
The Size and Depth of Layered Boolean Circuits

Anna Gál? and Jing-Tang Jang??

Dept. of Computer Science, University of Texas at Austin,
Austin, TX 78712-1188, USA

{panni, keith}@cs.utexas.edu

Abstract. We consider the relationship between size and depth for
layered Boolean circuits, synchronous circuits and planar circuits as
well as classes of circuits with small separators. In particular, we show
that every layered Boolean circuit of size s can be simulated by a lay-
ered Boolean circuit of depth O(

√
s log s). For planar circuits and syn-

chronous circuits of size s, we obtain simulations of depth O(
√

s). The
best known result so far was by Paterson and Valiant [16], and Dymond
and Tompa [6], which holds for general Boolean circuits and states that
D(f) = O(C(f)/ log C(f)), where C(f) and D(f) are the minimum size
and depth, respectively, of Boolean circuits computing f . The proof of
our main result uses an adaptive strategy based on the two-person peb-
ble game introduced by Dymond and Tompa [6]. Improving any of our
results by polylog factors would immediately improve the bounds for
general circuits.

Key words: Boolean circuits, circuit size, circuit depth, pebble games

1 Introduction

In this paper, we study the relationship between the size and depth of fan-in
2 Boolean circuits over the basis {∨,∧,¬}. Given a Boolean circuit C, the size
of C is the number of gates in C, and the depth of C is the length of the
longest path from any input to the output. We will use the following notation
for complexity classes. DTIME(t(n)) and SPACE(s(n)) are the classes of lan-
guages decidable by deterministic multi-tape Turing machines in time O(t(n))
and space O(s(n)), respectively. Given a Boolean function f : {0, 1}n → {0, 1},
define C(f) to be the smallest size of any circuit over {∨,∧,¬} computing f ,
and define D(f) to be the smallest depth of any circuit over {∨,∧,¬} computing
f . Note that C(f) and D(f) are not necessarily achieved by the same circuit.
We also need the following conventions to compare computation times in uni-
form models (Turing machines) and in non-uniform models (Boolean circuits and
PRAMs). Given L ⊆ {0, 1}∗, let Ln = L ∩ {0, 1}n. We will also view Ln as the

? Supported in part by NSF Grant CCF-0830756
?? Supported in part by MCD fellowship from Dept. of Computer Science, University

of Texas at Austin, and NSF Grant CCF-0830756

following Boolean function: Ln : {0, 1}n → {0, 1} such that Ln(x1, . . . , xn) = 1
iff x1 . . . xn ∈ Ln. In other words, we will use the notation Ln to denote both the
set Ln and its characteristic function. Now define SIZE(t(n)) = {L : C(Ln) =
O(t(n))} and DEPTH(s(n)) = {L : D(Ln) = O(s(n))}. We will also con-
sider uniform versions of these classes, i.e. logspace-uniform-SIZE(t(n)) and
logspace-uniform-DEPTH(s(n)).

Pippenger and Fischer [17] showed that for t(n) ≥ n, DTIME(t(n)) ⊆
logspace-uniform-SIZE(t(n) log t(n)). Thus, circuit size is related to sequen-
tial computation time. Furthermore, Borodin [4] showed that for s(n) ≥ log n,
logspace-uniform-DEPTH(s(n)) is a subset of SPACE(s(n)), and SPACE(s(n))
is a subset of logspace-uniform-DEPTH(s2(n)). Thus, circuit depth is closely
related to sequential computation space.

For the PRAM model, define Punit(f) and Plog(f) to be the minimum com-
putation time to compute f in the unit-cost and log-cost PRAM models, re-
spectively. For our purposes, it is sufficient to consider CRCW PRAMs. Define
PRAMunit(t(n)) = {L : Punit(Ln) = O(t(n))} and PRAMlog(t(n)) = {L :
Plog(Ln) = O(t(n))}. Similarly to circuit classes, we will also consider uniform
versions of PRAM classes.

There is a tight connection between circuit depth and PRAM time. Stock-
meyer and Vishkin [21] showed that PRAMlog(t(n)) ⊆ DEPTH(t(n) logm(n))
and DEPTH(s(n)) ⊆ PRAMlog(s(n)), where m(n) is the maximum of t(n), the
number of processors, and the input length n. These results hold even for the
unit-cost PRAM model as long as multiplication is not counted as a unit-cost
instruction.

The above results show that the study of circuit size versus depth helps to
investigate the relationship between sequential and parallel computation time,
as well as time versus space in sequential computation. However, very little is
known about the size versus depth question for general Boolean circuits. The
best known result so far is the following theorem, which was first proved by
Paterson and Valiant [16], and later proved by Dymond and Tompa [6] using
another method.

Theorem A [16, 6] Given a Boolean function f : {0, 1}n → {0, 1}, we have
D(f) = O(C(f)/ logC(f)), or SIZE(t(n)) ⊆ DEPTH(t(n)/ log t(n)).

On the other hand, it can be easily shown that D(f) = Ω(logC(f)). The-
orem A leaves a huge gap (logC(f) versus C(f)/ logC(f)) for circuits of any
size. McColl and Paterson [13] showed that every Boolean function depending
on n variables has circuit depth at most n+ 1. There is an even stronger result
by Gaskov [7] showing that circuit depth is at most n− log log n+ 2 + o(1). This
gives a much stronger bound on depth than Theorem A for functions that re-
quire circuits of large size. In particular, for f : {0, 1}n → {0, 1} such that C(f)
is exponential in n, [13] and [7] give essentially tight bounds on depth. However,
for functions that can be computed by subexponential-size circuits, there is still
a large gap. Note that Theorem A gives a stronger result than [13] and [7] only
when C(f) = o(n log n). Improving Theorem A would yield improvements over
[13] and [7] for larger C(f) as well.

Because of the connections mentioned above, there are other important con-
sequences if Theorem A can be improved. Hopcroft, Paul, and Valiant [10] proved
the following analogous theorem about sequential time and space, and Adleman
and Loui [1] later gave an alternative proof.

Theorem B [10, 1] DTIME(t(n)) ⊆ SPACE(t(n)/ log t(n)).

By the results of Pippenger and Fischer, and Borodin mentioned above, im-
proving Theorem A by at least a polylog factor immediately improves Theo-
rem B.

Dymond and Tompa [6] showed that DTIME(t(n)) ⊆ PRAMunit(
√
t(n))

for the unit-cost PRAM model. (This also holds for logspace uniform unit-cost
PRAM.) However, no such result is known for the log-cost PRAM model. Since
DEPTH(s(n)) ⊆ PRAMlog(s(n)), improving Theorem A by at least a polylog
factor will also imply non-trivial relationship between DTIME and log-cost
PRAM computation time.

For general Boolean circuits, the simulating depth O(t(n)/ log t(n)) in The-
orem A is very close to the circuit size. On the other extreme, consider tree-like
circuits, where every gate has fan-out at most 1. Spira [20] showed that given
any tree-like Boolean circuit C of size t(n), we can always simulate C by an-
other tree-like Boolean circuit of depth O(log t(n)). Note that tree-like circuits
are commonly referred to as formulas in circuit complexity. We will use the term
tree-like circuits to avoid any ambiguity. It is unlikely that Spira’s result holds
for general Boolean circuits, since that would imply P = NC1. Still, it is possible
that Theorem A can be improved. We indeed achieve improved simulations for
special classes of Boolean circuits.

1.1 Our results

We consider the size versus depth problem for special classes of Boolean circuits.
As far as we know, previously no better bounds were known for these classes
than what follows from the bounds for general circuits [16, 6]. We obtain signif-
icant improvements over these general bounds for layered circuits, synchronous
circuits, and planar circuits as well as classes of circuits with small separators.
Informally, a circuit is layered if its set of gates can be partitioned into subsets
called layers, such that every wire in the circuit is between adjacent layers. A
circuit is synchronous if for any gate g, every path from the inputs to g has
the same length. Synchronous and planar circuits have been extensively studied
before. Synchronous circuits were introduced by Harper [9]. Planar circuits were
introduced by Lipton and Tarjan [12]. Layered circuits are a natural generaliza-
tion of synchronous circuits, but as far as we know they have not been explicitly
studied. Layered graphs have been studied by Paul, Tarjan, and Celoni [14] (they
call these “level graphs” in their paper). Belaga [3] defined locally synchronous
circuits, which is a subclass of layered circuits, with the extra condition that each
input variable can appear at most once. The synchronous circuits form a proper
subset of layered circuits. (See next section for more details.) Furthermore, Turán

[22] showed that there exists a function fn such that any synchronous circuit for
fn has size Ω(n log n), but there exists a layered circuit for fn with size O(n).
See Belaga [3] for the same gap for functions with multiple outputs. This distin-
guishes synchronous circuits and layered circuits with respect to their computa-
tional powers. Notice that every Boolean function can be computed by circuits
from each of the classes we consider. Furthermore, these classes of circuits are
quite frequently used in various situations.

Our main result is for layered circuits.

Theorem 1. Every layered Boolean circuit of size s can be simulated by a lay-
ered Boolean circuit of depth O(

√
s log s) computing the same function.

We obtain slightly better bounds for synchronous circuits and planar circuits.

Theorem 2. Every synchronous Boolean circuit of size s can be simulated by a
synchronous Boolean circuit of depth O(

√
s) computing the same function.

A circuit is planar if its underlying graph can be embedded in the plane
without crossings of the wires.

Theorem 3. Every planar Boolean circuit of size s can be simulated by a planar
Boolean circuit of depth O(

√
s) computing the same function.

For planar circuits, we use the fact that every planar circuit of size s has a
separator of size O(

√
s) [11]. Informally, the separator of a graph is a subset of the

nodes whose removal yields two subgraphs of comparable sizes. This allows us to
use a divide-and-conquer strategy. Graphs with small separators include trees,
planar graphs [11], graphs with bounded genus [8], and graphs with excluded
minors [2]. In fact, we can get similar results for arbitrary classes of circuits with
small separators.

On the other hand, not all synchronous circuits and layered circuits have
small separators. See [19] for many examples. So we need strategies other than
the divide-and-conquer approach. Our idea is to consider cuts, which separate
the graph into two subgraphs that are not necessarily comparable in size. For
synchronous circuits, our technique is to find a relatively small cut such that the
function can be computed by the composition of two circuits of small depths.
This gives a simple proof for synchronous circuits, but the same method cannot
be applied to the more general layered circuits. For layered circuits, we develop
an adaptive strategy in the two-person pebble game, such that the sizes of the
cuts are taken into account during the game. Note that both [16] and [6] use
the notion of separators in their proofs. Our results for synchronous circuits and
layered circuits show that the minimum circuit depth does not necessarily grow
with the separator size of the minimum-size circuit.

Finally we note that an arbitrary circuit of size s can be converted to either a
planar or a synchronous circuit of size O(s2) [24]. Thus improving our results by
polylog factors for any of the classes we considered would also yield improvements
over the best known bounds for general circuits.

2 Definitions and Backgrounds

2.1 The Circuit Model

A Boolean circuit is a labeled directed acyclic graph (DAG), where every node
is labeled by either a variable from {x1, . . . , xn}, or an operation from {∧,∨,¬}.
The inputs of a Boolean circuit are the nodes with in-degree (fan-in) zero, and
the outputs of a Boolean circuit are the nodes with out-degree (fan-out) zero.
The size of a Boolean circuit is the number of its gates. We will consider Boolean
circuits with gates of fan-in at most 2 from the basis {∧,∨,¬}. We refer interested
readers to [24] for more background on Boolean circuits.

A circuit is planar if we can find an embedding in the plane for the circuit
such that no two edges cross [12].

Definition 1. [9] Synchronous circuits A circuit is synchronous if for any
gate g, all paths from the inputs to g have the same length.

Definition 2. Layered circuits A circuit is layered, if its set of gates can be
partitioned into subsets called layers, such that every wire in the circuit is be-
tween adjacent layers. For circuits with one output, the following is an equivalent
definition: A circuit with one output is layered if for any gate g all paths from g
to the output have the same length.

Definition 3. Depth and height Let C be a circuit, and let g be any gate in
C. The depth of g is the length of the longest path from any input to g. The
depth of C is the depth of the output gate.

For circuits with one output, the height of g is the length of the longest path
from g to the output.

Definition 4. Levels and layers The ith level of a circuit consists of all gates
with depth equal to i. For circuits with one output, the ith layer of the circuit
consists of all gates with height equal to i.

Note that the 0th layer in a circuit with one output consists of the output
gate, and the 0th level in any circuit consists of the inputs. Also note that
“levels” and “layers” are usually used interchangeably in the literature, and
distinguishing them this way is just our terminology. The following lemma is
straightforward from the definitions, and it shows that every synchronous circuit
is layered. A simple example shows that the converse is not true: consider the
circuit with inputs x1, x2, x3, gates g1 = x1 ∧ x2, g2 = g1 ∧ x3, and g2 being the
output.

Lemma 1. A circuit C is synchronous if and only if every wire in C is between
adjacent levels. Thus, every synchronous circuit is also a layered circuit.

2.2 The Two-Person Pebble Game

Several variants of pebble games have been invented to study questions related
to the space requirements of computation, e.g. [15, 5]. See [18] for a survey.
Here we focus on the two-person pebble game, which was defined by Dymond
and Tompa [6]. The game is played on a DAG G. There are two players, the
challenger and the pebbler. The challenger starts the game by challenging any
single node of G, then the pebbler puts some pebbles on a subset of the nodes.
From this point on, the challenger can only challenge a node that was either
challenged or pebbled in the previous round. The game continues until at the
beginning of the pebbler’s move, all the predecessors of the currently challenged
node w are already pebbled. Then we say the challenger loses G at w. If, under
the best defense of the challenger, the pebbler can win with t number of pebble
placements, then we say that G can be two-person pebbled in time t. Notice that
the pebbler does not remove pebbles once a node is pebbled.

The next two theorems give an alternative proof of Theorem A.

Theorem C [6] Let G be a DAG with node set V . Then the pebbler can win
the game in time O(|V |/ log |V |).

Theorem D (Theorem 3 in [6]) Let C be a Boolean circuit computing a function
f . If C can be two-person pebbled with t pebbles, then there exists a tree-like
circuit of depth 2t+ 1 that also computes f .

We will use Theorem D to obtain our results for layered circuits and circuits
with small separators. Note that Paul, Tarjan, and Celoni [14] gave a pebbling
strategy for layered graphs but used the rules of a different pebble game, which
does not imply bounds on the depth.

3 Size versus Depth for Layered Circuits

The following lemma gives an adaptive strategy in the two-person pebble game
for layered circuits.

Lemma 2. Let C be a layered circuit of size s. Then C can be two-person pebbled
in time O(

√
s log s). That is, the pebbler can win by using O(

√
s log s) pebbles.

Proof. First note that at any point in the game, we only need to consider the
subcircuit whose single output is the currently challenged node. Thus, in the
proof we can assume without loss of generality that the circuit C has only one
output, and that the first move of the challenger is to challenge the output gate.

Let L(0), . . . , L(d) be all the layers, where d is the depth of C, and L(i) is
the set of gates with height i. (See previous section for definitions.) Note that
L(0) consists of the output gate. We say that a layer L(i) is large if |L(i)| > y
and small otherwise. We shall determine the value of y later.

The strategy of the pebbler has two phases. During the first phase, the peb-
bler forces the challenger to go into a subcircuit between two small layers such

that every layer between the two small layers is large, or into a subcircuit such
that all nodes of the subcircuit belong to large layers. In the second phase, the
pebbler will win the game within that subcircuit.

During the first phase, the pebbler always pebbles a small layer Sα with
α > β, where Sβ is the layer where the challenged node resides in that round.
The pebbler continues this phase until the small layer Sα with α > β closest to
the challenged node is pebbled, or until there are no more such small layers. Note
that the pebbler pebbles the small layers S0, S1, . . . , Sm in a divide-and-conquer
way depending on the location of the challenged node in each round. Since there
are at most s small layers, the number of pebbles used in the first phase is at
most ydlog se.

Phase I. Let S0, S1, . . . , Sm be the small layers numbered starting from the
output. Note that S0 = L(0) since L(0) contains only one gate. Define h(j) to
be the height of the gates in the jth small layer Sj . We shall define the strategy
inductively.

At the beginning of the game (round 1), the challenger challenges the output
node, which belongs to S0 = L(0).

Suppose that for r ≥ 1 at the beginning of round r the challenger challenges
a node w ∈ Sj . Note that since during phase I pebbles are only placed on nodes
in small layers, the challenged node w belongs to a small layer in every round
within phase I. We have three cases.

1. No small layer L(h(b)) = Sb with b > j exists. That is, every layer L(k) with
k > h(j) is a large layer. Then the pebbler continues with the second phase.

2. None of the small layers L(h(b)) = Sb with b > j is pebbled. The pebbler
then puts a pebble on each node of Sdm+j

2 e
.

3. There exists a small layer L(h(b)) = Sb with b > j, such that all nodes in Sb
are pebbled, and none of the small layers between Sj and Sb is pebbled. The
pebbler then puts a pebble on each node of Sb b+j

2 c
if b b+j2 c 6= b. If b b+j2 c = b,

then there are no small layers between Sj and Sb, and the pebbler continues
with the second phase.

Phase II. The pebbler’s strategy in the second phase is as follows: Suppose that
the challenger challenges node w in the beginning of the kth round for some
k. Then the pebbler puts pebbles on the two inputs of w, say u and v. In the
(k + 1)st round, if the challenger stays on w, then the pebbler wins the game.
On the other hand, if the challenger challenges one of the inputs of w, WLOG u,
then the pebbler puts pebbles on the two inputs of u in the (k+ 1)st round. The
game continues inductively this way until at the beginning of pebbler’s move
either the currently challenged node w is an input of C, or the two immediate
predecessors of w are already pebbled. Thus the pebbler wins in the second
phase.

Note that in this phase, the pebbler only spends at most two pebbles in each
round, and the two pebbles are put on nodes in large layers of C. Moreover,
during k rounds of the second phase, the pebbler pebbles nodes from k different

large layers. Since the number of large layers in C is at most s
y , the second phase

must terminate in at most s
y rounds. Thus, the number of pebbles used in this

phase is at most 2s
y .

The total number of pebbles used throughout the game is at most p =
ydlog se + 2s/y. The minimum of this expression is p = 2

√
2sdlog se, achieved

when y =
√

2s
dlog se . This proves the lemma. ut

Proof of Theorem 1. Follows immediately from Theorem D and Lemma 2.

4 Size versus Depth for Synchronous Circuits

The following simple lemma was given in [24]. The results by McColl and Pa-
terson [13], and Gaskov [7] mentioned in the introduction give stronger results.
But for our purposes, this slightly weaker bound is sufficient, and we include a
simple proof for completeness.

Lemma 3. [24] For every function f : {0, 1}n → {0, 1}, there exists a syn-
chronous circuit of depth at most n+ log n+ 1 computing f .

Proof. The proof is based on considering any DNF of f . The terms can be
computed in parallel with depth at most log n + 1, and the number of terms is
at most 2n. This gives the desired depth. Note that any circuit can be made
synchronous without increasing its depth. ut

Next we prove Theorem 2. Note that in the proof, we use the property of
synchronous circuits that given any level LV (i), f is a function of exactly those
functions computed at the gates in LV (i). This property allows us to do function
composition in terms of two circuits. However, for layered circuits, inputs could
be in the jth layer for j > i. Thus the property no longer holds for layered
circuits that are not synchronous.

Note that the notation LV stands for “levels”, while in the previous section
we used L for “layers”.

Proof of Theorem 2. Let f be the function computed by C. (If C has more
than one output, the proof can be applied by considering each output func-
tion separately, and combine the resulting small depth circuits.) Since C is syn-
chronous, every level in C forms a cut. Furthermore, given any level LV (i), f is a
function of exactly those functions computed at the gates in LV (i). We shall use
this special property of synchronous circuits to compute f by the composition
of two circuits.

Let LV (0), LV (1), . . . , LV (d) be the levels in C, where d is the depth of
C, and LV (0) contains the inputs. Let y be an integer whose value will be
determined later. We say that a level LV (i) is small if |LV (i)| ≤ y and large
otherwise.

If C has many outputs, then it is possible that all the levels are large, but
then the depth of C is at most s

y . Assume that C has at least one small level.
Let LV (k0) be the small level farthest from the output of C.

Now let g1, . . . , gm be the gates in LV (k0), and let γi be the function com-
puted at gi. As noted above, f is a function of γ1, . . . , γm. Let f = f ′(γ1, . . . , γm).
Then by Lemma 3, given γ1, . . . , γm as inputs, f ′ can be computed by a syn-
chronous circuit F of depth O(|LV (k0)|) = O(y).

Let C ′ be the multiple-output subcircuit of C with outputs g1, . . . , gm. That
is, C ′ consists of the levels LV (0), . . . , LV (k0) in C, where LV (k0) contains the
outputs of C ′. (If LV (k0) = LV (0), then C ′ consists of only one level, formed
by the inputs of C.) We use the outputs of C ′ as inputs for the circuit F . The
resulting combined circuit F ′ is a synchronous circuit computing f . Note that
all the levels LV (0), . . . , LV (k0 − 1) are large. Since there are at most s

y large
levels in C, the depth of F ′ is at most O(y + s

y).
Thus, we obtain a synchronous circuit of depth at most O(y + s

y). Letting
y =
√
s, we can simulate C by a synchronous circuit of depth O(

√
s). ut

5 Size versus Depth for Planar Circuits and Circuits with
Small Separators

Informally, a node separator of a graph G is a set of nodes whose removal yields
two disjoint subgraphs of G that are comparable in size. The following gives a
formal definition of a node separator in the fashion of Ullman [23].

Definition 5. A DAG G = (V,E) has an h(t)-separator, and we say G is h(t)-
separable, if G has only one node, or it satisfies the following two properties.

1. There exists an S ⊆ V of size at most h(|V |) whose removal disconnects G
into two subDAGs, G1 = (V1, E1) and G2 = (V2, E2), that satisfy |Vi| ≥ 1

3 |V |
for i = 1, 2.

2. The two subDAGs G1 and G2 have h(t)-separators.

Note that the two subDAGs could be disconnected within themselves.
Although the separator serves as a natural tool to define a divide-and-conquer

strategy, we need something stronger than the separator for the two-person peb-
ble game. This is because the challenged nodes in the game could be arbitrary
nodes in the graph. Thus we need to consider every possible subDAG of G.

Definition 6. A DAG G is everywhere-h(t)-separable, if any subDAG H of G
with one output such that the underlying undirected graph of H is connected, also
has an h(t)-separator. A circuit C is everywhere-h(t)-separable if its underlying
DAG is everywhere-h(t)-separable.

Theorem 4. Let C = (V,E) be an everywhere-h(t)-separable Boolean circuit,
where h(t) = o(t). Then C can be two-person pebbled in time

O

dlog3/2 |V |e∑
i=0

h
(

(2/3)i |V |
) .

Proof. Let p(|V |) be the number of pebbles required by the pebbler to win in
the two-person pebble game on C. In each round, the pebbler will separate C
into two subDAGs to see which subDAG the currently challenged node belongs
to, and then recurse on that subDAG. Notice that in general, both components
may contain several disjoint subcomponents.

We now define the strategy recursively. If C has only one node, then the
pebbler wins immediately after the challenger’s initial move. Now suppose that
the challenger puts a challenge on a node g ∈ C. Then the pebbler places pebbles
on the nodes of some appropriately chosen separator S of C1, where C1 is the
unique maximal subcircuit of C with g as its output. Let i ≥ 1. There are two
cases in the (i+ 1)th round.

1. The challenger re-challenges g. Let Si be the separator of Ci chosen in the ith
round. Let Ci+1 be the unique maximal subcircuit of Ci with g as its output,
such that the inputs of Ci+1 are some inputs of Ci upon which g depends,
or some nodes in the separator Si, and the underlying undirected graph of
Ci+1 is connected. Furthermore, we require that every path from the inputs
of Ci+1 to g does not contain any node in Si. Then the pebbler applies
this strategy recursively, and in the next round, looks for an appropriate
separator of Ci+1.

2. The challenger puts a new challenge on a node w ∈ S. Let Ci+1 be defined
as above, but with w as its output. Then, as above, the pebbler applies this
strategy recursively.

Let Ci1 and Ci2 be the two subDAGs of Ci defined by the separator Si. Note
that Ci1 and Ci2 might be disconnected, but we defined Ci+1 to be a connected
subcircuit of either Ci1 or Ci2. We claim that the pebbler will win after at most
O(log |V |) rounds. To see this, notice that after the first round, the challenger can
only challenge a node that has just been challenged, or a node in the separator.
So the challenged node is restricted to either Ci1 ∪Si or Ci2 ∪Si that have sizes
at most (2

3 + o(1))|Ci| because by assumption C is everywhere-h(t)-separable
and h(t) = o(t). This also implies that the size of Ci+1 is at most (2

3 + o(1))|Ci|,
and the game must terminate in at most O(log |V |) rounds.

For the number of pebbles used, we have the following recursion:

p(1) = 0, p(|Ci|) ≤ h(|Ci|) + p

((
2
3

+ o(1)
)
|Ci|

)
.

Solving the above recursion yields p(|V |) = O

dlog3/2 |V |e∑
i=0

h
(

(2/3)i |V |
) .

ut

For planar graphs, the following theorem is due to Lipton and Tarjan [11].

Theorem E [11] Given a planar graph G with node set V , G has a separator
of size O(

√
|V |).

Since any subgraph of a planar graph is still planar, every planar graph is
everywhere-O(

√
t)-separable.

Proof of Theorem 3. The claim follows by Theorem 4, Theorem D, and the
observation that any tree-like circuit is also planar. ut

For graphs with bounded genus, we have the following theorem due to Gilbert,
Hutchinson, and Tarjan [8].

Theorem F [8] Given a graph G with node set V and genus g, G has a separator
of size O(

√
g|V |).

Since any subgraph of a graph G with genus g cannot have genus more than
g, G is everywhere-O(

√
gt)-separable. By Theorem 4 and Theorem D we obtain:

Theorem 5. Let C be a Boolean circuit of size s such that its underlying graph
of C has genus g. Then there exists a tree-like circuit F of depth O(

√
gs) that

computes the same function.

Let Kk denote the complete graph on k nodes. For graphs having no Kk as
a minor, we have the following theorem due to Alon, Seymour, and Thomas [2].

Theorem G [2] Given a graph G with node set V and having no Kk as a minor,
G has a separator of size O(k

3
2 |V | 12).

If a graph G does not have Kk as its minor, neither can any subgraph of G.
So G is everywhere-O(k3/2t1/2)-separable. As above, this gives:

Theorem 6. Let C be a Boolean circuit of size s such that its underlying graph
of C does not contain Kk as a minor. Then there exists a tree-like circuit F of
depth O(k

3
2 s

1
2) that computes the same function.

Acknowledgements

We thank the anonymous referees for helpful comments.

References

1. Leonard M. Adleman and Michael C. Loui: Space-bounded simulation of multitape
turing machines. Theory of Computing Systems V.14 NO.1, 215–222 (1981)

2. Noga Alon, Paul Seymour, Robin Thomas: A Separator Theorem for Graphs with
an Excluded Minor and its Applications. Proceedings of the ACM Symposium on
Theory of Computing, 293–299 (1990)

3. Edward G. Belaga: Locally Synchronous Complexity in the Light of the Trans-Box
Method. STACS, Lecture Notes in Computer Science V.166, 129–139 (1984)

4. Allan Borodin: On Relating Time and Space to Size and Depth. SIAM Journal on
Computing V.6 NO.4, 733–744 (1977)

5. Stephen A. Cook: An Observation on Time-Storage Trade Off. Journal of Computer
and System Sciences V.9 NO.3, 308–316 (1974)

6. Patrick Dymond and Martin Tompa: Speedups of Deterministic Machines by Syn-
chronous Parallel Machines. J. Comp. and Sys. Sci. V.30 NO.2, 149–161 (1985)

7. Gaskov: The depth of Boolean functions. Probl. Kibernet. V.34, 265–268 (1978)
8. J.R. Gilbert, J.P. Hutchinson, R.E. Tarjan: A Separator Theorem for Graphs of

Bounded Genus. Journal of Algorithms V.5 NO.3, 391–407 (1984)
9. L.H. Harper: An n log n Lower Bound on Synchronous Combinational Complexity.

Proc. AMS V.64 NO.2, 300–306 (1977)
10. J. Hopcroft and W. Paul and L. Valiant: On Time Versus Space. Theory of Com-

putation V.24 NO.2, 332–337 (1977)
11. R. Lipton and R.E. Tarjan: A Separator Theorem for Planar Graphs. SIAM J.

Appl. Math. V.36, 177–189 (1979)
12. R. Lipton and R.E. Tarjan: Applications of a Planar Separator Theorem. SIAM

Journal on Computing V.9 NO.3, 615–627 (1980)
13. W.F. McColl and M.S. Paterson: The depth of all Boolean functions. SIAM J. on

Comp. V.6, 373–380 (1977)
14. W. Paul and R.E. Tarjan and J. Celoni: Space Bounds for a Game on Graphs.

Mathematical Systems Theory V.10, 239–251 (1977)
15. M.S. Paterson and C.Hewitt: Comparative Schematology. MIT AI Memo 464(1978)
16. M.S. Paterson and L.G. Valiant: Circuit Size is Nonlinear in Depth. Theoretical

Computer Science V.2 NO.3, 397-400 (1976)
17. N. Pippenger and M. Fischer: Relations Among Complexity Measures. Journal of

the ACM V.26, 361–381 (1979)
18. N. Pippenger: Pebbling. Mathematical Foundations of Computer Science (1980)
19. Arnold Rosenberg and Lenwood Heath: Graph Separators with Applications (2001)
20. P.M. Spira: On time-hardware complexity tradeoffs for Boolean functions. In Proc.

4th Hawaii Symp. on System Sciences, 525–527 (1971)
21. Larry Stockmeyer and Uzi Vishkin: Simulation of Parallel Random Access Ma-

chines by Circuits. SIAM Journal on Computing V.13 NO.2, 409–422 (1984)
22. G. Turán: On restricted Boolean circuits. Fund. of Comp. Theory, 460–469 (1989)
23. Jeffrey D. Ullman: Computational Aspects of VLSI. (1984)
24. Ingo Wegener: The Complexity of Boolean Functions. (1987)

