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On maximal repetitions of arbitrary exponent
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Abstract

The first two authors have shown [KK99, KK00] that the sum the
exponent (and thus the number) of maximal repetitions of exponent at
least 2 (also called runs) is linear in the length of the word. The exponent
2 in the definition of a run may seem arbitrary. In this paper, we consider
maximal repetitions of exponent strictly greater than 1.

Keywords: theory of computation, combinatorial problems, repeti-
tions, periodicities

1 Introduction

Repetitions (periodicities) are fundamental concepts in word combinatorics
[Lot83, CK97, KK05]. Recall that each word w is characterized by the minimal

period p(w) and by the exponent e(w) which is the ratio p(w)
|w| . A great deal of

work in word combinatorics has been devoted to the study of words that do
not contain subwords of a given exponent [CK97]. Another research direction,
of more algorithmic nature, is the efficient identification of all subwords of a
given exponent in a word [KK05], which raises the combinatorial question of
the possible number of such subwords.

In [KK99, KK00], the first two authors considered the notion of maximal
repetitions of a word, which are subword occurrences that cannot be extended
outwards without changing their minimal period. They proved that the number
of maximal repetitions of exponent at least 2 is linearly bounded in the length
of word. It has been conjectured that this number is actually smaller than
the word length. It has been also proved that not only the number of maximal
repetitions of exponent 2 or more is linearly bounded, but the sum of exponents
of these repetitions is linearly bounded too. The linear bound on the number
of repetitions, in turn, allowed them to prove that all such maximal repetitions
can be found in linear time. More recently, other researchers attempted to
improve these results by finding a simpler proof of the linear bound implying a
smaller multiplicative constant. The last current achievement in this direction
is presented in [CIT08].
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A big question that remained open in this development concerns the lower
bound of 2 on the exponent of considered repetitions. While this bound is
intuitively natural (as it requires some subword to be consecutively repeated
at least twice), it has no formal justification. Moreover, word combinatorics
provides many separation results when the “right” bound on the exponent is
not an “intuitive” number. For example, the famous Dejean’s result states that
the exponents that can be avoided on a ternary alphabet are exponents greater
than 7

4 [Dej72]. As another example, there are exponentially many binary words
avoiding exponents greater than 7

3 , while there are only polynomially many of
them avoiding smaller exponents [KS04].

In this paper, we completely lift the lower bound on the exponent and focus
on the maximal repetitions of any exponent greater than 1. Note that repeti-
tions with exponent between 1 and 2 are subwords of the form uvu that can
be viewed as non-consecutive repetitions. Therefore, in this paper we consider
both consecutive (periodicities) and non-consecutive repetitions. To the best of
our knowledge, the number of repetitions of exponent smaller than 2 has not
been studied.

Instead of directly counting the repetitions or the sum of their exponents,
we consider the sum of exponents decremented by 1. The main idea is that rep-
etitions with exponents close to 1 (i.e. subwords uvu with |v| ≫ |u|) contribute
to the sum with an amount close to 0. We prove that this sum is upper-bounded
by n ln(n) (Theorem 1) which immediately implies that the number of maxi-
mal repetitions of any exponent greater than 1 + ε is bounded by 1

εn ln(n).
On the other hand, the number of all maximal repetitions can be quadratic
(Theorem 5). We also obtain that the lower bound for the sum is |w|

k − 1,
where k is the alphabet size, and we characterize the word achieving this lower
bound (Theorem 6). Finally, we study this sum for the words containing only
repetitions with a period bounded by a constant.

While the “whole picture” of the count of the number of maximal repetitions
with exponent smaller than 2 is still incomplete, we believe that our results
represent the first step in this direction.

2 Definitions

Recall that for any word w, the (minimal) period, denoted p(w) is the minimal
natural p such that w[i] = w[i+ p] whenever positions i and i+ p both exist in

w. The exponent of w is defined as e(w) = |w|
p(w) (|w| is the length of w). A root

of w is any subword of w of length p(w). The prefix (resp. suffix) root of w is
the prefix (resp. suffix) of w of length p(w).

Given w, amaximal repetition in w is a subword w[i..j] such that p(w[i..j]) >
p(w[i− 1..j]) (provided that i 6= 1) and p(w[i..j]) > p(w[i..j + 1]) (provided
that j 6= |w|). Informally, “maximality” means that the subword is extended
outwards as much as possible so long as its period is preserved.

In this paper, we will be interested in maximal repetitions of any exponent
greater than 1. The set of these subwords of w will be denoted M(w).

Note that any two occurrences of the same letter in w define a maximal rep-
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etition with a period that is a divisor of the distance between these occurrences.
In this case, we will speak about a maximal repetition defined by a letter match.

3 Sum of decremented exponents

For a word w, we will be interested in the sum of exponents of all maximal
repetitions, decremented by 1:

∑

r∈M(w)

(e(r)− 1) . (1)

This quantity can be viewed as the difference between the sum of exponents of
all maximal repetitions and the number of these repetitions.

Theorem 1. For every word w of length n, we have
∑

r∈M(w) (e(r)− 1) ≤
n ln(n).

Proof. For each maximal repetition r with period p, we distribute the value
e(r) − 1 = |r|−p

p over (|r| − p) pairs of matching letters (w[i], w[i + p]), w[i] =
w[i + p] within the repetition. Each such pair contributes to the sum with
weight 1

p . Consider two positions i and j, 1 ≤ i < j ≤ n, in w. If w[i] = w[j],
then this match participates in some repetition, but it is counted only if the
period of this repetition is j−i, in which case it contributes to the sum with the
amount 1

j−i . We thus have
∑

r∈M(w) (e(r)− 1) ≤
∑

1≤i<j≤n
1

j−i =
∑n−1

i=1
n−i
i =

n
∑n−1

i=1
1
i − (n− 1) ≤ n ln(n) for n > 2.

If we count only maximal repetitions of period at most p, then the following
bound holds.

Corollary 2. For every word w of length n, we have
∑

r∈M(w),p(r)≤p (e(r)− 1) ≤
n(ln(p) + 1).

Proof. If only repetitions of period at most p are considered, then, according to
the proof of Theorem 1, the sum is bounded as follows.

∑
r∈M(w),p(r)≤p (e(r)− 1) ≤∑

1≤i<j≤min{i+p,n}
1

j−i ≤ n(ln(p) + 1).

Complementarily, if we count only maximal repetitions of period at least p,
then we get

Corollary 3. For every word w of length n, we have
∑

r∈M(w),p(r)≥p (e(r)− 1) ≤
n ln(n/p).

Proof. Similar to Corollary 2.

Assume now that we focus only on maximal repetitions of exponent (1 + ε)
or more, and we want to count their number. Theorem 1 immediately provides
a nontrivial upper bound.

Corollary 4. For every word w of length n and every ε > 0, the number of
maximal repetitions of exponent at least (1 + ε) in w is at most 1

εn ln(n).
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Proof. Consider the sum of Theorem 1. Each repetition contributes at least ε
to it and therefore the number of those is at most n ln(n)

ε .

Similarly, Corollaries 2 and 3 imply respective upper bounds 1
εn ln(p) and

1
εn ln(n/p) on the number of maximal repetitions of exponent at least (1 + ε)
and of period respectively at most p and at least p.

The following Theorem shows that the upper bound of Theorem 1 is asymp-
totically tight within a factor of 8 and that the number of all repetitions of
arbitrary exponent can be quadratic (to be contrasted with Corollary 4).

Theorem 5. Let w = (0011)n/4. Then

(i)
∑

r∈M(w) (e(r)− 1) ≥ 1
8n ln(n).

(ii) the number of all maximal repetitions of w is Θ(n2),

Proof. (i) The whole word w is an obvious repetition of period 4, its contribution
to the sum is (n/4−1). Any other repetition can be specified by a match between
two 0’s or two 1’s that occur at a distance other than a multiple of 4.

Consider a repetition r in which letter 0 at some positionm, m ≡ 1 (mod 4),
matches letter 0 at a position ℓ > m, ℓ ≡ 2 (mod 4). This match corresponds
to end letters of the repetition, as w[m− 1] = 1 (if m 6= 1) while w[ℓ− 1] = 0,
and w[ℓ+ 1] = 1 (if ℓ 6= n) while w[m+ 1] = 0.

Furthermore, this repetition has period ℓ −m = |r| − 1 and this period is
minimal, as word w[m..ℓ − 1] contains one more 0 than 1’s and therefore the
number of 0’s and the number of 1’s in w[m..ℓ − 1] are mutually prime, which
shows that w[m..ℓ − 1] is primitive (i.e. not an integer power of some other
word).

Therefore, any two such positions m and ℓ define a repetition that con-

tributes 1/(ℓ−m) to the sum. In total, all such repetitions contribute
∑n/4

i=1(n/4−
i+ 1)/(4i − 3) ≥ 1

32n ln(n).
There are three other symmetric cases: one corresponds to another way of

matching two 0’s and the other two correspond to matching two 1’s. The four
cases together yield

∑
r∈M(w) (e(r)− 1) ≥ (n4 − 1) + 4 1

32n ln(n) ≥ 1
8n ln(n).

(ii) is obvious from the above, as the number of pairs of 0’s and pairs of 1’s
defining repetitions is quadratic.

We now focus on the lower bound for sum (1). In the rest of the paper, we
assume that we have a k-letter alphabet Ak = {a1, a2, . . . , ak}.

Theorem 6. For all w ∈ (Ak)
∗,

∑
r∈M(w) (e(r)− 1) ≥ n

k − 1 and the equal-

ity holds if and only if w = (a1a2 . . . ak)
n
k (modulo a permutation of alphabet

letters).

Proof. Given a word w ∈ (Ak)
∗, consider all occurrences of a letter ai ∈ Ak in

w, and let di1, d
i
2, . . . , d

i
ℓi

be the distances between all consecutive occurrences
of ai in w. Consider the sum

∑

ai∈Ak

ℓi∑

j=1

1

dij
. (2)
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Observe that
∑

r∈M(w) (e(r)− 1) ≥
∑

ai∈Ak

∑ℓi
j=1

1
dij

since two consecutive oc-

currences of ai necessarily participate in a repetition with period equal to the
distance between these occurrences, and then contribute to sum (1) (see proof
of Theorem 1).

Therefore, if we construct a word that minimizes sum (2) and for which∑
r∈M(w) (e(r)− 1) =

∑
ai∈Ak

∑ℓi
j=1

1
dij
, this will prove that this word also min-

imizes sum (1). Our goal is to prove that this minimum is reached if and only

if for any letter ai, all d
i
j = k, i.e. on words of the form w = (a1a2 . . . ak)

n
k

(modulo a permutation of alphabet letters). Clearly, for such words, sum (1)
and sum (2) are both equal to n

k − 1.

By contradiction, consider a word w that does not have the form (a1a2 . . . ak)
n
k

and assume that it minimizes sum (2). Then there exists a pair of positions
mℓ < mr such that w[mℓ] = w[mr] and mr − mℓ < k. Among all such pairs,
consider the one with minimal mr.

Show that for any position m, k < m < mr, we must have w[m] = w[m−k].
This is because letter w[m] cannot repeat on the left at a distance smaller
than k, as this would contradict the definition of mr. On the other hand, the
closest occurrence of w[m] to the left cannot be at a distance larger than k
either. Indeed, if w[m] = w[m′] for some m′ < m and m − m′ > k and there
is no occurrence of w[m] in w[m′ + 1..m − 1], then subword w[m′ + 1..m′ + k]
is composed of k − 1 letters and has length k, and therefore contains a letter
repeated at a distance at most k − 1. This contradicts again the definition of
mr.

By the above, we can assume that w[1..mr − 1] = (a1..ak)
qa1..ai (up to a

permutation of alphabet letters), q ≥ 1, and w[mr] = aj for some j 6= i′ where
i′ = i+ 1 if i < k and i′ = 1 if i = k. Consider the closest position of ai′ to the
right of mr, that we denote m′. (If such a position does not exist, the proof
below will trivially apply.)

We modify w by simultaneously

• replacing all occurrences of aj at positions ≥ mr by ai′ , and

• replacing all occurrences of ai′ at positions ≥ m′ by aj.

We show that this modification makes sum (2) smaller.
The only distances between consecutive occurrences of letters that will be

affected by the modification of w are the distance mr −mℓ between the corre-
sponding occurrences of aj and the distance m′ − (mr − k) between the occur-
rences of ai′ . The new distances become respectively k (between occurrences
mr and mr − k of ai′) and m′ −ml (between corresponding occurrences of aj).
We show that

1

mr −mℓ
+

1

m′ − (mr − k)
>

1

k
+

1

m′ −ml
.

This will show that sum (2) becomes smaller after the modification. For this,
we show that

1

mr −mℓ
−

1

k
>

1

m′ −ml
+

1

m′ − (mr − k)
,
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or
k −mr +mℓ

(mr −mℓ)k
>

k −mr +mℓ

(m′ −ml)(m′ − (mr − k))
.

The numerators of both sides are equal. In denominator, we have m′ − ml >
mr −mℓ and m′ − (mr − k) > k, which proves the inequality.

We obtained a contradiction with the assumption that w minimizes sum
(2). This shows that a word that minimizes sum (2) must have the form w =

(a1a2 . . . ak)
n
k (modulo a permutation of alphabet letters). On this word, sum

(1) and sum (2) are both equal n
k − 1. This proves that w also minimizes sum

(1).

4 Words with repetitions of bounded period

In this section, we study sum (1) in the case when all repetitions in w are of
period at most p. Recall that k is the alphabet size.

Theorem 7. Let the period of all repetitions of a word w (|w| = n) be bounded
by p. Then

∑
r∈M(w) (e(r)− 1) ≤ n+ 3kp(ln(p) + 1).

The proof will use the Fine and Wilf’s theorem (see e.g. [Lot83]) asserting
that if w have (not necessarily minimal) periods p1 and p2 and |w| ≥ p1 + p2 −
gcd(p1, p2), then w has also the period gcd(p1, p2). This implies, in particular,
that two different repetitions with minimal periods p1 and p2 cannot intersect
on (p1 + p2) letters or more.

Proof. Consider a word w such that the period of any repetition in w is bounded
by p.

Assume that for some letter a, two occurrences of a are located at a dis-
tance 3p or more. Consider a repetition r defined by the match of these two
occurrences of a. We will show that r has a very particular form, namely

(a) all letters within a root of r are different,

(b) any letter of r does not occur outside r.

≥ 3p

a

≥ 2p
p(r′) p(r′) p(r′)

a a

p(r) p(r) p(r)

Figure 1: Proof of condition (a) of Theorem 7

First observe that since the period of r cannot exceed p, then the two occur-
rences of a are separated by at least three periods p(r). To prove (a), assume
that there is another occurrence of a in the suffix root of r (cf Figure 1). Then,
there is a repetition r′ formed by matching this occurrence of a with the left
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occurrence of a. These two occurrences are separated by 3p− p(r) ≥ 2p letters.
Consider p(r′). Since p(r′) ≤ p, there are at least 2p(r′) letters between these
two occurrences of a. This means that repetitions r and r′ intersect by length
at least 2 ·max{p(r), p(r′)} and by Fine and Wilf’s theorem, r and r′ must co-
incide. This contradiction proves that a cannot have another occurrence within
a root of r. More generally, the same argument shows that any letter occurs in
a root only once.

Condition (b) is proved by a similar argument. Assume that some letter b
of r occurs outside r, for instance to the right of r. Then consider the match
of this occurrence of b with the leftmost occurrence of b inside r. This match
defines a repetition r′. Similar to part (a), r and r′ intersect by length at least
2 · max{p(r), p(r′)} and therefore must coincide by Fine and Wilf’s theorem.
This contradicts to the assumption that of an occurrence of b outside r and
proves (b).

Now, we split all repetitions into two disjoint classes: repetitions verifying
conditions (a) and (b) and the others, called respectively repetitions of type 1
and repetitions of type 2. By condition (b), for any word w, repetitions of type
1 and type 2 in w are non-intersecting. Furthermore, conditions (a) and (b)
insure that two distinct repetitions of type 1 cannot intersect. Therefore, all
repetitions of type 1 together cannot contribute more than n to the sum.

On the other hand, repetitions of type 2 cannot take more than 3kp letters
altogether in w, as each letter cannot occur more than 3p times as this would
lead to a repetition of type 1 by the above reasoning. Therefore, by Corollary 2,
sum (1) for repetitions of type 2 is bounded by 3kp(ln(p) + 1). This gives the
final bound n+ 3kp(ln(p) + 1).

Notice that the bound in Theorem 7 is optimal in some sense, since sum (1) is
n−1 for the word an and Θ (kp ln(p)) for the word (a1a1a2a2)

p/4(a3a3a4a4)
p/4 . . .,

according to Theorem 5.

5 Concluding remarks

Many questions related to the combinatorics of repetitions of arbitrary exponent
remain unanswered. A major such question is the precise bound on the number
of such repetitions. Corollary 4 provides an O(n log n) bound for the exponents
at least (1 + ε), for any fixed ε > 0. It would be of great interest to refine
this bound, possibly depending on ε. It is not excluded that, possibly starting
from some ε > 0, or even for any fixed ε > 0, the number of all repetitions of
exponent at least (1 + ε) is O(n). This is a challenging question, that seems,
however, difficult to solve, as it would generalize the result of [KK99, KK00] on
the linear number of runs.
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