
There is No EPTAS for Two-dimensional Knapsack

Ariel Kulik∗ Hadas Shachnai†

Abstract

In the d-dimensional (vector) knapsack problem given is a set of items, each having a
d-dimensional size vector and a profit, and a d-dimensional bin. The goal is to select a
subset of the items of maximum total profit such that the sum of all vectors is bounded
by the bin capacity in each dimension. It is well known that, unless P = NP , there is no
fully polynomial time approximation scheme for d-dimensional knapsack, already for d = 2.
The best known result is a polynomial time approximation scheme (PTAS) due to Frieze
and Clarke (European J. of Operational Research, 100–109, 1984) for the case where d ≥ 2
is some fixed constant. A fundamental open question is whether the problem admits an
efficient PTAS (EPTAS).

In this paper we resolve this question by showing that there is no EPTAS for d-
dimensional knapsack, already for d = 2, unless W [1] = FPT . Furthermore, we show
that unless all problems in SNP are solvable in sub-exponential time, there is no approxi-
mation scheme for two-dimensional knapsack whose running time is f(1/ε)|I|o(

√
1/ε), for

any function f . Together, the two results suggest that a significant improvement over the
running time of the scheme of Frieze and Clarke is unlikely to exist.

Keywords: two-dimensional knapsack, efficient polynomial time approximation schemes,
parameterized complexity, theory of computation

1 Introduction

In the well known d-dimensional knapsack problem, given is a set of n items {1, . . . , n}, where
each item i has a d-dimensional size vector s̄i ≥ 0, and a profit pi > 0. Also, given is a
d-dimensional bin whose capacity is B̄ = (B1, . . . , Bd). A feasible solution is a subset of the
items A′ ⊆ A such that the total size of the items in A′ in each dimension r is bounded by Br,
1 ≤ r ≤ d. The objective is to find a feasible solution of maximum total profit. The special
case where d = 1 is the classic 0-1 knapsack problem.

This paper studies the efficiency of finding (1− ε)-approximations for d-dimensional knap-
sack. A maximization problem Π admits a polynomial-time approximation scheme (PTAS) if
there is an algorithm A(I, ε) such that, for any ε > 0 and any instance I of Π, A(I, ε) outputs
a (1 − ε)-approximate solution in time |I|f(1/ε) for some function f . As ε gets smaller, the
exponent of the polynomial |I|f(1/ε) may become very large. Two important restricted classes
of approximation schemes were defined to eliminate this dependence. An efficient polynomial-
time approximation scheme (EPTAS) is a PTAS whose running time is f(1/ε)|I|O(1), whereas
a fully polynomial time approximation scheme (FPTAS) runs in time (1/ε)O(1)|I|O(1).

∗Computer Science Dept., Technion, Haifa 32000, Israel. E-mail: kulik@cs.technion.ac.il.
†Computer Science Dept., Technion, Haifa 32000, Israel. E-mail: hadas@cs.technion.ac.il. Work sup-

ported by the Technion V.P.R. Fund.

1

While the classic 0-1 knapsack problem admits an FPTAS, i.e., for any ε > 0, a (1 − ε)-
approximation for the optimal solution can be found in O(n/ε2 · log(1/ε)) steps [10, 11],1

packing in higher dimensions (also known as d-dimensional vector packing) is substantially
harder to solve, exactly or approximately. It is well known that, unless P = NP , there is no
FPTAS for d-dimensional knapsack, already for d = 2 [12, 14] (see also [13],[7]). Frieze and
Clarke developed in [6] the first PTAS for the d-dimensional knapsack. Subsequently, a scheme
with improved running time of O(ndd/εe−d) was given by Caprara et al. [1].

As d-dimensional knapsack does not admit an FPTAS, a fundamental open question is
whether there exists an EPTAS. In this paper we resolve this question by showing that there
is no EPTAS for two-dimensional knapsack, unless W [1] = FPT .2 Furthermore, we use
the results of [2] to show that unless all problems in SNP are solvable in sub-exponential
time,3 there is no approximation scheme for two-dimensional knapsack whose running time
is f(1/ε)|I|o(

√
1/ε), for any function f . Together, the two results suggest that a significant

improvement over the running time of the scheme of [1] is unlikely to exist. We note that, for
the case where d = 1 an EPTAS exists also for the multiple knapsack problem (see the recent
work of Jansen [9]).

2 Hardness Results

Denote by OPT (I) the value of an optimal solution for an instance I of the d-dimensional
knapsack problem. We use in the proof of hardness the following parameterized version of
the subset sum problem, known as sized subset sum. Given a set of positive integers L =
{x1, . . . , xn}, and the positive integer S, k, decide if there is a subset L′ ⊆ L of size k, such
that the sum of elements in L′ is exactly S (in this case we say that the input is satisfied).
The sized subset sum problem is known to be W [1]-hard [4].

We give a reduction from an instance (L, S, k) of sized subset sum to an instance of two-
dimensional knapsack, denoted by R(L, S, k).

Given an instance (L, S, k), we first modify the values of the elements in L. Define

x̃i =
xi + k−1

k · S
k

,

and let L̃ = {x̃1, . . . , x̃n}. Note that, for any 1 ≤ i ≤ n, 0 ≤ x̃i ≤ 2·S
k (w.l.o.g. xi ≤ S). An

important property of the above transformation is that it does not affect the satisfiability of
the original instance.
Lemma 1 The instance (L, S, k) is satisfied if and only if (L̃, S, k) is satisfied.
Proof: If (L, S, k) is satisfied then there is a subset {xi1 , . . . , xik} = L′ ⊆ L such that∑k

j=1 xij = S. Consider the subset {x̃i1 , . . . , x̃ik} = L̃′ ⊆ L̃, then

k∑

j=1

x̃ij =
k∑

j=1

xij + k−1
k · S

k
=

1
k

k∑

j=1

xij +
1
k

k∑

j=1

k − 1
k

· S = S,

1See also the comprehensive survey of known results in [12].
2For the recent theory of fixed-parameter algorithms and parameterized complexity, see, e.g., [5, 3].
3The complexity class of SNP was introduced in [15]. The class includes such NP-hard problems as vertex

cover, independent set and 3SAT, among others. Based on known results in complexity theory, it is unlikely
that all of the problems in this class can be solved in sub-exponential time (see [2] and the references therein).

2

and we have that (L̃, S, k) is also satisfied.
If (L̃, S, k) is satisfied, then there is a subset {x̃i1 , . . . , x̃ik} = L̃′ ⊆ L̃ such that

∑k
j=1 x̃ij =

S. By the definition of L̃, we have that

S =
k∑

j=1

x̃ij =
k∑

j=1

xij + k−1
k · S

k
=

1
k

k∑

j=1

xij +
1
k

k∑

j=1

k − 1
k

· S =
1
k

k∑

j=1

xij +
k − 1

k
· S,

and
∑k

j=1 xij = S. Thus, (L, S, k) is satisfied as well. ¤

Now, we define the instance R(L, S, k) of two-dimensional knapsack. The items are {1, . . . , n},
where each item i has size s̄i = (x̃i,

2·S
k − x̃i) and unit profit. Let si,1 and si,2 denote the first

and second entries to the vector s̄i, respectively. The capacity of the bin is B̄ = (S, S). Note
that R(L, S, k) can be computed in polynomial time in the size of the instance (L, S, k), and
its size is also polynomial.
Lemma 2 OPT (R(L, S, k)) ≤ k.
Proof: Assume that there is a feasible subset of items A ⊆ {1, . . . , n} whose value is greater
than k for R(L, S, k), then |A| ≥ k+1. Since A is feasible, we have that

∑
i∈A si,1 =

∑
i∈A x̃i ≤

S, and thus

S ≥
∑

i∈A

si,2 =
∑

i∈A

(
2 · S

k
− x̃i

)
= |A| · 2 · S

k
−

∑

i∈A

x̃i > S,

a contradiction. ¤

Lemma 3 The instance (L̃, S, k) is satisfied if and only if OPT (R(L, S, k)) ≥ k.
Proof: If the instance (L̃, S, k) is satisfied then there is a subset {x̃i1 , . . . , x̃ik} = L̃′ ⊆ L̃

such that
∑k

j=1 x̃ij = S. Thus, the solution A = {i1, . . . , ik} for R(L, S, k) is feasible in both
dimensions, i.e.,

∑k
j=1 sij ,1 =

∑k
j=1 x̃ij = S, and also

∑k
j=1 sij ,2 =

∑k
j=1

(
2·S
k − x̃ij

)
= S. The

value of this solution is k, therefore OPT (R(L, S, k)) ≥ k.
If OPT (R(L, S, k)) ≥ k then, by Lemma 2, we have that OPT (R(L, S, k)) = k. Let

A = {i1, . . . , ik} be an optimal solution, then

S ≥
k∑

j=1

sij ,2 =
k∑

j=1

(
2 · S

k
− x̃ij

)
= 2S −

k∑

j=1

x̃ij ,

and we have that
∑k

j=1 x̃ij ≥ S. On the other hand, S ≥ ∑k
j=1 sij ,1 =

∑k
j=1 x̃ij , and thus∑k

j=1 x̃ij = S. It follows that (L̃, S, k) is satisfied. ¤

By the above discussion, we have the next lemma.
Lemma 4 For any instance (L, S, k) of sized subset sum, (L, S, k) is satisfied if and only if
OPT (R(L, S, k)) ≥ k.
Proof: The statement of the lemma follows immediately from Lemmas 1 and 3. ¤

Suppose that we have an approximation scheme A(I, ε) for two-dimensional knapsack. We
now show how A can be used to decide if an input for sized subset sum is satisfied.

3

Lemma 5 Let A(I, ε) be an approximation scheme for two-dimensional knapsack with running
time f(1/ε) · |I|g(1/ε), then there is an algorithm for sized subset sum with running time f(2k) ·
|(L, S, k)|O(g(2k)).
Proof: Consider the following algorithm for sized subset sum. Given an instance (L, S, k),
define the input for two-dimensional knapsack I = R(L, S, k), and run A(I, 1

2k). If the optimal
solution output by the algorithm is of value at least k return that (L, S, k) is satisfied, otherwise
return that it cannot be satisfied.

Note that if OPT (I) ≥ k, the value output by A is at least
(
1− 1

2k

)
k = k− 1

2 > k−1. On
the other hand, if OPT (I) < k, the output value is at most k−1. Also, by Lemma 4, (L, S, k)
is satisfied if and only if OPT (I) ≥ k. Hence, the algorithm decides correctly if (L, S, k) is
satisfied.

The construction of I takes polynomial time in |(L, S, k)|, and running A on the instance
I requires f(2k) · |R(L, S, k)|O(g(2k)) steps. Thus, the running time of the algorithm is f(2k) ·
|(L, S, k)|O(g(2k)). ¤

We summarize in our main result.
Theorem 6 There is no EPTAS for two-dimensional knapsack unless W [1] = FPT .
Proof: Assume there is an EPTAS for two-dimensional knapsack. That is, there exists an
algorithm A(I, ε) that, given an instance I for the problem, returns a (1− ε)-approximation
for the optimal solution in f(1/ε) · |I|c steps. Then, by Lemma 5, there is an algorithm for
sized subset sum whose running time is f(2k) · |(L, S, k)|c′ . It follows that sized subset sum is
fixed parameter tractable, which cannot hold unless W [1] = FPT . ¤

The standard parametrization of two-dimensional knapsack is as follows. Given an instance
of the problem in which all values are integral, and an integer k ≥ 1, decide if there is a feasible
solution of value k or greater. In fact, we have shown the following.
Theorem 7 The standard parametrization of two-dimensional knapsack is W [1]-hard.

We can use the same reduction to derive an explicit lower bound on the running time of
approximation schemes for two-dimensional knapsack, under a different complexity measure.
To do so, we first derive a lower bound on the complexity of sized subset sum.

Chen at el. show in [2] that unless all problems in SNP are solvable in sub-exponential
time, there is no algorithm for independent set whose running time is f(k)mo(k), where m is
the input length. Downey and Fellows [4] give a reduction from independent set to perfect code
in which, given a graph G and a parameter k, a new graph H is constructed, such that G has
an independent set of size k iff H has a perfect code of size k′ = k(k+1)

2 + k + 1. Under the
same assumption, this implies that there is no algorithm for perfect code with running time
f(k)mo(

√
k), where m is the input size. Furthermore, a reduction given in [4], from perfect

code with a parameter k to sized subset sum with the same parameter k, implies that there is
no algorithm for sized subset sum with running time f(k) · |I|o(

√
k). This is summarized in the

next result.
Lemma 8 Unless all problems in SNP are solvable in sub-exponential time, there is no algo-
rithm for sized subset sum whose running time is f(k) · |I|o(

√
k), for any function f , where |I|

is the input size.
From the above discussion, we have

4

Theorem 9 Unless all problems in SNP are solvable in sub-exponential time, there is no
approximation scheme for two-dimensional knapsack with running time f(1/ε)|I|o(

√
1/ε), for

any function f , where |I| is the size of the input for the problem.
Proof: Assume that there is an approximation scheme A(I, ε) for two-dimensional knapsack
with running time f(1/ε)|I|o(

√
1/ε), for some function f . Thus, by Lemma 5, there is an

algorithm for sized subset sum whose running time is f(2k)|I|o(
√

k). By Lemma 8, this cannot
hold unless all problems in SNP are solvable in sub-exponential time. ¤

In conclusion, we comment that our reductions yield a restricted class of highly structured
inputs for d-dimensional knapsack, which may not reflect the set of inputs arising in real-life
applications. For many inputs, it seems reasonable to assume that a small modification in the
bin capacity would result in a small change in the profit of an optimal solution for the given
instance. For such inputs, augmenting algorithms, i.e., algorithms that output a solution with
profit at least as high as the optimal, while violating the bin capacity (in any dimension) at
most by factor (1 + ε), seem to fit well. For fixed values of d, an augmenting algorithm, with
running time polynomial in 1/ε and in the input size, can be used to obtain a feasible solution
whose profit is at least 1− ε of the optimal. 4

References

[1] A. Caprara, H. Kellerer, U. Pferschy, and D. Pisinger. Approximation algorithms for
knapsack problems with cardinality constraints. European Journal of Operational Re-
search, 123(2):333 – 345, 2000.

[2] J. Chen, X. Huang, I. A. Kanj, and G. Xia. Linear FPT reductions and computational
lower bounds. In STOC ’04: Proceedings of the thirty-sixth annual ACM symposium on
Theory of computing, pages 212–221, New York, NY, USA, 2004. ACM.

[3] R. G. Downey and M. Fellows. Parameterized Complexity. Monographs in Computer
Science. Springer, 1999.

[4] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness II: On
completeness for W[1]. Theoretical Computer Science, 141(1-2):109 – 131, 1995.

[5] J. Flum and M. Grohe. Parameterized Complexity Theory (Texts in Theoretical Computer
Science. An EATCS Series). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[6] A. M. Frieze and M. Clarke. Approximation algorithms for the m-dimensional 0-1 knapsack
problem: worst-case and probabilistic analyses. European J. of Operational Research,
15(1):100–109, 1984.

[7] G. Gens and E. Levner. Complexity of approximation algorithms for combinatorial prob-
lems: a survey. SIGACT News, 12(3):52–65, 1980.

4Such an algorithm can be obtained by discretizing the item sizes in each dimension, r, to be integral
multiples of ε

n
·Br, and using dynamic programming over the maximal profit attainable for each of the possible

size vectors. Detailed expositions of these standard techniques are given, e.g., in [8, 16].

5

[8] D. S. Hochbaum, editor. Approximation algorithms for NP-hard problems. PWS Publish-
ing Co. Boston, MA, USA, 1996.

[9] K. Jansen. Parameterized approximation scheme for the multiple knapsack problem.
In C. Mathieu, editor, Proceedings of the Twentieth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 665–674. SIAM, 2009.

[10] H. Kellerer and U. Pferschy. A new fully polynomial approximation scheme for the knap-
sack problem. J. Combinatorial Optimization, 3:59–71, 1999.

[11] H. Kellerer and U. Pferschy. Improved dynamic programming in connection with an
FPTAS for the knapsack problem. J. Combinatorial Optimization, 8(1):5–11, 2004.

[12] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, October 2004.

[13] B. Korte and R. Schrader. On the existence of fast approximation schemes. Nonlinear
Programming, 4:415–437, 1981.

[14] M. J. Magazine and M.-S. Chern. A note on approximation schemes for multidimensional
knapsack problems. Mathematics of Operations Research, 9(2):244–247, 1984.

[15] C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity
classes. J. Comput. Syst. Sci., 43(3):425–440, 1991.

[16] V. Vazirani. Approximation Algorithms. Springer Verlag, 2001.

6

