
Communication-efficient and crash-quiescent Omega with unknown
membership^

Sergio Arévalo3, Ernesto Jiménez3*, Mikel Larreab, Luis Mengualc

1 EUÍ, Universidad Politécnica de Madrid, 2803Í Madrid, Spain
b Universidad del País Vasco, 20018 San Sebastián, Spain
c Fí, Universidad Politécnica de Madrid, 28660 Boadilla del Monte, Spain

A R T I C L E I N F O A B S T R A C T

Keywords:
Distributed computing
Fault tolerance
Unreliable failure detectors

The failure detector class Omega (Í2) provides an eventual leader election functionality, i.e.,
eventually all correct processes permanently trust the same correct process. An algorithm
is communication-efficient if the number of links that carry messages forever is bounded
by n, being n the number of processes in the system. It has been defined that an algorithm
is crash-quiescent if it eventually stops sending messages to crashed processes. In this
regard, it has been recently shown the impossibility of implementing Q crash quiescently
without a majority of correct processes. We say that the membership is unknown if each
process p¡ only knows its own identity and the number of processes in the system (that
is, i and n), but p¡ does not know the identity of the rest of processes of the system. There
is a type of link (denoted by ADD link) in which a bounded (but unknown) number of
consecutive messages can be delayed or lost.

In this work we present the first implementation (to our knowledge) of Q in partially
synchronous systems with ADD links and with unknown membership. Furthermore,
it is the first implementation of Q that combines two very interesting properties:
communication-efficiency and crash-quiescence when the majority of processes are correct.
Finally, we also obtain with the same algorithm a failure detector (OP) such that every
correct process eventually and permanently outputs the set of all correct processes.

1. Introduction

Unreliable failure detectors were proposed by Chandra
and Toueg [4] as an elegant way of circumventing the well
known FLP impossibility result [6] on solving determin-
istically the consensus problem [7] in crash-prone asyn-
chronous environments. Informally, an unreliable failure
detector provides hints about which processes are correct

* Research partially supported by the Spanish Research Council (MCel),
under grant TIN2010-19077, the Basque Government, under grants S-
PE09UN50 and IT395-10, and the Comunidad de Madrid, under grant
S2009/TIC-1692.

* Corresponding author.
E-mail addresses: sergio.arevaIo@eui.upm.es (S. Arévalo),

ernes@eui.upm.es (E.Jiménez), mikel.larrea@ehu.es (M. Larrea),
lmengual@fl.upm.es (L. Mengual).

and which ones are incorrect, i.e., have crashed so far. The
failure detector can make mistakes, e.g., by erroneously
suspecting a correct but slow process, or by not suspecting
(yet) a crashed process. Nevertheless, to be useful it is re-
quired that failure detectors fulfill some completeness (i.e.,
suspect permanently crashed processes) and accuracy (i.e.,
stop suspecting correct processes) properties. For example,
a failure detector such that every correct process eventu­
ally and permanently suspects all incorrect processes, and
eventually does not suspect any correct process is named
Eventually Perfect (OP).

Another important failure detector is Omega (Í2) [3],
defined in terms of a trusted process, such that eventually
all correct processes permanently trust the same correct
process. It is said that Q provides an eventual leader elec­
tion functionality. This type of failure detector is important

mailto:sergio.arevaIo@eui.upm.es
mailto:ernes@eui.upm.es
mailto:mikel.larrea@ehu.es
mailto:lmengual@fl.upm.es

because it has been shown that Q is the weakest failure
detector for solving consensus [3].

We say that an algorithm implementing Q is communi-
cation-efficient if the number of links that carry messages
forever is bounded by n, being n the number of processes
in the system [2].

A new property called crash-quiescence has been re-
cently proposed [9]. A distributed algorithm is said crash-
quiescent if it eventually stops sending messages to
crashed processes. Sastry et al. have shown in [9] the im-
possibility of implementing Q (and thus OP) crash quies-
cently without a majority of correct processes in a partially
synchronous system with links where a bounded, but un-
known, number of consecutive messages can be arbitrarily
late or lost (called ADD links). They also propose the first
implementation of a (non-communication-efficient) OP al­
gorithm that is crash-quiescent in any run with a majority
of correct processes. ADD links [8] are interesting and real-
istic enough because they allow that an infinite number of
messages could be lost or arbitrarily delayed, but guaran-
tee that some subset of the messages sent on them will be
received in a timely manner and such messages are not too
sparsely distributed in time. In some sense, an ADD link
successfully combines the losses property of a fair lossy
link [1] (in which if an infinite number of messages are
sent, then an infinite number of messages are received),
and the timeliness property of an eventually timely link
[1] (in which there is a time after which all the messages
that are sent are received timely).

A system with unknown membership allows each pro­
cess to execute the algorithm of Q without having to know
initially the identifiers of all processes (only knowing its
own identifier and the total number of processes in the
system is enough). Henee, you can execute the same code
of Q in runs with different processes without having to
statically change the set of addresses of processes that
particípate in each run. This is possible because processes
dynamically learn about the existence of other processes
from the reception of messages. Note that this reduction
of initial knowledge also supposes that if some process
crashes before sending a message, the rest of processes
will not be able to find out its existence as member of
the system. For example, let us suppose you have a p2p
environment in Internet where each server is identified by
an IP-address. We know that the number of servers will
be, for example, 10. In systems where the membership is
known, each process has to know each of the 10 server's
IP-address previously to start the execution of Q to elect
some of them as leader. In systems with unknown mem­
bership, the leader can be chosen without this knowledge
by learning IP-addresses from the messages received from
other processes.

Jiménez et al. show in [5] that it is necessary for each
process to know the identity of the rest of processes of the
system (that is, the membership) to implement a failure
detector of anyone of the original eight classes proposed
by Chandra and Toueg in [4] (and, henee, OP). Interest-
ingly, they also show in the same paper that Q can be
implemented without this knowledge. What it is possible
to implement is the complement of OP, that is, a fail­
ure detector such that every correct process eventually and

permanently only trusts (instead of suspeets) all correct
(instead of incorrect) processes. We denote this failure de­
tector as OP. Note that when the membership is known,
OP can be easily transformed into OP (we can obtain
the set of suspected processes simply by removing from
the set of all processes the set of trusted processes output
by OP).

Í.Í. Ourresults

In this work we present the first implementation (to
our knowledge) of Q in partially synchronous systems
with ADD links and where the membership is unknown.
Furthermore, it is the first implementation that combines
two very interesting properties: communication-efficiency
and crash-quiescence when the majority of processes are
correct. Finally, we also want to emphasize that the imple­
mentation presented in this paper also satisfies the prop­
erties of OP.

2. Themodel

We consider a system S composed of a finite set TI of
n processes. The process identifiers are totally ordered, but
they do not need to be consecutive. We denote them by
p¡, p¡, p r , We assume that processes only know about
ÍJ their own identifier and what is the number n of pro­
cesses in S (actually, they only need to known the ma­
jority, that is, n/2). For example, process p¡ initially only
knows i and n.

Processes communicate only by sending and receiv-
ing messages. We assume that processes have a broad-
casting primitive to send messages (called broadcast(m)).
This primitive allows a process to send simultaneously the
same message m to the rest of processes in the system
(that is, the same mechanism used in Ethernet or in IP-
multicast). Furthermore, processes also have the possibility
to use the primitive send (called send(m) to q) to send the
message m to process q only.

A process can fail by crashing permanently. We say that
a process is correct if it does not fail, and we say a pro­
cess is crashed (or it is a faulty process) if it fails. We use
C to denote the set of correct processes, and F to denote
the set of faulty processes. We consider that in a system S
there may be any number of crashed processes, and that
this number is not known a priori. We assume that pro­
cesses are synchronous in the sense that there are lower
and upper bounds on the number of processing steps they
execute per unit of time. These bounds are not known
by processes. For simplicity, the local processing time is
negligible with respect to message communication delays.
Processes have timers that accurately measure intervals of
time.

We assume that every pair of processes is connected
by a pair of directed links. We consider that all links be-
long to type ADD (Average Delayed/Dropped) [8]. An ADD
link allows an infinite number of messages to be lost or
arbitrarily delayed, but guarantees that some subset of the
messages sent on it will be received in a timely manner
and such messages are not too sparsely distributed in time.
More precisely, there are two unknown constants A and B

initíalizatíon:
(01)correa, <- (i);
(02)membershipi <- (i);
(03)leader¡ <- i;
(04)start tasksTl and T2;

taskTl:
(05)repeatforever each ij time
(06) if (\correct¡ > n/2) then
(07) successor¡ <- nextjo_i_in_correct¡();
(08) send(correcti) to successor¡;
(09) else
(10) broadcasr({¡});
(11) end_if
(12)end_repeat

taskT2
(13)uponreceptionof message (seí,-) : j V i do
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)

for_each {keset¡ : k jt i) do
if (k £ membershipi) then

membershipi <- membership¡ U (/c);
créate timer¡(k) and rimeour¡ [k];
rimeour¡[/<] < - 1 ;

end_if
correa, <- correa, U{k);
set timen (k) to timeout¡ [k];

end_for
leader, <- min(correcti);

(24) upon expiratíon of timer¡ (k):
(25)
(26)
(27)

timeout¡[k] <- timeout¡[k] + 1;
correctj <- correct¡ \ {k};
leader¡ <- min(correcti);

Fig. 1. Implementation of Í2 (and OP) in a system where each process initially only knows its identity and n (code for process p¡).

such that for all intervals of time in which a process p¡
sends at least B messages to another process pj, at least
one of these messages is received by p¡ in at most A time.

3. The Omega and OP failure detectors

Chandra et al. proposed the Omega (Q) failure detec­
tor [3]. This failure detector guarantees that eventually all
correct processes always have the same correct process as
leader. More formally, the Omega failure detector satisfies
the following property: there is a time after which each
process p¡ eC always has leader¡ = p¡, where p¡ e C.

Chandra and Toueg defined in [4] the Eventually Perfect
(OP) failure detector. This failure detector guarantees that
there is a time after which every correct process perma-
nently only suspects all faulty processes. In [5] it is proven
that if processes do not know a priori all members of the
system (i.e., the membership is unknown), it is impossible
to eventually suspect all faulty processes. For example, if
we do not know the membership and process p¡ crashes
at the very beginning of a run (before sending or receiv-
ing any message), it is not possible for another process p¡
to learn about p¡'s presence in the system, and therefore,
it is impossible for p¡ to suspect p¡.

Nevertheless, we can have in a system S of our model
a failure detector (we denote it as OP) such that there is
a time after which every correct process permanently only
trusts all correct processes. More formally, there is a time
after which each process p¡eC always has \correcU\ = \C\,
and p¡ e correct¡, for all p¡ e C. Note that in a system
with known membership this failure detector can be easily
transformed into OP (changing the output of each process
p¡ by ÍJ \ correcU). Interestingly, our protocol also imple-
ments OP.

4. The implementation

Fig. 1 implements Q (and OP) in a system S where the
membership is unknown. If the majority of processes are
correct, we will show that this protocol is communication-
efficient and crash-quiescent.

In Fig. 1, each process p¡ initially broadcasts heartbeats
repeatedly to indícate that it is alive (line 10). To know

which processes are in the system, process p¡ has a set
membershipi (initially only contains itself). The set correct¡
maintains the processes it believes are alive (always con-
taining at least itself). If a majority of processes are alive,
then eventually \correct¡\ > n/2 and process p¡ will send
heartbeats periodically to successor¡, instead of broadcast
them (line 08). This variable successor¡ contains the pro­
cess returned by function next_to_i_in_correct¡() (line 07).
This function obtains the identifier of the process closest to
the identifier of p¡ in the sequence formed by all elements
of correct¡, in increasing order and cyclic (that is, like op-
eration mod but with the elements of correct¡ instead of
a subset of natural numbers). For example, if process p3
has correcta ={1,3,5,8}, then next_to_i_in_correct3() will
return 5. In another example, if process p3 has correct3 =
{1,2,3}, then next_to_i_in_correct3() will return 1. As we
will show, if \correct¡\ > n/2, each correct process p¡ will
eventually send messages only to one correct process, es-
tablishing a cycle (we will define it below as ring) formed
by all correct processes. The variable leader¡ has the iden­
tifier of the process that p¡ considers its leader. Its valué is
the smallest valué in correct¡.

5. Correctness proof

Let D be a subset of correct processes (D c C). We
say that there is a relation p¡ —* p¡, puV¡ e D, if there
is a time after which process p¡ is permanently sending
heartbeats to p¡. We say that p¡ is the predecessor of p¡,
and p¡ is the successor of p¡ in D. We say there is a
ring among all processes in D, denoted by ring(D), if each
process p¡ e D has a unique predecessor and a unique suc­
cessor with respect to all processes in D. For example, if
D contains the subset of correct processes {p¡, Pk, Pr, Ps},
and p r —* Pk —* p¡ —* ps —* p r , then we say that there is a
ring(D).

The following lemma states that eventually crashed
processes cannot be in the set correct¡ of any correct pro­
cess p¡.

Lemma 1. For every process p¡ e C, there is a time after which
if j e correctj, then p¡ e C.

Proof. Let us consider a process p¡ e F. We prove that
eventually and permanently j £ correct¡, Vp¡ e C. Let seq¡
be a permutation of the processes in C, where the first
element of the sequence seq¡ is the process whose iden-
tifier next_to_i_in_correct¡Q would return if correct¡ = C.
Let seqj(x) be, for x > 1, the xth element of the se­
quence seq¡. The element seq¡{x), x > 2, is the process
whose identifier next_to_i_in_correctseq.(x-r)0 would re­
turn if correctseq¡(x-\) = C.

We are going to prove that, for all x > 1, eventually
and permanently j ^ correctseq-(x), by induction on x. Base
case is x = 1. Let us consider a time x at which all faulty
processes are crashed, and all messages sent by these pro­
cesses have disappeared from the system (i.e., they have
been delivered or lost). After x, process seq¡{\) will never
receive any heartbeat with a set containing j . This is so,
because a process sending a heartbeat by execution of
line 10, it only includes its own identifier (which cannot
be j since process p¡ is already crashed). On the other
hand, if the heartbeat is sent by execution of line 08,
the valúes in this set correct¡, Vp¡ e C, sent to process
seqj(l) do not include j (otherwise, the heartbeat would
have been sent to p¡ instead). For example, let us con­
sider that j = 2, ÍJ = {po, P\, P2, P3}, Pj e F and t > x.
We know that seq2 = 3 h ^ 0 h ^ l i - ^ 2 (where a\-^ b de­
notes that a precedes to b in the sequence), and, henee,
seq2(l) = 3. Let us also consider that at time t > x we have
correcto = {2, 0} and correcti = {3, 0,1}. Then, process po
sends its heartbeats to process p2 (which is crashed), and
process p\ sends its heartbeats to process p3 (and as base
case states, correcti does not contain 2). If j e correctSeq-ci)
at time x, eventually the timer timerseq.(i)(j) will expire
and j will be permanently removed from correctseq.(\y If
j £ correctseq.(i) at time x, j is never included after x.
Henee, there is a time X\ > x after which j £ correctse(¡.^
permanently.

Let us now consider x > 2. By induction hypothesis, af­
ter xx-i, we have that j £ correcty, for all y e { 1 , . . . , x— 1}.
Note that now process seq¡{x) will receive heartbeats from
seq¡{x — 1) with a set correctseq.(X-r) not containing j .
Then, following the same reasoning of the base case, pro­
cess seq¡{x) will never receive any heartbeat with a set
containing j . Henee, there is a time xx > xx-\ after which
Í£correctseq¡(X) permanently.

Therefore, for all x > 1, eventually and permanently
j £ correctseq.(Xy As the sequence seq¡ includes all correct
processes, and the proof holds for all p ¡ e F, the lemma
follows. D

The following lemma assures that if eventually a cor­
rect process p¡ believes that a minority of processes are
alive, then eventually all correct processes in the system
will believe that p¡ is alive.

Lemma 2. // there is a process p¡ e C such that eventually
\correcU\ < n/2, then there is a time after which i e correct¡,
forevery p¡ e C.

Proof. If there is a time after which a process p¡ e C
always has \correct¡\ < n/2, then it will be permanently
broadeasting heartbeats with i each r¡ time (line 10). As all

links are ADD, then at least one from each B messages is
receive in each process p¡ in at most r¡B + A time. Henee,
eventually timer ¡{i) will never expire, and process p¡ will
always have i e correct¡. a

The following lemma shows that if a majority of pro­
cesses are crashed, eventually all correct processes have
\correct\ < n/2.

Lemma 3. // \C\ < n/2, then there is a time after which
\correct¡\ 4-n/2, foreveryprocess p¡ e C.

Proof. From Lemma 1, there is a time after which every
correct process p¡ e C will have \correct¡\ < \C\. Henee, if
\C\ <n /2 , then \correct¡\ <n /2 . D

In the following lemma we show that if there is a mi­
nority of correct processes, eventually all correct processes
have the same set correct.

Lemma 4. // \C\ < n/2, there is a time after which correcti =
correct¡, for all p¡, p¡ e C.

Proof. From Lemma 3, if \C\ < n/2, there is a time after
which every correct process p¡ will broadeast heartbeats
permanently with its identifier i each r¡ time (line 10).
Then, eventually no heartbeats with j , where p ¡ e F, will
be received by correct processes. Then, timer¡ (j) eventually
will expire (if it was previously set by p¡) and j will not
be in correcti anymore. Henee, there is a time after which
correcti does not contain identifiers of crashed processes.
From Lemma 2 and Lemma 3, if \C\ <n /2 , there is a time
after which every p¡ e C will have j e correcti, for every
process p¡ e C. Therefore, if \C\ <n /2 , there is a time after
which correcti = correct¡, for all p¡, p¡ e C. a

The following lemma shows that if a minority of pro­
cesses are crashed, eventually all correct processes have
\correct\ > n/2.

Lemma 5. // \C\ > n/2, then there is a time after which
\correcti\ > n/2, for every process p¡ e C.

Proof. By contradiction, let us suppose that \C\ >n /2 , and
there is a subset E ^ 0 such that eventually each process
P(t e E has |correctj;| < n/2. Then, there is also a comple-
mentary subset G such that eventually each process p¡ e G
has \correct¡\ > n/2 (being E n G = 0, and E U G = C). We
have two cases to study:

Case 1. G = 0. That is, every correct process p^ e E. From
Lemma 2, there is a time after which k e correct¡, for ev­
ery p¡ e C. So, as by hypothesis of contradiction \C\ > n/2,
we eventually have \correct¡\ > n/2, for every p¡ e C, and
henee, we reach a contradiction.

Case 2. G 7̂ 0. By hypothesis of contradiction we also have
that E 7̂ 0. Note that eventually each process p¡ e G, as
it has \correct¡\ > n/2, sends heartbeats permanently with

correcti each r¡ time to its successor (line 08). As links are
ADD, then at least one from each B messages will be re-
ceived by every correct process in at most r¡B + A time.
Henee, there is a time after which the successor of p¡ will
receive on time heartbeats of p¡. From Lemma 1, eventu-
ally correct¡ can only contain correct processes, for every
process p¡ eC. From Lemma 2, there is a time after which
each process p ¡ eC has k e correct ¡, for every process pi¿ e
E. Note that for each process its set correct is updated with
the valúes received from heartbeats (line 20). Henee, even-
tually the successor of some process pg e G will be one
of the processes ps of E. So, eventually correctg c corrects,
and as \correctg\ > n/2, we also have that \corrects\ > n/2,
and we reach a contradiction. D

The following lemma proves that if the majority of pro­
cesses are correct, a unique ring is formed among all of
them.

Lemma 6. ¡f\C\ > n/2, then there is a unique ring(C).

Proof. If there is a time after which some process p¡ e C
has \correct¡\ > n/2, then eventually process p¡ sends
heartbeats with correcti each r¡ time to its successor
(line 08). As links are ADD, then at least one from each
B messages will be received by every correct process in
at most r¡B + A time. So, there is a time after which the
successor of p¡ e C will receive on time heartbeats of p¡.

From Lemma 1, eventually correcti can only contain cor­
rect processes, for every process p¡ eC. From Lemma 5, if
\C\ > n/2 then eventually \correct¡\ > n/2, for every process
p¡ e C. So, process p¡ will form a ring with other correct
processes, and the intersection between each pair of rings
is not empty. More formally, let us suppose that there are
m subsets of correct processes, denoted by C\,Ci, • ••, Cm,
such that: (a) ring(Cí), ring(C2),..., ring(Cm), (b) Cí U C2 U
• • • UCm = C, and (c) ring(Cí)r\ring(C2)n• • -nringíCn) ±0.

Let us use induction in the number n of rings from each
process pa e ring{Ck) and each process p¡, e ring{Ck+n) to
show that, if \C\ > n/2, then there is a unique ring(C).

Let n = 1, that is, pa, p¡, e ring{Ck). The claim is trivially
true.

Let us now suppose that the claims holds for any dis-
tance 0 < n < r. Let us now prove that the claim is also
held for n + 1. We have process pa e ringiC^n), process
Pb e ring(Q+n+i), and, from the induction hypothesis we
have that \C\ >n /2 , and henee, from Lemmas 1 and 5, the
intersection between these two rings is not empty. That is,
there is some correct process px such that px e ring{Ck+n),
and px eringiC^n^). Henee, process px receives the set
correct of some process ps e ring{Ck+n) and some process
pt e ringiC^^i) (i.e., process px is the successor of ps

and pt). As correct process px updates its set correctx with
the valúes received from heartbeats (line 20), it eventu­
ally sends its set correctx with the unión of correct from
ring{Ck+n) and ring(Q+n+i). Henee, a unique ring will be
formed among all correct processes of both rings. There-
fore, if \C\ > n/2, then there is a unique ring(C). a

In the following lemma we show that if there is a ma­
jority of correct processes, eventually all correct processes
have the same set correct.

Lemma 7. ¡f\C\ > n/2, there is a time after which correcti =
correct¡, for all p¡, p¡ e C.

Proof. From Lemma 6, if \C\ > n/2, there is ring(C). From
Lemma 1, the set correcti of each process p¡ eC eventually
can only contain correct processes. Then, each process p¡ e
C sends correcti to its successor (line 08). This successor of
Pi (for example pi¿) includes the processes sent by process
Pi in its set correcta (line 20). Henee, as there is a ring,
eventually correcti = correctj, for all Pi,p¡ e C. Therefore,
if \C\ > n/2, there is a time after which correcti = correctj,
for all pi, p¡ eC. a

Theorem 1. Let process p¡ e C. There is a time afterwhich every
process p¡ eC permanently has leader¡ = l.

Proof. From Lemma 1, there is a time after which all pro­
cesses in correcti have to be correct, for every p¡ eC. From
Lemmas 4 and 7, there is a time after which correcti =
correctj, for every Pi,p¡ e C. Note that correcti is never
empty, for every process p¡. This is so because initially
process p¡ includes itself in this set (line 01), and this
valué i is never removed from correcti (because timeri(i)
is never started, lines 14 and 21). Henee, there is a time
after which process p¡ permanently has leaderj = l, being
/ = min(correcti) (lines 23 and 27). D

Theorem 2. ¡f\C\ > n/2, the algorithm ofFig. 1 is communica-
tion-efficient and crash-quiescent.

Proof. From Lemmas 5 and 6, there is a ring(C) if \C\ >
n/2. Then, this ring will be formed by sending heart­
beats permanently among all correct processes in a eyelie
way, and thus, the number of links that eventually carry
messages forever is \C\. Henee, the algorithm of Fig. 1 is
communication-efficient and crash-quiescent. D

In the following theorem we show that the algorithm
of Fig. 1 also implements OP.

Theorem 3. There is a time after which each process p¡ e C
always has |correct¡| = \C\, and p¡ e correcti, for all Pj e C.

Proof. From Lemma 1, eventually crashed processes can-
not be in the set correcti, Vp¡ e C.

If \C\ < n/2, from Lemmas 2 and 3, eventually each pro­
cess Pi e C has j e correctj, Vp¡ e C. Henee, if \C\ < n/2,
there is a time after which each process p¡ e C always has
\correcti\ = \C\, and p¡ e correcti, for all p¡ e C.

If \C\ > n/2, from Lemma 7 we have that eventually
correcti = correctj, for all P J , P J e C, and from Lemma 6
there is a unique ring formed by all correct processes.
Looking at the algorithm of Fig. 1, each process p¡ of this
unique ring sends heartbeats to its successor (i.e., process
p¡) with correcti (line 08), and this successor p¡ includes
the valúes of correcti in its correctj (lines 14 and 20). We

know that correct¡ always contains at least i, for all pro-
cess p¡. This is so because initially process p¡ includes
itself in this set (line 01), and this valué i is never re­
moved from correct¡ (because timer¡(i) is never started,
lines 14 and 21). Henee, if \C\ > n/2, there is a time af-
ter which each process p¡ eC always has \correct¡\ = \C\,
and p¡ e correct¡, for all p¡ e C.

Therefore, there is a time after which each process
p¡ e C always has \correct¡\ = \C\, and p¡ e correct¡, for all
Pi eC. a

References

[1] M. Aguilera, C. Delporte-Gallet, H. Fauconnier, S. Toueg. On imple-
menting omega with weak reliability and synchrony assumptions, in:
Proceedings of the 22nd ACM Symposium on Principies of Distributed
Computing, PODC 2003, Boston, Massachusetts, USA, July 2003, pp.
306-314.

[2] M. Aguilera, C. Delporte-Gallet, H. Fauconnier, S. Toueg, Stable leader
election, in: Proceedings of the 15th International Symposium on Dis­

tributed Computing (DISC2001), Lisbon, Portugal, October 2001, in:
LNCS, vol. 2180, Springer-Verlag, 2001, pp. 108-122.

[3] T.D. Chandra, V. Hadzilacos, S. Toueg, The weakest failure detector for
solving consensus, Journal of the ACM 43 (4) (July 1996) 685-722.

[4] T.D. Chandra, S. Toueg, Unreliable failure detectors for reliable dis­
tributed systems, Journal of the ACM 43 (2) (March 1996) 225-267.

[5] E. Jiménez, S. Arévalo, A. Fernández, Implementing unreliable fail­
ure detectors with unknown membership, Information Processing Let-
ters 100 (2) (October 2006) 60-63.

[6] M. Fischer, N. Lynch, M. Paterson, Impossibility of distributed consen­
sus with one faulty process, Journal of the ACM 32 (2) (April 1985)
374-382.

[7] M. Pease, R. Shostak L. Lamport, Reaching agreement in the presence
of faults, Journal of the ACM 27 (2) (April 1980) 228-234.

[8] S. Sastry, S. Pike, Eventually perfect failure detection using ADD chan-
nels, in: Proceedings of the 5th International Symposium on Paral-
lel and Distributed Processing and Applications, ISPA 2007, Niágara
Falls, Canadá, August 2007, in: LNCS, vol. 4742, Springer-Verlag, 2007,
pp. 483-496.

[9] S. Sastry, S. Pike, J. Welch, Crash-quiescent failure detection, in: Pro­
ceedings of the 23rd International Symposium on Distributed Com­
puting, DISC2009, Elche, Spain, September 2009, in: LNCS, vol. 5805,
Springer-Verlag, 2009, pp. 326-340.

