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Abstract 

In many applications we are required to increase the deployment of a distributed monitoring 

system on an evolving network. In this paper we present a new method for finding candidate 

locations for additional deployment in the network. This method is based on the Group 

Betweenness Centrality (GBC) measure that is used to estimate the influence of a group of 

nodes over the information flow in the network. The new method assists in finding the 

location of k additional monitors in the evolving network, such that the portion of additional 

traffic covered is at least ( )e
11−  of the optimal. 

Keywords: Graph Algorithms, Distributed Systems, Interconnection Networks, Network 

Centrality, Group Betweenness. 

1. Introduction 

Distributed systems designed to work on wide area networks are commonly used for network 

monitoring tasks such as traffic measurements and intrusion detection and prevention. 

Networks tend to evolve over time and there is a constant need to update the deployment of 

monitors in order to maintain the system effectiveness. In many cases relocating the 

deployment is not practical both from economical and from technical perspectives (for 

example when deployment involves infrastructure adjustments). In these cases, there is a need 

to find candidate locations for additional deployment of network monitors. 

Several methods were proposed for optimizing the location of network monitors by 

maximizing the number of network flows covered. Suh et al. [1] proposed approximate 

solutions for several monitor location problems using greedy heuristics. Chaudet at el. [2] 

presented a framework, based on Mixed Integer Programming, for solving monitor placement 

problems with additional “must deploy” constraint. The methods presented in [1, 2] operate 

on the collection of paths utilized by each source-target flow. Therefore, they are most 

applicable when there are few arbitrary paths for each source-target flow. These methods are 

evaluated on commercial internet service provider networks and Point-of-Presence topologies. 
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The algorithm presented in this paper reduces the computational effort required for optimizing 

placement of passive traffic monitors in cases where network flows utilize all shortest paths 

from source to target. We avoid enumerating shortest paths by exploiting efficient 

computation of Shortest Path Group Betweenness Centrality (GBC) [3–6], which is roughly 

defined as the total fraction of shortest paths that traverse at least one member of the group. 

Betweenness centrality can easily be adapted to consider variable communication patterns in 

the form of traffic matrices [7]. Puzis et al. describe in [8] a greedy algorithm that, at every 

stage, chooses the candidate that contributes the most to the GBC of the already chosen 

candidates. The algorithm presented here, is a generalization of this scheme which also 

supports “must deploy” and “can not deploy” constraints. It allows optimizing monitors’ 

deployment on evolving networks whose topology is changing over time. 

The following example describes a potential application of the algorithm. Let G(V,E) be a 

communication network and VD ⊆  be a set of nodes chosen for deployment of network 

monitors. Assume that the network has evolved since the initial deployment into G’(V’,E’) 

and 'VD ⊆ . Assume also that there is a budget for additional k monitors chosen from a set of 

candidate locations 'VC⊆ . The additional k monitors should be deployed to cover the largest 

possible portion of a traffic that is not covered already by D. The proposed algorithm receives 

G’, D, C, and k as an input. It returns a group of nodes 'VM ⊆  such that MD ⊆ and the 

portion of additional traffic covered by M is at least ( )e
11−  of the optimal. Note that this 

approximation factor holds only when network flows utilize all shortest paths from source to 

target with equal probability. Nevertheless, it has been shown in the literature that 

betweenness predicts well the traffic load on nodes in communication networks with 

conventional shortest path routing [9].  

The rest of the paper is structured as follows. In section 2 we present the new computational 

method. In section 3 we prove that the portion of additional traffic covered is at least ( )e
11−  

of the optimal. Section 4 presents experimental results and section 5 concludes the paper with 

a summary. 
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2. Incremental Deployment Method 

2.1 Definitions of Shortest Path Betweenness Centrality Measures 

Betweenness Centrality (BC) accounts for shortest paths between all pairs of nodes in a 

network. Let s and t be two nodes in a network. ts,σ  denotes the total number of different 

shortest paths that connect s and t. Let v be a node that resides on a shortest path between s 

and t. )(, vtsσ  denotes the number of shortest paths from s to t that pass through v. 

{ )t,v(d)v,s(d)t,s(d
otherwiset,s

t,vv,s)v( +=⋅= σσσ 0  (1) 

where d(x, y) is the distance between nodes x and y. For example, in Figure 1 34,1 =σ  since 

there are three shortest paths from 1 to 4. For computing σ and distance matrices for a 

network G with n nodes and m edges, we use the algorithm presented by Brandes [10]. The 

computational complexity of this algorithm is O(nm) and does not depend on the actual 

number of shortest paths between each pair of nodes. We exploit this feature of the algorithm 

to devise a strategy for deployment of network monitors in networks where traffic can flow 

through any shortest path from source to target. 
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GBC is a natural extension of BC of individual nodes [4]. Let VS⊆  be a group of 

nodes. GBC(S) stands for the total fraction of shortest paths between all pairs of nodes that 

pass through at least one member of the group S. Let )(, Stsσ&&  be the number of shortest paths 

between s and t that traverse at least one member of the group S.  GBC of group S is  

0 1 

2 

3 4 

5 Figure 1: Sample network with a network flow between any two 

nodes. Nodes 0 and 3 have the highest traffic load. 
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For instance, in Figure 1 it holds that GBC({2, 3}) = 20.3333. 

Path Betweenness (PB) centrality [3], generalizes the concept of single node Betweenness to 

Betweenness of sequences of nodes S = (v1, v2, .. , vk). PB(S) stands for the total fraction of 

shortest paths between all pairs of nodes that traverse all nodes in S. Let )(~
, Stsσ  be the 

number of shortest paths between s and t that traverse all members of S.  PB of S is:  
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Again, the network in Figure 1 will serve as an example: ( ) 71123}) ({2, 3
2

3
1

2
1 =++++×=PB . 

Note that ),(})({)( vvPBvGBCvBC ==  by definition. 

2.2 Two-phase Algorithm for Incremental Deployment 

Let ),( EVG = , with nV =  nodes and mE =  edges, be a  communication network, where a 

route from source s to target t is some shortest path chosen uniformly out of all shortest paths 

from s to t. Let D  be a group of nodes that has some control over the traffic in G. Let VC⊆  

be a set of candidate locations for additional deployment. We assume without the loss of 

generality that φ=∩DC . We want to find a group of |D|+k nodes denoted by M where 

DCM ∪⊆ , MD ⊆ , and M has maximal control over the traffic in G. 

We define an algorithm that in the first phase calculates )(DGBCG  and in the second phase it 

constructively finds the additional k nodes. In every step during the second phase, the 

algorithm chooses the next best candidate v according to its contribution to GBC of the 

current group. Initially φ=M , after the first phase M=D , and after the second phase 

|M|=|D|+k . Each time we add a node to M we update the following data structure: 

• Mσ  – ll ×  matrix, lDC =∪ , whose elements ),(:, DCtsM
ts ∪∈σ  store the number 

of shortest paths between s and t that do not traverse any node in M. The initial values 

of M
ts,σ  (for φ=M ) are equal to ts,σ . 

• MPB  – ll ×  matrix, whose elements ),(:),( DCyxyxPBM ∪∈  store the PB of pair 

(x, y) disregarding the shortest paths that traverse at least one node in M. Initial values 
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of ),( yxPBM  (for φ=M ) are equal to PB(x, y). The values ),( yxPB are computed 

only for DCyx ∪∈, . 

GBC(M) is the total fraction of the shortest paths that traverse at least one node in M. 

),( vvPBM  is the total fraction of shortest paths that traverse v excluding shortest paths that 

traverse at least one node in M.  Therefore, }){(),()( vMGBCvvPBMGBC M ∪=+ . 

Algorithm 1 presents a procedure for updating Mσ  and MPB  matrices to exclude paths that 

traverse v. Algorithm 1 loops through all nodes in DC∪ . In Line 2 M
yx,σ  is decreased by 

)(, vM
yxσ , removing paths that traverse v. In the special case vyx ≠= , Line 3 subtracts from 

),( xxPBM  (the current contribution of x) paths that also traverse v in both directions x to v 

and v to x. In a general case, Line 4 uses Mσ  to calculate the value of ),(}{ yxPB vM ∪  by 

removing from ),( yxPBM  paths that include v. Note that there is a path from x to y that 

traverses v if and only if d(x, v) + d(v, y) = d(x, y). If there is a shortest path traversing x, y, 

and v (first x and then y), one of three options is considered: v is before x, v is after y, or v is 

between x and y. In general, a node u is before node w on the path from source s to destination 

t, if the distance of u from s is less than the distance of w from s). If no such shortest path 

exists, 0231
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Algorithm 1: Update procedure. Algorithm 2: Two-Phase incremental deployment    
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Algorithm 2 receives as an input the existing deployment D, the set of candidate locations C, 

Mσ  and MPB  matrices and the number of additional monitors to be deployed k. Lines 1-4 

initialize its data structure. The first phase (Lines 4-6) goes through all nodes in D preparing 

the Mσ and MPB  matrices for the second phase. In the second phase we iteratively add to M k 

nodes, choosing each time the node with highest contribution to the GBC of M. The 

contribution of a node v to GBC(M) is ),( vvPBM . The contribution of the first node is 

therefore, ),( 11 vvPBφ . The second node contributes ),( 22
}{ 1 vvPB v , and so on. We continue 

updating the matrices Mσ  and MPB  with respect to the growing M by removing shortest 

paths that traverse v. Assume that the existing deployment in the network depicted in Figure 1 

is D = {1}. According to Algorithm 2 the first node to be added to the deployment is 3. 

Let lDC =∪ || . The running time of Algorithm 2 scales as |M|l2 (|M| calls to the “update” 

procedure which updates l2 entries each one in O(1)). The algorithm requires l2 entries of the 

σ and PB matrices. The complexity of these matrices' computation is max{ O(nl2), O(nm)} 

[3]. Since O(nl2) dominates O(|M|l2) the total time spent on constructing M is O(nm) when 

ml ≤  or O(nl2) when lm ≤ . 

3. The Approximation Factor 

In this section we prove that Algorithm 2 is ( )e
11−  approximation for the problem of finding 

a set of k nodes with maximal contribution to the GBC of a given set of nodes D. The proof is 

inspired by the well known greedy approximation algorithm for max-k variant of the set-cover 

problem [11]. The following proposition was proved in [3]: 

PROPOSITION 1: After each execution of the “update” procedure, ),( yxPBM  is the Path 

Betweenness of (x, y) excluding shortest paths that traverse at least one node in M. 

In particular the above proposition implies that ),()( vvPBvBC MM =  is the contribution of v 

to the GBC of the group of nodes M. 

Through the end of this section we focus on the second phase of Algorithm 2. Let 

},,{ 1 ii vvDM K∪=  be the set of nodes located by the algorithm during ki ≤  iterations of the 

second phase and iv  be the node chosen by the algorithm in Line 8. In particular,  DM =0  

and 1v is the node with the highest contribution to the GBC of D. 
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PROPOSITION 2: Let CM ⊆'  be a set of k nodes with maximal contribution to the GBC of D, it 

holds that: )()'()( 1
001

−−≥⋅ −
i

MM
i

M MGBCMGBCvBCk i  where )X(GBCM0  denotes the 

contribution of X to the GBC of D. 

PROOF: iv  is the node with the maximal contribution to the GBC of 1−iM  in particular 

)()( 11 vBCvBC ii M
i

M ′≥ −−  for each v′ in 'M . It was proved in [8] that the sum of contributions of 

any set of nodes to the GBC of 1−iM  is greater than or equal to their joint contribution. 

Therefore, it holds that: )'M(GBC)'v(BC)v(BCk iii M
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M
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)'(0 MGBCM  but not all. For instance, a path that passes through two vertices 01 \ MMu i−∈  

and 01 MMw i ∩∈ −  is not accounted for by )'(0 MGBCM . Therefore, we end up with the 

following inequality: )M(GBC)'M(GBC)'M(GBC)v(BCk i
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PROPOSITION 3: Algorithm 2 returns a set of nodes whose contribution to the GBC of D is at 

least ( ) 632.011 ≈− e  of the optimum. 

PROOF: Note that the contribution of iM  to the GBC of D is trivially equal to the contribution 

of DM i \  to the GBC of D. )(1
i

M vBC i−  is the marginal contribution of iv  to the GBC of 1−iM  

(where 0M  is ground zero). Therefore, summing the respective marginal contributions of the 

i-1 nodes found in Line 8 ( )(1
i

M vBC i− ) results in )( 1
0

−i
M MGBC . Let CM ⊆'  be the set of 

nodes with maximal contribution to the GBC of D. According to Proposition 2 it holds that: 

k

vBCMGBC
vBC

i

j j

MM

i
M

j

i
∑

−

=

−

−
−

≥

1

1
)()'(

)(
10

1 . 

Therefore, (similarly to Proposition 5.1 in [11])  

)/11()'(

))/11(1()'(

)()(

0

0

10

1

eMGBC

kMGBC

vBCMGBC

M

kM

k

i i
MM i

−⋅≥

−−⋅≥

=∑ =
−

. 

� 

 



 8 

4. Deployment of monitoring devices 

In this section we present a comparison of two strategies for updating the deployment of a 

monitoring system over an evolving network while preserving the system effectiveness. In the 

first strategy, a new deployment will be found in every time period regardless of the previous 

deployments. In the second, a search for additional deployment will be performed assuming 

that devices that were already deployed cannot be relocated. 

We have performed experiments on evolving networks created using the BA model [12], with 

various average degrees. We assumed that monitoring devices should intercept 95% of the 

flows. The difference between the number of devices deployed according to the two strategies 

averaged over 20 networks is presented in Fig. 2. Each network evolved from 100 nodes to 

2000 and the monitors’ deployment was recalculated after each addition of 100 nodes. We can 

see that the absolute penalty (expressed in the number of additional monitors) for not 

relocating monitors that were already deployed increases as network grows. However, the 

relative size of such additional deployment is 2% on average and at most 6% in all 

simulations. 

 

Figure 2: The penalty for not relocating network monitors in terms of the absolute (left) and relative 

(right) number of monitors for evolving BA networks with different average degrees. 

5. Summary 

In this paper we presented a new method for finding candidate locations for additional 

deployment of network monitors in evolving networks. This new method is based on the GBC 

measure that is used to estimate the influence of a group of nodes over the information flow in 
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the network. We show that the new method is ( )e
11−  approximation for the problem of 

finding a set of k nodes with maximal contribution to the GBC of a given set of nodes D. The 

new method can be used to increase the deployment of a distributed monitoring system such 

as Distributed Network Intrusion Detection System on an evolving network. 
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