be a node that resides on a shortest path betsveen

andt. o,,(v) denotes the number of shortest paths fsdot that pass through

__Jogyoyy d(st)=d(sv)+d(vi)
GSJ(V)_ {0 l otherwise

whered(x, y) is the distance between nodesndy. For example, in Figure &, , = 3 since

there are three shortest paths from 1 to 4. Fopatimg o and distance matrices for a
networkG with n nodes anan edges, we use the algorithm presented by Brari@@sThe
computational complexity of this algorithm@nm) and does not depend on the actual
number of shortest paths between each pair of nddesxploit this feature of the algorithm
to devise a strategy for deployment of network rasiin networks where traffic can flow

through any shortest path from source to target.

0 1

5 2 Figure 1: Sample network with a network flow betwemy two

b nodes. Nodes 0 and 3 have the highest traffic load.

BC of nodeveV represents the total influence thatas on communications between all
possible pairs of nodes in the network. BC of nede

BCW = Y (G‘(V)J )

steV|szt O.s,t

where the fractiorr..(v) represents the influence wion the communication betwesrandt,

O

st

and whereo, =1 which results ino, (t) = o, (s) = o, . As an example, let us recall Figure
1: BC(2)=2x(1+1+1+1+1+1+1)=11667
GBC is a natural extension of BC of individual nedé]. Let ScV be a group of

nodes.GB((S) stands for the total fraction of shortest patbsMeen all pairs of nodes that

pass through at least one member of the gbwet 6, (S) be the number of shortest paths

betweers andt that traverse at least one member of the g&®u@BC of groufSis



GBC(S)= Y (U‘(S)J ©))
s,teVls#t

Ot

For instance, in Figure 1 it holds tl@BC({2, 3}) = 20.3333.
Path Betweenness (PB) centrality [3], generalihesconcept of single node Betweenness to

Betweenness of sequences of no8es(v1, v2, .. , vk PB(S) stands for the total fraction of

shortest paths between all pairs of nodes thaetsavall nodes its. Let o,,(S) be the

number of shortest paths betwessandt that traverse all members &f PB ofSis:

PB(S)= [C;t(S)J (4)

stevist\  Ost
Again, the network in Figure 1 will serve as anrapée: PB({2, 3}) =2x (g +3+1+1+ §)= 7.
Note thaBC(v) = GBC({v}) = PB(v,v) by definition.
2.2 Two-phase Algorithm for I ncremental Deployment
Let G=(V,E), with V|=n nodes andE|=m edges, be a communication network, where a
route from sourcs to targett is some shortest path chosen uniformly out o$ladirtest paths
fromstot. Let D be a group of nodes that has some control ovetrdiffec in G. Let CcV

be a set of candidate locations for additional ogplent. We assume without the loss of

generality thatC~D=¢. We want to find a group dD|+k nodes denoted bW where
M cCuD, Dc M, andM has maximal control over the traffic @
We define an algorithm that in the first phase dialtesGBC; (D) and in the second phase it
constructively finds the addition&d nodes. In every step during the second phase, the
algorithm chooses the next best candidataccording to its contribution to GBC of the
current group. InitiallyM = ¢, after the first phaséM=D, and after the second phase
[M|=|D|+k . Each time we add a nodeNbwe update the following data structure:

e o" —Ix| matrix/CuD|=I, whose elements, :(steCuD) store the number

of shortest paths betwesrandt that do not traverse any nodeNh The initial values

of ol (for M =¢) are equal tar,, .

e PB"Y — x| matrix, whose element®BB" (x,y):(x,y € CuD) store the PB of pair

(x, y) disregarding the shortest paths that traveréeaat one node iN. Initial values



of PB" (x,y) (for M =¢) are equal t&B(x, y). The valuesPB(x,y) are computed
only for x,yeCuD.
GBC(M) is the total fraction of the shortest paths thrawvdrse at least one node lh
PB" (v,v) is the total fraction of shortest paths that trage excluding shortest paths that
traverse at least one nodeMin Therefore GBC(M) + PB" (v,v) = GBC(M u{v })
Algorithm 1 presents a procedure for updatim and PB" matrices to exclude paths that

traversev. Algorithm 1 loops through all nodes @uD. In Line 2 ax“f'y is decreased by
ax“f'y (v), removing paths that traverseln the special case =y # v, Line 3 subtracts from

PB" (x,x) (the current contribution of) paths that also traversein both directions to v
andv to x. In a general case, Line 4 used' to calculate the value oPB" " (x,y) by

removing from PB" (x,y) paths that include. Note that there is a path fromto y that
traversey if and only ifd(x, v) + d(v, y) = d(x, y). If there is a shortest path traversing x, v,
and v (firstx and thery), one of three options is considereds beforex, v is aftery, orv is
betweernx andy. In general, a nodeis before nodev on the path from sourceto destination

t, if the distance ofi from s is less than the distance wffrom s). If no such shortest path

exists,a,, , (W,) =0 for any assignment af,w, and w.

Input: C, D,c", PB", v Input: D, C, o, PBY ,k:(JCUD )
Output: o™ % | pBM ¥ ﬁlljr'[]ﬂlljél ap%g)slépof k nodes
1: for eachx,y e C U Drepeat2 — 4 1. M«—9¢
2:_O->'xlyu{v} :O_xy_o-:{ly(v) 2: VX,yECUD,O'Mx,y (—Ux’y
3:if x=y=#v 3: vx,yeCuD,PB"(x,y) «—— PB(X,Y)
/I updatePB" considerimg (v, x) and (X, V) / First pha®

PB" 1 (x,x) = 4: foreachveD

= PB" (x,x) — PB" (v, x) - PB" (x,V) 5:  updat¢C, D,M,c", PB", V)

4:else if trere is shaest pathcontainirg 2: Md<—m£ M u{v}

X,y, andv assign xy,v to w,w,, and w Secon pre .

where w is betwea w and w. 71 repeatk imes:

8: find v e C with maximalPB" (v,v)

v} _
PB"“"(x,y)= ‘) 9: updat¢C, D, M,c™, PB", v)
Ty, \W. 10 M<«—Mu{v}
= PB"(x,y)— —2%> 22 pBM(w,, W
oY) . (e, \5) returnM \ D
Algorithm 1: Update procedure. Algorithm 2: Two-Phase incremental deployment



Algorithm 2 receives as an input the existing dgplentD, the set of candidate locatio@s

o" and PB" matrices and the number of additional monitorbdodeployed. Lines 1-4

initialize its data structure. The first phase @sm-6) goes through all nodesDnpreparing

the o and PB" matrices for the second phase. In the second phaderatively add té1 k
nodes, choosing each time the node with highestribation to the GBC of M. The

contribution of a nodes to GBQM) is PB" (v,v). The contribution of the first node is
therefore, PB’(v,,v, ) The second node contributés™ (v,,v, , ghd so onWe continue

updating the matricesr” and PB" with respect to the growinlyl by removing shortest
paths that traverse Assume that the existing deployment in the nekva@picted in Figure 1
is D = {1}. According to Algorithm 2 the first node tme added to the deployment is 3.
Let|CUD =1. The running time of Algorithm 2 scales 8|l (M| calls to the “update”
procedure which updatésentries each one i@(1)). The algorithm require§ entries of the
o and PB matrices. The complexity of these matrices' commpan is max O(nl?), O(hm)}
[3]. SinceO(nl?) dominatesO(|M|I?) the total time spent on constructibyis O(nm) when

| <Jm oro(nl®) whenvm<I .

3. The Approximation Factor
In this section we prove that Algorithm 2(]5— %) approximation for the problem of finding

a set ok nodes with maximal contribution to tiBBC of a given set of nodd3. The proof is
inspired by the well known greedy approximationoaidnm for max-k variant of the set-cover

problem [11]. The following proposition was provied 3]:

PROPOSITION 1: After each execution of the “update” procedurBB" (x,y) is the Path
Betweenness of (X, y) excluding shortest pathsitaatrse at least one node in M.

In particular the above proposition implies tHa€" (v) = PB" (v,v) is the contribution of/

to theGBC of the group of nodell.
Through the end of this section we focus on theos@écphase of Algorithm 2. Let

M, =D uU{v,...,v} be the set of nodes located by the algorithm durink iterations of the
second phase ang be the node chosen by the algorithm in Line 8pdrticular, M, =D

and v is the node with the highest contribution to theG& D.



ProrPosITIONZ: Let M'c C be a set of k nodes with maximal contributiorh® GBC of D, it
holds that: k-BC"+(v)>GBC"(M")-GBC" (M, ,) where GBC"°(X) denotes the
contribution of X to the GBC of D.

PrROOF v, is the node with the maximal contribution to th8@ of M, , in particular
BC"+(v.) > BC"+ (V) for eachv'inM". It was proved in [8] that the sum of contributasf

any set of nodes to the GBC o, , is greater than or equal to their joint contributi

1
Therefore, it holds thak-BC*+(v;)> >  _ BC"*(v )>GBC"+(M").

GBC"+(M") accounts for all shortest paths that pass throMghbut do not pass through
M, ,. Some of the shortest paths that pass throdyjh, ; \ M , are accounted for by
GBC"°(M") but not all. For instance, a path that passesigfirdwo verticesue M, ,\ M,
and weM, ; "M, is not accounted for GFBC"°(M"). Therefore, we end up with the
following inequality: k- BCV'+ (v ) > GBC"*(M' )> GBC"*(M' )~ GBC"°(M, ).

d

ProPOSITION3: Algorithm 2 returns a set of nodes whose contridyuto the GBC of D is at
least (1—%)z 0.632 of the optimum.

ProOF Note that the contribution d1; to the GBC oD is trivially equal to the contribution
of M, \D to the GBC oD. BC"(v) is the marginal contribution of to the GBC ofM, ,
(where M,, is ground zero). Therefore, summing the respectiaeginal contributions of the

i-1 nodes found in Line 8C"(v;)) results inGBC"°(M,_,). Let M'c C be the set of

nodes with maximal contribution to the GBCIfAccording to Proposition 2 it holds that:

Mg ' i-1 M
B+ (v) > GBC" (M)~ " BC""(v))
17 = k "

Therefore, (similarly to Proposition 5.1 in [11])
GBC"*(M) =Y BCY(v)

>GBC"(M")- 1- 1-1/k)").
>GBC"°(M')-(1-1/¢€)



4. Deployment of monitoring devices

In this section we present a comparison of twotegias for updating the deployment of a
monitoring system over an evolving network whilegegrving the system effectiveness. In the
first strategy, a new deployment will be found iresy time period regardless of the previous
deployments. In the second, a search for additideployment will be performed assuming
that devices that were already deployed cannotloeated.

We have performed experiments on evolving networkated using the BA model [12], with
various average degrees. We assumed that monitdewmiges should intercept 95% of the
flows. The difference between the number of devaeggdoyed according to the two strategies
averaged over 20 networks is presented in Fig.aZhEetwork evolved from 100 nodes to
2000 and the monitors’ deployment was recalculafezt each addition of 100 nodes. We can
see that the absolute penalty (expressed in thebewurof additional monitors) for not
relocating monitors that were already deployeddases as network grows. However, the

relative size of such additional deployment is 2% average and at most 6% in all

simulations.
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Figure 2: The penalty for not relocating network monitorserms of the absolute (left) and relative

(right) number of monitors for evolving BA networksth different average degrees.
5. Summary
In this paper we presented a new method for findiagdidate locations for additional
deployment of network monitors in evolving netwark&is new method is based on the GBC

measure that is used to estimate the influencegobap of nodes over the information flow in



the network. We show that the new methoo(lis %) approximation for the problem of

finding a set ok nodes with maximal contribution to ti&BC of a given set of nodd3. The
new method can be used to increase the deploynientistributed monitoring system such

as Distributed Network Intrusion Detection Systeman evolving network.
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