
 1

Incremental Deployment of Network Monitors Based on

Group Betweenness Centrality

Shlomi Dolev, Yuval Elovici, Rami Puzis, Polina Zilberman

Abstract

In many applications we are required to increase the deployment of a distributed monitoring

system on an evolving network. In this paper we present a new method for finding candidate

locations for additional deployment in the network. This method is based on the Group

Betweenness Centrality (GBC) measure that is used to estimate the influence of a group of

nodes over the information flow in the network. The new method assists in finding the

location of k additional monitors in the evolving network, such that the portion of additional

traffic covered is at least ()e
11− of the optimal.

Keywords: Graph Algorithms, Distributed Systems, Interconnection Networks, Network

Centrality, Group Betweenness.

1. Introduction

Distributed systems designed to work on wide area networks are commonly used for network

monitoring tasks such as traffic measurements and intrusion detection and prevention.

Networks tend to evolve over time and there is a constant need to update the deployment of

monitors in order to maintain the system effectiveness. In many cases relocating the

deployment is not practical both from economical and from technical perspectives (for

example when deployment involves infrastructure adjustments). In these cases, there is a need

to find candidate locations for additional deployment of network monitors.

Several methods were proposed for optimizing the location of network monitors by

maximizing the number of network flows covered. Suh et al. [1] proposed approximate

solutions for several monitor location problems using greedy heuristics. Chaudet at el. [2]

presented a framework, based on Mixed Integer Programming, for solving monitor placement

problems with additional “must deploy” constraint. The methods presented in [1, 2] operate

on the collection of paths utilized by each source-target flow. Therefore, they are most

applicable when there are few arbitrary paths for each source-target flow. These methods are

evaluated on commercial internet service provider networks and Point-of-Presence topologies.

 2

The algorithm presented in this paper reduces the computational effort required for optimizing

placement of passive traffic monitors in cases where network flows utilize all shortest paths

from source to target. We avoid enumerating shortest paths by exploiting efficient

computation of Shortest Path Group Betweenness Centrality (GBC) [3–6], which is roughly

defined as the total fraction of shortest paths that traverse at least one member of the group.

Betweenness centrality can easily be adapted to consider variable communication patterns in

the form of traffic matrices [7]. Puzis et al. describe in [8] a greedy algorithm that, at every

stage, chooses the candidate that contributes the most to the GBC of the already chosen

candidates. The algorithm presented here, is a generalization of this scheme which also

supports “must deploy” and “can not deploy” constraints. It allows optimizing monitors’

deployment on evolving networks whose topology is changing over time.

The following example describes a potential application of the algorithm. Let G(V,E) be a

communication network and VD ⊆ be a set of nodes chosen for deployment of network

monitors. Assume that the network has evolved since the initial deployment into G’(V’,E’)

and 'VD ⊆ . Assume also that there is a budget for additional k monitors chosen from a set of

candidate locations 'VC⊆ . The additional k monitors should be deployed to cover the largest

possible portion of a traffic that is not covered already by D. The proposed algorithm receives

G’, D, C, and k as an input. It returns a group of nodes 'VM ⊆ such that MD ⊆ and the

portion of additional traffic covered by M is at least ()e
11− of the optimal. Note that this

approximation factor holds only when network flows utilize all shortest paths from source to

target with equal probability. Nevertheless, it has been shown in the literature that

betweenness predicts well the traffic load on nodes in communication networks with

conventional shortest path routing [9].

The rest of the paper is structured as follows. In section 2 we present the new computational

method. In section 3 we prove that the portion of additional traffic covered is at least ()e
11−

of the optimal. Section 4 presents experimental results and section 5 concludes the paper with

a summary.

 3

2. Incremental Deployment Method

2.1 Definitions of Shortest Path Betweenness Centrality Measures

Betweenness Centrality (BC) accounts for shortest paths between all pairs of nodes in a

network. Let s and t be two nodes in a network. ts,σ denotes the total number of different

shortest paths that connect s and t. Let v be a node that resides on a shortest path between s

and t.)(, vtsσ denotes the number of shortest paths from s to t that pass through v.

{)t,v(d)v,s(d)t,s(d
otherwiset,s

t,vv,s)v(+=⋅= σσσ 0 (1)

where d(x, y) is the distance between nodes x and y. For example, in Figure 1 34,1 =σ since

there are three shortest paths from 1 to 4. For computing σ and distance matrices for a

network G with n nodes and m edges, we use the algorithm presented by Brandes [10]. The

computational complexity of this algorithm is O(nm) and does not depend on the actual

number of shortest paths between each pair of nodes. We exploit this feature of the algorithm

to devise a strategy for deployment of network monitors in networks where traffic can flow

through any shortest path from source to target.

BC of node v∈V represents the total influence that v has on communications between all

possible pairs of nodes in the network. BC of node v is

∑
≠∈

=

tsVts ts

ts v
vBC

|, ,

,)(
)(

σ
σ

 (2)

where the fraction
ts

ts v

,

,)(

σ

σ represents the influence of v on the communication between s and t,

and where 1, =xxσ which results in tststs st ,,,)()(σσσ == . As an example, let us recall Figure

1: () 667.11111112(2) 3
1

2
1 =++++++×=BC

GBC is a natural extension of BC of individual nodes [4]. Let VS⊆ be a group of

nodes. GBC(S) stands for the total fraction of shortest paths between all pairs of nodes that

pass through at least one member of the group S. Let)(, Stsσ&& be the number of shortest paths

between s and t that traverse at least one member of the group S. GBC of group S is

0 1

2

3 4

5 Figure 1: Sample network with a network flow between any two

nodes. Nodes 0 and 3 have the highest traffic load.

 4

∑
≠∈

=

tsVts ts

ts S
SGBC

|, ,

,)(
)(

σ
σ&& (3)

For instance, in Figure 1 it holds that GBC({2, 3}) = 20.3333.

Path Betweenness (PB) centrality [3], generalizes the concept of single node Betweenness to

Betweenness of sequences of nodes S = (v1, v2, .. , vk). PB(S) stands for the total fraction of

shortest paths between all pairs of nodes that traverse all nodes in S. Let)(~
, Stsσ be the

number of shortest paths between s and t that traverse all members of S. PB of S is:

∑
≠∈

=

tsVts ts

ts S
SPB

|, ,

,)(~
)(

σ
σ (4)

Again, the network in Figure 1 will serve as an example: () 71123}) ({2, 3
2

3
1

2
1 =++++×=PB .

Note that),(})({)(vvPBvGBCvBC == by definition.

2.2 Two-phase Algorithm for Incremental Deployment

Let),(EVG = , with nV = nodes and mE = edges, be a communication network, where a

route from source s to target t is some shortest path chosen uniformly out of all shortest paths

from s to t. Let D be a group of nodes that has some control over the traffic in G. Let VC⊆

be a set of candidate locations for additional deployment. We assume without the loss of

generality that φ=∩DC . We want to find a group of |D|+k nodes denoted by M where

DCM ∪⊆ , MD ⊆ , and M has maximal control over the traffic in G.

We define an algorithm that in the first phase calculates)(DGBCG and in the second phase it

constructively finds the additional k nodes. In every step during the second phase, the

algorithm chooses the next best candidate v according to its contribution to GBC of the

current group. Initially φ=M , after the first phase M=D , and after the second phase

|M|=|D|+k . Each time we add a node to M we update the following data structure:

• Mσ – ll × matrix, lDC =∪ , whose elements),(:, DCtsM
ts ∪∈σ store the number

of shortest paths between s and t that do not traverse any node in M. The initial values

of M
ts,σ (for φ=M) are equal to ts,σ .

• MPB – ll × matrix, whose elements),(:),(DCyxyxPBM ∪∈ store the PB of pair

(x, y) disregarding the shortest paths that traverse at least one node in M. Initial values

 5

of),(yxPBM (for φ=M) are equal to PB(x, y). The values),(yxPB are computed

only for DCyx ∪∈, .

GBC(M) is the total fraction of the shortest paths that traverse at least one node in M.

),(vvPBM is the total fraction of shortest paths that traverse v excluding shortest paths that

traverse at least one node in M. Therefore, }){(),()(vMGBCvvPBMGBC M ∪=+ .

Algorithm 1 presents a procedure for updating Mσ and MPB matrices to exclude paths that

traverse v. Algorithm 1 loops through all nodes in DC∪ . In Line 2 M
yx,σ is decreased by

)(, vM
yxσ , removing paths that traverse v. In the special case vyx ≠= , Line 3 subtracts from

),(xxPBM (the current contribution of x) paths that also traverse v in both directions x to v

and v to x. In a general case, Line 4 uses Mσ to calculate the value of),(}{ yxPB vM ∪ by

removing from),(yxPBM paths that include v. Note that there is a path from x to y that

traverses v if and only if d(x, v) + d(v, y) = d(x, y). If there is a shortest path traversing x, y,

and v (first x and then y), one of three options is considered: v is before x, v is after y, or v is

between x and y. In general, a node u is before node w on the path from source s to destination

t, if the distance of u from s is less than the distance of w from s). If no such shortest path

exists, 0231
=)(wσ

M
,ww for any assignment of 321 w and ,ww .

) ,w(wPB
σ

)(wσ

(x,y)PB

(x,y) PB

. and wn w is betwee where w
, and w,wto wvyv assign x x,y, and

g containinrtest pathere is shoelse if th
vxPBxvPBxxPB

xxPB

vxandxvgconsiderinPBupdate

vyxif

v

repeatDCyxeachfor

PBOutput

vPBDInput: C

M

M
,ww

M
,wwM

{v}M

MMM

vM

M

M
yx

M
yx

vM
yx

vMvM

MM

31
2

312

321

}{

,,
}{

,

}{}{

31

31

 ,,

:4
),(),(),(

),(
),(),(//

:3

)(:2
42,:1

,:

,,,,

−=

=

−−=
=

≠=
−=

−∪∈

∪

∪

∪

∪∪

σσσ

σ

σ

DMreturn
vMM

vPBMDCupdate
vvPBmaximalwithCvfind

timeskrepeat
se Second pha

vMM
vPBMDCupdate

Dveachfor
e First phas

yxPByxPBDCyx
DCyx

M
hasepInitial

nodeskofgroupaOutput
lDCkPBCDInput

MM

M

MM

M
yxyx

M

M

\
}{:10

),,,,,(:9
),(:8

::7
//

}{:6
),,,,,(:5

:4
//

),(),(,,:3
,,:2

:1
//

:
)|(|:,,,,:

,,

∪←

∈

∪←

∈

←∪∈∀
←∪∈∀

←

=∪

σ

σ

σσ
φ

σ

Algorithm 1: Update procedure. Algorithm 2: Two-Phase incremental deployment

 6

Algorithm 2 receives as an input the existing deployment D, the set of candidate locations C,

Mσ and MPB matrices and the number of additional monitors to be deployed k. Lines 1-4

initialize its data structure. The first phase (Lines 4-6) goes through all nodes in D preparing

the Mσ and MPB matrices for the second phase. In the second phase we iteratively add to M k

nodes, choosing each time the node with highest contribution to the GBC of M. The

contribution of a node v to GBC(M) is),(vvPBM . The contribution of the first node is

therefore,),(11 vvPBφ . The second node contributes),(22
}{ 1 vvPB v , and so on. We continue

updating the matrices Mσ and MPB with respect to the growing M by removing shortest

paths that traverse v. Assume that the existing deployment in the network depicted in Figure 1

is D = {1}. According to Algorithm 2 the first node to be added to the deployment is 3.

Let lDC =∪ || . The running time of Algorithm 2 scales as |M|l2 (|M| calls to the “update”

procedure which updates l2 entries each one in O(1)). The algorithm requires l2 entries of the

σ and PB matrices. The complexity of these matrices' computation is max{ O(nl2), O(nm)}

[3]. Since O(nl2) dominates O(|M|l2) the total time spent on constructing M is O(nm) when

ml ≤ or O(nl2) when lm ≤ .

3. The Approximation Factor

In this section we prove that Algorithm 2 is ()e
11− approximation for the problem of finding

a set of k nodes with maximal contribution to the GBC of a given set of nodes D. The proof is

inspired by the well known greedy approximation algorithm for max-k variant of the set-cover

problem [11]. The following proposition was proved in [3]:

PROPOSITION 1: After each execution of the “update” procedure,),(yxPBM is the Path

Betweenness of (x, y) excluding shortest paths that traverse at least one node in M.

In particular the above proposition implies that),()(vvPBvBC MM = is the contribution of v

to the GBC of the group of nodes M.

Through the end of this section we focus on the second phase of Algorithm 2. Let

},,{ 1 ii vvDM K∪= be the set of nodes located by the algorithm during ki ≤ iterations of the

second phase and iv be the node chosen by the algorithm in Line 8. In particular, DM =0

and 1v is the node with the highest contribution to the GBC of D.

 7

PROPOSITION 2: Let CM ⊆' be a set of k nodes with maximal contribution to the GBC of D, it

holds that:)()'()(1
001

−−≥⋅ −
i

MM
i

M MGBCMGBCvBCk i where)X(GBCM0 denotes the

contribution of X to the GBC of D.

PROOF: iv is the node with the maximal contribution to the GBC of 1−iM in particular

)()(11 vBCvBC ii M
i

M ′≥ −− for each v′ in 'M . It was proved in [8] that the sum of contributions of

any set of nodes to the GBC of 1−iM is greater than or equal to their joint contribution.

Therefore, it holds that:)'M(GBC)'v(BC)v(BCk iii M

'M'v

M
i

M 111 −−− ≥≥⋅ ∑ ∈
.

)'(1 MGBC iM − accounts for all shortest paths that pass through 'M but do not pass through

1−iM . Some of the shortest paths that pass through 01 \ MM i − are accounted for by

)'(0 MGBCM but not all. For instance, a path that passes through two vertices 01 \ MMu i−∈

and 01 MMw i ∩∈ − is not accounted for by)'(0 MGBCM . Therefore, we end up with the

following inequality:)M(GBC)'M(GBC)'M(GBC)v(BCk i
MMM

i
M ii

1
0011

−−≥≥⋅ −− .

�

PROPOSITION 3: Algorithm 2 returns a set of nodes whose contribution to the GBC of D is at

least () 632.011 ≈− e of the optimum.

PROOF: Note that the contribution of iM to the GBC of D is trivially equal to the contribution

of DM i \ to the GBC of D.)(1
i

M vBC i− is the marginal contribution of iv to the GBC of 1−iM

(where 0M is ground zero). Therefore, summing the respective marginal contributions of the

i-1 nodes found in Line 8 ()(1
i

M vBC i−) results in)(1
0

−i
M MGBC . Let CM ⊆' be the set of

nodes with maximal contribution to the GBC of D. According to Proposition 2 it holds that:

k

vBCMGBC
vBC

i

j j

MM

i
M

j

i
∑

−

=

−

−
−

≥

1

1
)()'(

)(
10

1 .

Therefore, (similarly to Proposition 5.1 in [11])

)/11()'(

))/11(1()'(

)()(

0

0

10

1

eMGBC

kMGBC

vBCMGBC

M

kM

k

i i
MM i

−⋅≥

−−⋅≥

=∑ =
−

.

�

 8

4. Deployment of monitoring devices

In this section we present a comparison of two strategies for updating the deployment of a

monitoring system over an evolving network while preserving the system effectiveness. In the

first strategy, a new deployment will be found in every time period regardless of the previous

deployments. In the second, a search for additional deployment will be performed assuming

that devices that were already deployed cannot be relocated.

We have performed experiments on evolving networks created using the BA model [12], with

various average degrees. We assumed that monitoring devices should intercept 95% of the

flows. The difference between the number of devices deployed according to the two strategies

averaged over 20 networks is presented in Fig. 2. Each network evolved from 100 nodes to

2000 and the monitors’ deployment was recalculated after each addition of 100 nodes. We can

see that the absolute penalty (expressed in the number of additional monitors) for not

relocating monitors that were already deployed increases as network grows. However, the

relative size of such additional deployment is 2% on average and at most 6% in all

simulations.

Figure 2: The penalty for not relocating network monitors in terms of the absolute (left) and relative

(right) number of monitors for evolving BA networks with different average degrees.

5. Summary

In this paper we presented a new method for finding candidate locations for additional

deployment of network monitors in evolving networks. This new method is based on the GBC

measure that is used to estimate the influence of a group of nodes over the information flow in

 9

the network. We show that the new method is ()e
11− approximation for the problem of

finding a set of k nodes with maximal contribution to the GBC of a given set of nodes D. The

new method can be used to increase the deployment of a distributed monitoring system such

as Distributed Network Intrusion Detection System on an evolving network.

References

[1] K. Suh, Y. Guoy, J. Kurose, D. Towsley. Locating network monitors: complexity,

heuristics, and coverage. Computer Communications, 29, pp. 1564–1577, 2006.

[2] C. Chaudet, E.Fleury, I. Guerin Lassous, H. Rivano, M.-E. Voge. Optimal positioning of

active and passive monitoring devices. In CoNEXT '05, pp. 71 – 82. ACM, 2005.

[3] R. Puzis, Y. Elovici, and S. Dolev. Fast algorithm for successive group betweenness

centrality computation. Phys. Rev. E, 76, pp. 056709, 2007.

[4] M. G. Everett, S. P. Borgatti. The centrality of groups and classes. Mathematical

Sociology, 23(3), pp. 181–201, 1999.

[5] L.C. Freeman. A set of measures of centrality based upon betweeness. Sociometry 40,

pp. 35–41, 1977.

[6] J. M. Anthonisse. The rush in a directed graph. Tech. Rep. BN 9/71, Stichting

Mathematisch Centrum. Amsterdam, 1971.

[7] A. Medina, N. Taft, S. Battacharya, C. Diot, and K. Salamatian. Traffic matrix

estimation: Existing techniques compared and new directions. In SIGCOMM,

Pittsburgh, 2002.

[8] R. Puzis, Y. Elovici, and S. Dolev. Finding the Most Prominent Group in Complex

Networks, AI-Communications. 20(4), pp. 287–296, 2007.

[9] P. Holme. Congestion and centrality in traffic flow on complex networks. Advances in

Complex Systems 6, p. 163, 2003.

[10] U. Brandes. A Faster Algorithm for Betweenness Centrality. In journal of Mathematical

Sociology, 25(2), pp. 163–177, 2001.

[11] U. Feige. A threshold of ln n for Approximating Set Cover. Journal of the ACM, 45(4),

pp. 634–652, 1998.

[12] A-L Barabási, R. Albert. Emergence of scaling in random networks. Science 286, pp.

509–512, 1999.

