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The failure detector class Omega (Í2) provides an eventual leader election functionality, i.e., 
eventually all correct processes permanently trust the same correct process. An algorithm 
is communication-efficient if the number of links that carry messages forever is bounded 
by n, being n the number of processes in the system. It has been defined that an algorithm 
is crash-quiescent if it eventually stops sending messages to crashed processes. In this 
regard, it has been recently shown the impossibility of implementing Q crash quiescently 
without a majority of correct processes. We say that the membership is unknown if each 
process p¡ only knows its own identity and the number of processes in the system (that 
is, i and n), but p¡ does not know the identity of the rest of processes of the system. There 
is a type of link (denoted by ADD link) in which a bounded (but unknown) number of 
consecutive messages can be delayed or lost. 

In this work we present the first implementation (to our knowledge) of Q in partially 
synchronous systems with ADD links and with unknown membership. Furthermore, 
it is the first implementation of Q that combines two very interesting properties: 
communication-efficiency and crash-quiescence when the majority of processes are correct. 
Finally, we also obtain with the same algorithm a failure detector (OP) such that every 
correct process eventually and permanently outputs the set of all correct processes. 

1. Introduction 

Unreliable failure detectors were proposed by Chandra 
and Toueg [4] as an elegant way of circumventing the well 
known FLP impossibility result [6] on solving determin-
istically the consensus problem [7] in crash-prone asyn-
chronous environments. Informally, an unreliable failure 
detector provides hints about which processes are correct 
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and which ones are incorrect, i.e., have crashed so far. The 
failure detector can make mistakes, e.g., by erroneously 
suspecting a correct but slow process, or by not suspecting 
(yet) a crashed process. Nevertheless, to be useful it is re-
quired that failure detectors fulfill some completeness (i.e., 
suspect permanently crashed processes) and accuracy (i.e., 
stop suspecting correct processes) properties. For example, 
a failure detector such that every correct process eventu­
ally and permanently suspects all incorrect processes, and 
eventually does not suspect any correct process is named 
Eventually Perfect (OP). 

Another important failure detector is Omega (Í2) [3], 
defined in terms of a trusted process, such that eventually 
all correct processes permanently trust the same correct 
process. It is said that Q provides an eventual leader elec­
tion functionality. This type of failure detector is important 
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because it has been shown that Q is the weakest failure 
detector for solving consensus [3]. 

We say that an algorithm implementing Q is communi-
cation-efficient if the number of links that carry messages 
forever is bounded by n, being n the number of processes 
in the system [2]. 

A new property called crash-quiescence has been re-
cently proposed [9]. A distributed algorithm is said crash-
quiescent if it eventually stops sending messages to 
crashed processes. Sastry et al. have shown in [9] the im-
possibility of implementing Q (and thus OP) crash quies-
cently without a majority of correct processes in a partially 
synchronous system with links where a bounded, but un-
known, number of consecutive messages can be arbitrarily 
late or lost (called ADD links). They also propose the first 
implementation of a (non-communication-efficient) OP al­
gorithm that is crash-quiescent in any run with a majority 
of correct processes. ADD links [8] are interesting and real-
istic enough because they allow that an infinite number of 
messages could be lost or arbitrarily delayed, but guaran-
tee that some subset of the messages sent on them will be 
received in a timely manner and such messages are not too 
sparsely distributed in time. In some sense, an ADD link 
successfully combines the losses property of a fair lossy 
link [1] (in which if an infinite number of messages are 
sent, then an infinite number of messages are received), 
and the timeliness property of an eventually timely link 
[1] (in which there is a time after which all the messages 
that are sent are received timely). 

A system with unknown membership allows each pro­
cess to execute the algorithm of Q without having to know 
initially the identifiers of all processes (only knowing its 
own identifier and the total number of processes in the 
system is enough). Henee, you can execute the same code 
of Q in runs with different processes without having to 
statically change the set of addresses of processes that 
particípate in each run. This is possible because processes 
dynamically learn about the existence of other processes 
from the reception of messages. Note that this reduction 
of initial knowledge also supposes that if some process 
crashes before sending a message, the rest of processes 
will not be able to find out its existence as member of 
the system. For example, let us suppose you have a p2p 
environment in Internet where each server is identified by 
an IP-address. We know that the number of servers will 
be, for example, 10. In systems where the membership is 
known, each process has to know each of the 10 server's 
IP-address previously to start the execution of Q to elect 
some of them as leader. In systems with unknown mem­
bership, the leader can be chosen without this knowledge 
by learning IP-addresses from the messages received from 
other processes. 

Jiménez et al. show in [5] that it is necessary for each 
process to know the identity of the rest of processes of the 
system (that is, the membership) to implement a failure 
detector of anyone of the original eight classes proposed 
by Chandra and Toueg in [4] (and, henee, OP). Interest-
ingly, they also show in the same paper that Q can be 
implemented without this knowledge. What it is possible 
to implement is the complement of OP, that is, a fail­
ure detector such that every correct process eventually and 

permanently only trusts (instead of suspeets) all correct 
(instead of incorrect) processes. We denote this failure de­
tector as OP. Note that when the membership is known, 
OP can be easily transformed into OP (we can obtain 
the set of suspected processes simply by removing from 
the set of all processes the set of trusted processes output 
by OP). 

Í.Í. Ourresults 

In this work we present the first implementation (to 
our knowledge) of Q in partially synchronous systems 
with ADD links and where the membership is unknown. 
Furthermore, it is the first implementation that combines 
two very interesting properties: communication-efficiency 
and crash-quiescence when the majority of processes are 
correct. Finally, we also want to emphasize that the imple­
mentation presented in this paper also satisfies the prop­
erties of OP. 

2. Themodel 

We consider a system S composed of a finite set TI of 
n processes. The process identifiers are totally ordered, but 
they do not need to be consecutive. We denote them by 
p¡, p¡, p r , We assume that processes only know about 
ÍJ their own identifier and what is the number n of pro­
cesses in S (actually, they only need to known the ma­
jority, that is, n/2). For example, process p¡ initially only 
knows i and n. 

Processes communicate only by sending and receiv-
ing messages. We assume that processes have a broad-
casting primitive to send messages (called broadcast(m)). 
This primitive allows a process to send simultaneously the 
same message m to the rest of processes in the system 
(that is, the same mechanism used in Ethernet or in IP-
multicast). Furthermore, processes also have the possibility 
to use the primitive send (called send(m) to q) to send the 
message m to process q only. 

A process can fail by crashing permanently. We say that 
a process is correct if it does not fail, and we say a pro­
cess is crashed (or it is a faulty process) if it fails. We use 
C to denote the set of correct processes, and F to denote 
the set of faulty processes. We consider that in a system S 
there may be any number of crashed processes, and that 
this number is not known a priori. We assume that pro­
cesses are synchronous in the sense that there are lower 
and upper bounds on the number of processing steps they 
execute per unit of time. These bounds are not known 
by processes. For simplicity, the local processing time is 
negligible with respect to message communication delays. 
Processes have timers that accurately measure intervals of 
time. 

We assume that every pair of processes is connected 
by a pair of directed links. We consider that all links be-
long to type ADD (Average Delayed/Dropped) [8]. An ADD 
link allows an infinite number of messages to be lost or 
arbitrarily delayed, but guarantees that some subset of the 
messages sent on it will be received in a timely manner 
and such messages are not too sparsely distributed in time. 
More precisely, there are two unknown constants A and B 



initíalizatíon: 
(01)correa, <- (i); 
(02)membershipi <- (i); 
(03)leader¡ <- i; 
(04)start tasksTl and T2; 

taskTl: 
(05)repeatforever each ij time 
(06) if (\correct¡ > n/2) then 
(07) successor¡ <- nextjo_i_in_correct¡(); 
(08) send(correcti) to successor¡; 
(09) else 
(10) broadcasr({¡}); 
(11) end_if 
(12)end_repeat 

taskT2 
(13)uponreceptionof message (seí,-) : j V i do 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) 
(22) 
(23) 

for_each {keset¡ : k jt i) do 
if (k £ membershipi ) then 

membershipi <- membership¡ U (/c); 
créate timer¡(k) and rimeour¡ [k]; 
rimeour¡[/<] < - 1 ; 

end_if 
correa, <- correa, U{k); 
set timen (k) to timeout¡ [k]; 

end_for 
leader, <- min(correcti); 

(24) upon expiratíon of timer¡ (k): 
(25) 
(26) 
(27) 

timeout¡[k] <- timeout¡[k] + 1; 
correctj <- correct¡ \ {k}; 
leader¡ <- min(correcti); 

Fig. 1. Implementation of Í2 (and OP) in a system where each process initially only knows its identity and n (code for process p¡). 

such that for all intervals of time in which a process p¡ 
sends at least B messages to another process pj, at least 
one of these messages is received by p¡ in at most A time. 

3. The Omega and OP failure detectors 

Chandra et al. proposed the Omega (Q) failure detec­
tor [3]. This failure detector guarantees that eventually all 
correct processes always have the same correct process as 
leader. More formally, the Omega failure detector satisfies 
the following property: there is a time after which each 
process p¡ eC always has leader¡ = p¡, where p¡ e C. 

Chandra and Toueg defined in [4] the Eventually Perfect 
(OP) failure detector. This failure detector guarantees that 
there is a time after which every correct process perma-
nently only suspects all faulty processes. In [5] it is proven 
that if processes do not know a priori all members of the 
system (i.e., the membership is unknown), it is impossible 
to eventually suspect all faulty processes. For example, if 
we do not know the membership and process p¡ crashes 
at the very beginning of a run (before sending or receiv-
ing any message), it is not possible for another process p¡ 
to learn about p¡'s presence in the system, and therefore, 
it is impossible for p¡ to suspect p¡. 

Nevertheless, we can have in a system S of our model 
a failure detector (we denote it as OP) such that there is 
a time after which every correct process permanently only 
trusts all correct processes. More formally, there is a time 
after which each process p¡eC always has \correcU\ = \C\, 
and p¡ e correct¡, for all p¡ e C. Note that in a system 
with known membership this failure detector can be easily 
transformed into OP (changing the output of each process 
p¡ by ÍJ \ correcU). Interestingly, our protocol also imple-
ments OP. 

4. The implementation 

Fig. 1 implements Q (and OP) in a system S where the 
membership is unknown. If the majority of processes are 
correct, we will show that this protocol is communication-
efficient and crash-quiescent. 

In Fig. 1, each process p¡ initially broadcasts heartbeats 
repeatedly to indícate that it is alive (line 10). To know 

which processes are in the system, process p¡ has a set 
membershipi (initially only contains itself). The set correct¡ 
maintains the processes it believes are alive (always con-
taining at least itself). If a majority of processes are alive, 
then eventually \correct¡\ > n/2 and process p¡ will send 
heartbeats periodically to successor¡, instead of broadcast 
them (line 08). This variable successor¡ contains the pro­
cess returned by function next_to_i_in_correct¡() (line 07). 
This function obtains the identifier of the process closest to 
the identifier of p¡ in the sequence formed by all elements 
of correct¡, in increasing order and cyclic (that is, like op-
eration mod but with the elements of correct¡ instead of 
a subset of natural numbers). For example, if process p3 
has correcta ={1,3,5,8}, then next_to_i_in_correct3() will 
return 5. In another example, if process p3 has correct3 = 
{1,2,3}, then next_to_i_in_correct3() will return 1. As we 
will show, if \correct¡\ > n/2, each correct process p¡ will 
eventually send messages only to one correct process, es-
tablishing a cycle (we will define it below as ring) formed 
by all correct processes. The variable leader¡ has the iden­
tifier of the process that p¡ considers its leader. Its valué is 
the smallest valué in correct¡. 

5. Correctness proof 

Let D be a subset of correct processes (D c C). We 
say that there is a relation p¡ —* p¡, puV¡ e D, if there 
is a time after which process p¡ is permanently sending 
heartbeats to p¡. We say that p¡ is the predecessor of p¡, 
and p¡ is the successor of p¡ in D. We say there is a 
ring among all processes in D, denoted by ring(D), if each 
process p¡ e D has a unique predecessor and a unique suc­
cessor with respect to all processes in D. For example, if 
D contains the subset of correct processes {p¡, Pk, Pr, Ps}, 
and p r —* Pk —* p¡ —* ps —* p r , then we say that there is a 
ring(D). 

The following lemma states that eventually crashed 
processes cannot be in the set correct¡ of any correct pro­
cess p¡. 

Lemma 1. For every process p¡ e C, there is a time after which 
if j e correctj, then p¡ e C. 



Proof. Let us consider a process p¡ e F. We prove that 
eventually and permanently j £ correct¡, Vp¡ e C. Let seq¡ 
be a permutation of the processes in C, where the first 
element of the sequence seq¡ is the process whose iden-
tifier next_to_i_in_correct¡Q would return if correct¡ = C. 
Let seqj(x) be, for x > 1, the xth element of the se­
quence seq¡. The element seq¡{x), x > 2, is the process 
whose identifier next_to_i_in_correctseq.(x-r)0 would re­
turn if correctseq¡(x-\) = C. 

We are going to prove that, for all x > 1, eventually 
and permanently j ^ correctseq-(x), by induction on x. Base 
case is x = 1. Let us consider a time x at which all faulty 
processes are crashed, and all messages sent by these pro­
cesses have disappeared from the system (i.e., they have 
been delivered or lost). After x, process seq¡{\) will never 
receive any heartbeat with a set containing j . This is so, 
because a process sending a heartbeat by execution of 
line 10, it only includes its own identifier (which cannot 
be j since process p¡ is already crashed). On the other 
hand, if the heartbeat is sent by execution of line 08, 
the valúes in this set correct¡, Vp¡ e C, sent to process 
seqj(l) do not include j (otherwise, the heartbeat would 
have been sent to p¡ instead). For example, let us con­
sider that j = 2, ÍJ = {po, P\, P2, P3}, Pj e F and t > x. 
We know that seq2 = 3 h ^ 0 h ^ l i - ^ 2 (where a\-^ b de­
notes that a precedes to b in the sequence), and, henee, 
seq2(l) = 3. Let us also consider that at time t > x we have 
correcto = {2, 0} and correcti = {3, 0,1}. Then, process po 
sends its heartbeats to process p2 (which is crashed), and 
process p\ sends its heartbeats to process p3 (and as base 
case states, correcti does not contain 2). If j e correctSeq-ci) 
at time x, eventually the timer timerseq.(i)(j) will expire 
and j will be permanently removed from correctseq.(\y If 
j £ correctseq.(i) at time x, j is never included after x. 
Henee, there is a time X\ > x after which j £ correctse(¡.^ 
permanently. 

Let us now consider x > 2. By induction hypothesis, af­
ter xx-i, we have that j £ correcty, for all y e { 1 , . . . , x— 1}. 
Note that now process seq¡{x) will receive heartbeats from 
seq¡{x — 1) with a set correctseq.(X-r) not containing j . 
Then, following the same reasoning of the base case, pro­
cess seq¡{x) will never receive any heartbeat with a set 
containing j . Henee, there is a time xx > xx-\ after which 
Í£correctseq¡(X) permanently. 

Therefore, for all x > 1, eventually and permanently 
j £ correctseq.(Xy As the sequence seq¡ includes all correct 
processes, and the proof holds for all p ¡ e F, the lemma 
follows. D 

The following lemma assures that if eventually a cor­
rect process p¡ believes that a minority of processes are 
alive, then eventually all correct processes in the system 
will believe that p¡ is alive. 

Lemma 2. // there is a process p¡ e C such that eventually 
\correcU\ < n/2, then there is a time after which i e correct¡, 
forevery p¡ e C. 

Proof. If there is a time after which a process p¡ e C 
always has \correct¡\ < n/2, then it will be permanently 
broadeasting heartbeats with i each r¡ time (line 10). As all 

links are ADD, then at least one from each B messages is 
receive in each process p¡ in at most r¡B + A time. Henee, 
eventually timer ¡{i) will never expire, and process p¡ will 
always have i e correct¡. a 

The following lemma shows that if a majority of pro­
cesses are crashed, eventually all correct processes have 
\correct\ < n/2. 

Lemma 3. // \C\ < n/2, then there is a time after which 
\correct¡\ 4-n/2, foreveryprocess p¡ e C. 

Proof. From Lemma 1, there is a time after which every 
correct process p¡ e C will have \correct¡\ < \C\. Henee, if 
\C\ <n /2 , then \correct¡\ <n /2 . D 

In the following lemma we show that if there is a mi­
nority of correct processes, eventually all correct processes 
have the same set correct. 

Lemma 4. // \C\ < n/2, there is a time after which correcti = 
correct¡, for all p¡, p¡ e C. 

Proof. From Lemma 3, if \C\ < n/2, there is a time after 
which every correct process p¡ will broadeast heartbeats 
permanently with its identifier i each r¡ time (line 10). 
Then, eventually no heartbeats with j , where p ¡ e F, will 
be received by correct processes. Then, timer¡ (j) eventually 
will expire (if it was previously set by p¡) and j will not 
be in correcti anymore. Henee, there is a time after which 
correcti does not contain identifiers of crashed processes. 
From Lemma 2 and Lemma 3, if \C\ <n /2 , there is a time 
after which every p¡ e C will have j e correcti, for every 
process p¡ e C. Therefore, if \C\ <n /2 , there is a time after 
which correcti = correct¡, for all p¡, p¡ e C. a 

The following lemma shows that if a minority of pro­
cesses are crashed, eventually all correct processes have 
\correct\ > n/2. 

Lemma 5. // \C\ > n/2, then there is a time after which 
\correcti\ > n/2, for every process p¡ e C. 

Proof. By contradiction, let us suppose that \C\ >n /2 , and 
there is a subset E ^ 0 such that eventually each process 
P(t e E has |correctj;| < n/2. Then, there is also a comple-
mentary subset G such that eventually each process p¡ e G 
has \correct¡\ > n/2 (being E n G = 0, and E U G = C). We 
have two cases to study: 

Case 1. G = 0. That is, every correct process p^ e E. From 
Lemma 2, there is a time after which k e correct¡, for ev­
ery p¡ e C. So, as by hypothesis of contradiction \C\ > n/2, 
we eventually have \correct¡\ > n/2, for every p¡ e C, and 
henee, we reach a contradiction. 

Case 2. G 7̂  0. By hypothesis of contradiction we also have 
that E 7̂  0. Note that eventually each process p¡ e G, as 
it has \correct¡\ > n/2, sends heartbeats permanently with 



correcti each r¡ time to its successor (line 08). As links are 
ADD, then at least one from each B messages will be re-
ceived by every correct process in at most r¡B + A time. 
Henee, there is a time after which the successor of p¡ will 
receive on time heartbeats of p¡. From Lemma 1, eventu-
ally correct¡ can only contain correct processes, for every 
process p¡ eC. From Lemma 2, there is a time after which 
each process p ¡ eC has k e correct ¡, for every process pi¿ e 
E. Note that for each process its set correct is updated with 
the valúes received from heartbeats (line 20). Henee, even-
tually the successor of some process pg e G will be one 
of the processes ps of E. So, eventually correctg c corrects, 
and as \correctg\ > n/2, we also have that \corrects\ > n/2, 
and we reach a contradiction. D 

The following lemma proves that if the majority of pro­
cesses are correct, a unique ring is formed among all of 
them. 

Lemma 6. ¡f\C\ > n/2, then there is a unique ring(C). 

Proof. If there is a time after which some process p¡ e C 
has \correct¡\ > n/2, then eventually process p¡ sends 
heartbeats with correcti each r¡ time to its successor 
(line 08). As links are ADD, then at least one from each 
B messages will be received by every correct process in 
at most r¡B + A time. So, there is a time after which the 
successor of p¡ e C will receive on time heartbeats of p¡. 

From Lemma 1, eventually correcti can only contain cor­
rect processes, for every process p¡ eC. From Lemma 5, if 
\C\ > n/2 then eventually \correct¡\ > n/2, for every process 
p¡ e C. So, process p¡ will form a ring with other correct 
processes, and the intersection between each pair of rings 
is not empty. More formally, let us suppose that there are 
m subsets of correct processes, denoted by C\,Ci, • ••, Cm, 
such that: (a) ring(Cí), ring(C2),..., ring(Cm), (b) Cí U C2 U 
• • • UCm = C, and (c) ring(Cí)r\ring(C2)n• • -nringíCn) ±0. 

Let us use induction in the number n of rings from each 
process pa e ring{Ck) and each process p¡, e ring{Ck+n) to 
show that, if \C\ > n/2, then there is a unique ring(C). 

Let n = 1, that is, pa, p¡, e ring{Ck). The claim is trivially 
true. 

Let us now suppose that the claims holds for any dis-
tance 0 < n < r. Let us now prove that the claim is also 
held for n + 1. We have process pa e ringiC^n), process 
Pb e ring(Q+n+i), and, from the induction hypothesis we 
have that \C\ >n /2 , and henee, from Lemmas 1 and 5, the 
intersection between these two rings is not empty. That is, 
there is some correct process px such that px e ring{Ck+n), 
and px eringiC^n^). Henee, process px receives the set 
correct of some process ps e ring{Ck+n) and some process 
pt e ringiC^^i) (i.e., process px is the successor of ps 

and pt). As correct process px updates its set correctx with 
the valúes received from heartbeats (line 20), it eventu­
ally sends its set correctx with the unión of correct from 
ring{Ck+n) and ring(Q+n+i). Henee, a unique ring will be 
formed among all correct processes of both rings. There-
fore, if \C\ > n/2, then there is a unique ring(C). a 

In the following lemma we show that if there is a ma­
jority of correct processes, eventually all correct processes 
have the same set correct. 

Lemma 7. ¡f\C\ > n/2, there is a time after which correcti = 
correct¡, for all p¡, p¡ e C. 

Proof. From Lemma 6, if \C\ > n/2, there is ring(C). From 
Lemma 1, the set correcti of each process p¡ eC eventually 
can only contain correct processes. Then, each process p¡ e 
C sends correcti to its successor (line 08). This successor of 
Pi (for example pi¿) includes the processes sent by process 
Pi in its set correcta (line 20). Henee, as there is a ring, 
eventually correcti = correctj, for all Pi,p¡ e C. Therefore, 
if \C\ > n/2, there is a time after which correcti = correctj, 
for all pi, p¡ eC. a 

Theorem 1. Let process p¡ e C. There is a time afterwhich every 
process p¡ eC permanently has leader¡ = l. 

Proof. From Lemma 1, there is a time after which all pro­
cesses in correcti have to be correct, for every p¡ eC. From 
Lemmas 4 and 7, there is a time after which correcti = 
correctj, for every Pi,p¡ e C. Note that correcti is never 
empty, for every process p¡. This is so because initially 
process p¡ includes itself in this set (line 01), and this 
valué i is never removed from correcti (because timeri(i) 
is never started, lines 14 and 21). Henee, there is a time 
after which process p¡ permanently has leaderj = l, being 
/ = min(correcti) (lines 23 and 27). D 

Theorem 2. ¡f\C\ > n/2, the algorithm ofFig. 1 is communica-
tion-efficient and crash-quiescent. 

Proof. From Lemmas 5 and 6, there is a ring(C) if \C\ > 
n/2. Then, this ring will be formed by sending heart­
beats permanently among all correct processes in a eyelie 
way, and thus, the number of links that eventually carry 
messages forever is \C\. Henee, the algorithm of Fig. 1 is 
communication-efficient and crash-quiescent. D 

In the following theorem we show that the algorithm 
of Fig. 1 also implements OP. 

Theorem 3. There is a time after which each process p¡ e C 
always has |correct¡| = \C\, and p¡ e correcti, for all Pj e C. 

Proof. From Lemma 1, eventually crashed processes can-
not be in the set correcti, Vp¡ e C. 

If \C\ < n/2, from Lemmas 2 and 3, eventually each pro­
cess Pi e C has j e correctj, Vp¡ e C. Henee, if \C\ < n/2, 
there is a time after which each process p¡ e C always has 
\correcti\ = \C\, and p¡ e correcti, for all p¡ e C. 

If \C\ > n/2, from Lemma 7 we have that eventually 
correcti = correctj, for all P J , P J e C, and from Lemma 6 
there is a unique ring formed by all correct processes. 
Looking at the algorithm of Fig. 1, each process p¡ of this 
unique ring sends heartbeats to its successor (i.e., process 
p¡) with correcti (line 08), and this successor p¡ includes 
the valúes of correcti in its correctj (lines 14 and 20). We 



know that correct¡ always contains at least i, for all pro-
cess p¡. This is so because initially process p¡ includes 
itself in this set (line 01), and this valué i is never re­
moved from correct¡ (because timer¡(i) is never started, 
lines 14 and 21). Henee, if \C\ > n/2, there is a time af-
ter which each process p¡ eC always has \correct¡\ = \C\, 
and p¡ e correct¡, for all p¡ e C. 

Therefore, there is a time after which each process 
p¡ e C always has \correct¡\ = \C\, and p¡ e correct¡, for all 
Pi eC. a 
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