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Abstract

All sufficiently long binary words contain a square but there are infinite binary
words having only the short squares 00, 11 and 0101. Recently it was shown by
J. Currie that there exist cyclically square-free words in a ternary alphabet except
for lengths 5, 7, 9, 10, 14, and 17. We consider binary words all conjugates of
which contain only short squares. We show that the number c(n) of these binary
words of length n grows unboundedly. In order for this, we show that there are
morphisms that preserve circular square-free words in the ternary alphabet.
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1. Introduction

We shall consider binary (w ∈ {0, 1}∗) and ternary (w ∈ {0, 1, 2}∗) words.
A word u is a factor of a word w if there are words w1 and w2 such that
w = w1uw2. In this case, u occurs in w. Two words u and v are conjugates if
u = xy and v = yx for some words x and y. The conjugacy class of a word w
consists of the words that are conjugates of w. For a given lexicographic order on
words, the conjugacy class of any primitive word has a minimal element, which
is called a Lyndon word. A nonempty factor u2 (= uu) of a word w is a square
in w. The word w is square-free if it has no squares. Moreover, w is cyclically
square-free if all of its conjugates are square-free.

While each binary word w ∈ {0, 1}∗ of length at least four contains a square,
R. Entringer, D. Jackson, and J. Schatz [3] showed that there exists an infinite
word with only 5 different squares. Later A. Fraenkel and J. Simpson [4] showed
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n 4 5 6 7 8 9 10 11 12 13 14 15 16 17
c(n) 3 2 2 2 1 0 0 0 3 0 1 0 0 0

n 18 19 20 21 22 23 24 25 26 27 28 29
c(n) 0 2 1 0 0 0 3 0 0 0 1 0

n 30 31 32 33 34 35 36
c(n) 1 0 0 0 0 0 2

Table 1: Curious sequence of numbers of cyclically almost square-free binary words.

that there exists an infinite binary word having only the three squares 00, 11,
and 0101. We say that a binary word w is almost square-free if its squares belong
to the set {00, 11, 0101} – but we do not allow the square 1010.

Theorem 1 (Fraenkel–Simpson). For each n ≥ 1, there exists an almost square-
free binary word of length n.

A simplified proof of Theorem 1 was given by N. Rampersad, J. Shallit, and
M.-w. Wang [7] which was further shortened by the present authors in [5]. In
this paper we consider cyclically words with short squares. The problem was
motivated by the following result due to J. Currie [2].

Theorem 2 (Currie). There exists a cyclically square-free ternary word w of
length n if and only if n 6∈ {5, 7, 9, 10, 14, 17}.

A word w is cyclically almost square-free if its conjugates are all almost
square-free. We shall show in Theorem 8 that there are unboundedly long
cyclically almost square-free binary words.

The exception list of lengths for cyclically almost square-free binary words is
much more extensive than the list for cyclically square-free ternary words given
by Currie. Indeed, it is an open problem to characterize the set Lcyc of lengths
n for which there exists a cyclically almost square-free binary word of length n.
Also, even for each length n ∈ Lcyc there seems to be only a small number of
examples as seen from Table 1.

Let c(n) denote the number of conjugacy classes of cyclically almost square-
free binary words of length n. Thus c(n) equals the number of cyclically almost
square-free binary Lyndon words having length n.

Remark 3. One can check that every almost square-free word w (not necessarily
cyclic) that omits either 000 or 111 as factors is not longer than 21. The longest
such words are of length 21:

001000110010110001101 and 001000110010110001011

and the variants obtained by renaming and reversal. Hence a Lyndon representa-
tive of a cyclically almost square-free binary word w of length at least 22 starts
with 11100 when the order is given as 1 ≺ 0. Indeed, it cannot start with 11101
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since it then has a conjugate starting with 0111011 which gives a contradiction
at the next bit.

Example 4. Let us consider some examples of cyclically almost square-free
binary words. We choose the ordering 1 ≺ 0 for the alphabet for our own
convenience.

The Lyndon representatives of length n = 12 are the following three words:

111001011000 ,

111000101100 ,

111000110010 .

The Lyndon representatives of length n = 24 are the following words:

111001011001110001011000 ,

111001011100011001011000 ,

111000110010111000101100 .

There are, however, only two Lyndon representatives of length n = 36:

111001011001110001100101110001011000 ,

111001011100010110011100011001011000 .

Despite of Table 1 suggesting that the number of cyclically almost square-free
binary words decreases as the length grows, we will show

Theorem 5. The function c(n) is unbounded:

lim sup
n→∞

c(n) =∞ .

A mapping ξ : X∗ → Y ∗ is called a morphism if ξ(uv) = ξ(u)ξ(v), and ξ is
called a uniform morphism if additionally we have for some k that |ξ(a)| = k for
all a ∈ X.

Now consider a uniform morphism ξ : {0, 1, 2}∗ → {0, 1}∗ that takes cyclically
square-free ternary words to cyclically almost square-free binary words. Such
a morphism can be found by composing β from Section 3 with α from Section 2
below, that is, ξ(w) = α(β(w)). Note that this morphism is uniform since
|β(0)|i = |β(1)|i = |β(2)|i for every i ∈ {0, 1, 2} where |w|a denotes the number
of occurrences of a in w. Let u and v be two different cyclically square-free
ternary words of the same length. Then ξ(u) and ξ(v) are two different cyclically
almost square-free binary words of the same length. Hence, Theorem 5 follows
from the next result. Let c3(n) denote the number of cyclically square-free
ternary Lyndon words of length n w.r.t. some fixed order.

Theorem 6. The function c3(n) is unbounded:

lim sup
n→∞

c3(n) =∞ .

This result will be proved in Section 3. We also state the following conjecture.

Conjecture 7. There exists an integer N such that c(n) > 0 for all n ≥ N .
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2. On Cyclically Binary Words with Short Squares

The following theorem is proven in this section.

Theorem 8. There are unboundedly long cyclically almost square-free binary
words.

Before we prove Theorem 8 let us recall a morphism from [5] that maps
square-free ternary words to almost square-free binary words.

Let α : {0, 1, 2}∗ → {0, 1}∗ be the (nonuniform) morphism defined by

α(0) = A := 13031202101203130210 ,

α(1) = B := 1303101203130210120310 ,

α(2) = C := 13031202101203101302101202 .

We notice in passing that these words are almost square-free, and the words A
and C are cyclically almost square-free, but B is not. Indeed, B has a conjugate
100010111000101100011100101 with the long square (10001011)2 as its prefix.

The following result was shown in [5].

Theorem 9. Let w ∈ {0, 1, 2}∗. Then w is a square-free ternary word if and
only if α(w) is an almost square-free binary word.

We now turn to the proof of the announced result.

Proof of Theorem 8. Let w be a cyclically square-free ternary word provided by
Theorem 2, and consider the binary word α(w). Assume that |w| ≥ 2 w.l.o.g. By
Theorem 9, α(w) is almost square-free. The claim follows when α(w) is shown
to be cyclically almost square-free. Assume, on the contrary, that α(w) has a
conjugate v that is not almost square-free. Without loss of generality, we can
assume that v has a square as a suffix, say

v = su2 ,

where u2 is a shortest possible square in the conjugates of α(w) with u 6∈ {0, 1, 01}.
One easily checks that |u| ≥ 8 by considering the words α(r) for |r| ≤ 2 (see also
the comment above Theorem 9). Since w is cyclically square-free, it follows that
v 6= α(w′) for all conjugates w′ of w.

Denote ∆ = {A,B,C}. We have the following marking property of 1303:

1303 occurs in cyclic words from ∆∗ only as a prefix of A, B, or C.

Let z be the shortest prefix of v, say v = zt, such that the conjugate tz is
in ∆∗. In particular, there exists an X ∈ ∆ such that X = yz for some y.

Since u2 is not a factor of the conjugate tz, we must have |s| < |z|, say
z = sz′. Therefore, u2 = z′t = z′x′y for some word x′. However, the marking
property and |u| ≥ 8 and |w| ≥ 2 imply |u| > |y| and, hence,

u = z′xy and X = ysz′
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for some prefix x of a word in ∆∗. Now tz = xyz′xyz ∈ ∆∗ which ends with the
word X = yz. It follows that xyz′x ∈ ∆∗, i.e., x occurs as a suffix and a prefix
in ∆∗. This implies that x ∈ ∆∗ by the marking property. Hence also for the
middle part yz′ ∈ ∆∗. Since yz′ is shorter than X, it follows that yz′ ∈ ∆. Now
both yz′ and ysz′ are in ∆. This would imply that |s| = 3 or 6; however there
is no solution for these parameters in ∆. (The length of the longest common
prefix, rep. suffix, of two different words of ∆ is 18, resp. 4.)

3. On the Number of Cyclically Square-Free Words

A morphism is called (cyclically) square-free whenever the image of any
(cyclically) square-free word is itself (cyclically) square-free. In this section we
will construct a set of uniform cyclically square-free morphisms on {0, 1, 2}∗ such
that an arbitrary number of cyclically square-free words of the same length can
be generated.

We start from certain square-free factors taken from an infinite square-free
word in order to find substitutions that preserve square-freeness. Then we
introduce several markers that allow us to both ensure cyclically square-freeness
and the construction of arbitrarily many different substitutions without sacrificing
the preservation of square-freeness.

Thue gave in [8] the following morphism ϑ on {0, 1, 2}∗ which generates the
infinite Thue word t when iterated starting in 0. Consider

ϑ(0) = 012 , ϑ(1) = 02 , ϑ(2) = 1

which gives

t = lim
k→∞

ϑk(0) = 012021012102012021020121012021012102012 · · · (1)

where we point out three underlined factors of t which will be used further below.
It is well-known that t is square-free. The following morphism η : {0, 1, 2}∗ →
{0, 1}∗ maps t to an overlap-free binary word [6], the so called Thue-Morse word,

η(0) = 011 , η(1) = 01 , η(2) = 0 .

A word is called overlap-free if it has no overlapping factors, i.e., if no factor of
the form awawa occurs where a is a letter and w is a (possibly empty) word. In
particular the words in the following set do not occur in t:

Tno = {010 , 212 , 1021 , 1201} . (2)

Indeed, η(010) = 01101011 which contains the overlap 10101. Assume that
contrary to the claim 212 occurs in t. Then it must be preceded and succeeded
by 0 since t is square-free. But, η(02120) = 0110010011 contains the overlap
1001001; a contradiction. If 1021 occurs in t, then it must be preceded by 2
and succeeded by 0 by the previous arguments. But, then t contains the square
210210; a contradiction. A similar argument holds for the word 1201.
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So far, we have identified in Tno square-free words that do not occur in t.
They will serve as markers in the proof of Theorem 6 below.

Iterating ϑ gives

ϑ(0) = 012

ϑ2(0) = 012021

ϑ3(0) = 012021012102

ϑ4(0) = 012021012102012021020121

...

and

ϑ(1) = 02 ϑ(2) = 1

ϑ2(1) = 0121 ϑ2(2) = 02

ϑ3(1) = 01202102 and ϑ3(2) = 0121

ϑ4(1) = 0120210121020121 ϑ4(2) = 01202102

...
...

Consider the words ϑ4(0) and ϑ4(1) and ϑ4(2) that start with 012021 and that
all have an occurrence in t followed by 0120. Indeed, ϑ6(0) is a prefix of t and
ϑ6(0) = ϑ4(012021) = ϑ4(0)ϑ4(1)ϑ4(2)ϑ4(0)ϑ4(2)ϑ4(1).

Let δ be a morphism on {0, 1, 2}∗ defined by

δ(0) = (012)−1ϑ4(0)012 = 021012102012021020121012 ,

δ(1) = (012)−1ϑ4(1)012 = 0210121020121012 ,

δ(2) = (012)−1ϑ4(2)012 = 02102012 .

We have

Claim 10. The δ-image of each factor of t occurs itself in t followed by 021.

Indeed, let w be a factor of t, then ϑ(w), and hence, ϑ4(w) is a factor
of t. Therefore, (012)−1ϑ4(w) is a factor of t which proves the claim since
(012)−1ϑ4(wa) occurs in t, for some letter a such that wa occurs in t, and 012021
is a prefix of ϑ4(a).

Consider the factors 0201210 and 0120210 and 0121020 of t as marked in (1).
Note that these factors are of the same length and have the same number of
occurrences of 0, 1, and 2, respectively.

Let us define the following uniform morphism β on {0, 1, 2}∗ where the length
of the images of letters is |β(i)| = 122:

β(0) = δ(0201210)01 ,

β(1) = δ(0120210)01 ,

β(2) = δ(0121020)01 .
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Remark 11. We note that for different letters a and b, the prefixes of length
61 and the suffixes of length 62 of β(a) and β(b) are different.

Claim 12. The images β(i) are cyclically square-free for all i ∈ {0, 1, 2}.

Proof. The claim can be easily proven by inspection or a computer test. However,
we give an alternative proof for illustrating some arguments also used later below.

By Claim 10 the prefix β(i)1−1 of β(i) is a factor of t for all i ∈ {0, 1, 2}.
The words β(i) end with 1201 which is in the set Tno of forbidden factors of t.
It follows that the words β(i) are square-free. It is also straightforward to verify
that β(i) are cyclically square-free. Indeed, any cyclic square x2 must contain
the last letter 1 of β(i). The case where |x| < 6 is easily checked by hand. Note
that 1β(i)1−1 begins with 1021 and β(i) ends with 1201. Hence, if |x| ≥ 6 then
x contains 1021 or 1201. But 1021, 1201 ∈ Tno and therefore they occur at most
once in any conjugate of β(i) which contradicts that x2 occurs in a conjugate
of β(i). This concludes the proof of Claim 12.

Let π be any permutation on {0, 1, 2}. We define the following morphisms

βπ(i) = β(π(i))

for i ∈ {0, 1, 2}. Before we show that every βπ is cyclically square-free, we recall
the following theorem by Thue [8]; see [1] for a slightly improved version.

Theorem 13. A morphism α is square-free if the following two conditions are
satisfied:

(1) α(u) is square-free whenever u is square-free with |u| ≤ 3, and

(2) α(a) is not a proper factor of α(b) for any letters a and b.

In order to show that the constructed morphisms are cyclically square-free
we state the following result.

Proposition 14. A morphism α is cyclically square-free if the following two
conditions are satisfied:

(1) α is square-free and

(2) α(a) is cyclically square-free for all letters a.

Proof. Let w(i) denote the ith letter of the word w. Consider a cyclically square-
free word w of length n and suppose, contrary to the claim, that α(w) is not
cyclically square-free. Let x2 be a shortest square in a conjugate of α(w). Let
w′ = w(i)w(i+1) · · ·w(n)w(1) · · ·w(i−1)w(i). Then x2 occurs in α(w′) for some
i. Now, w′ is square-free if w is cyclically square-free, except if n = 1; a
contradiction of either (1) or (2) in any case.

It is now straightforward to establish the cyclically square-freeness of any βπ
which implies Theorem 6.
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Lemma 15. Let π be any permutation on {0, 1, 2}. Then βπ is a cyclically
square-free morphism.

Proof. We begin by showing that βπ is square-free. By Theorem 13 the square-
freeness of βπ can be checked by hand. However, this is cumbersome and
therefore we give an alternative proof avoiding Theorem 13. Suppose contrary to
the claim that βπ(w) contains a square x2 where w is square-free. Surely, x2 does
not occur in βπ(a) for any letter a by Claim 12. Note that 1201021 occurs in
βπ(w) only at a point where two βπ images of letters are concatenated. Assume
that |x| ≥ 6; the smaller cases can be easily excluded. Then, as in the proof of
Claim 12, x contains 1201 or 1021. Both 1021 and 1201 mark the beginnings and
ends of the βπ images of letters, and hence, βπ is injective. Let u ∈ {1021, 1201}
be such that u occurs in x. Suppose u = 1201, the other case follows analogous
reasons. Then either u occurs in the beginning or end of x. We have then

x = yuβπ(w(j))βπ(w(j+1)) · · ·βπ(w(j+r))z

= yuβπ(w(j+r+2))βπ(w(j+r+3)) · · ·βπ(w(j+2r+2))z ,

where 1 < j < |w| − r and −1 ≤ r < |w|/2 and zyu = βπ(w(j+r+1)). Here the
word u is a marker and hence the βπ-images are aligned in the two occurrences
of x, i.e., w(j+`) = w(j+r+2+`) for ` = 0, . . . , r. Now, w(j−1) 6= w(j+r+1) and
w(j+2r+3) 6= w(j+r+1), since w is square free. However, yu is a suffix of βπ(w(j−1))
and, by Remark 11, |yu| ≤ 61. Also, z is a prefix of βπ(w(j+2r+3)) and thus
|z| ≤ 60. But now |zyu| ≤ 121 gives a contradiction with zyu = βπ(w(j+r+1)).
Therefore, βπ is square-free. Claim 12 and Proposition 14 conclude the proof.

Now, Theorem 6 follows.

Theorem 6. The function c3(n) is unbounded:

lim sup
n→∞

c3(n) =∞ .

Proof. Indeed, the image of the cyclically square-free word 021 under βπ gives a
different cyclically square-free word for any permutation π by Lemma 15. Each
of these cyclically square-free words starts with 021, and hence, gives six new
cyclically square-free words (one for each βπ). This process can be iterated
arbitrarily many times. The uniformness of βπ ensures that the images of a word
are of the same length for each π. The number of different cyclically square-free
words after k iterations equals 6k and they are of length 3 · 122k.

Remark 16. We mention another approach to show Theorem 6 using substitu-
tions instead of morphisms. Consider the following words of length 18:

u1 = 010201210201021012

u2 = 010201210212021012

v1 = 010201202120121012

v2 = 010201202102010212

w1 = 010201202101210212
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The substitution s : {0, 1, 2}∗ → 2{0,1,2}
∗

defined by

s(0) = {u1, u2}, s(1) = {v1, v2}, s(2) = {w1}

preserves cyclically square-freeness, i.e., if w is cyclically square-free, then so
is each u ∈ s(w). Now, the sequence |sn(0)| of elements in sn(0) is strictly
increasing with increasing n, and thus proves our theorem.

This claim on s needs to be verified in order to make this approach work.
This can be shown by similar techniques as the ones used above in the proof of
Lemma 15.
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