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Abstract

Although static typing provides undeniable benefits for the development of
applications, dynamically typed languages have become increasingly popu-
lar for specific scenarios. Since each approach offers different benefits, the
StaDyn programming language has been designed to support both dynamic
and static typing. This paper describes the minimal core of the StaDyn
programming language. Its type system performs type reconstruction over
both dynamic and static implicitly typed references. A new interpretation of
union and intersection types allows statically gathering the type information
of dynamic references, which improves runtime performance and robustness.
The evaluation of the generated code has shown how our approach offers an
important runtime performance benefit.

Key words: programming languages, program specification, compilers,
formal languages, type systems

1. Introduction

Static typing is an unquestionably important tool for software develop-
ment, offering the programmer advantages such as early type error detection,
better documentation and abstraction, and more opportunities for compiler
optimizations. Nevertheless, dynamically typed languages provide great flex-
ibility at runtime, making them ideally suited for prototyping systems with
changing or unknown requirements, or which interact with other systems
that change unpredictably (data and application integration) [13].
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Since both dynamic and static typing offer important benefits, there have
been approaches aimed at obtaining the advantages of both, following the
philosophy of static typing where possible, dynamic typing when needed [13].
One of the first approaches was Soft Typing [6], that applied static typing to
a dynamically typed language such as Scheme. However, soft typing does not
control which parts in a program are statically checked, neither is static type
information used to optimize the generated code. The approach proposed in
[1] adds a Dynamic type to lambda calculus, including two conversion opera-
tions (dynamic and typecase), generating a verbose code deeply dependent
on its dynamism. The works of Quasi-Static Typing [21], Hybrid Typing [9]
and Gradual Typing [20] perform implicit conversions between dynamic and
static code, employing subtyping relations in the case of quasi-static and
hybrid typing, and a consistency relation in gradual typing. The main dif-
ference between these approaches and the work presented in this paper is
that we perform type-checking even when dynamic types are used, detecting
some type errors in dynamic code and, hence, improving its robustness.

Theoretical works on combining static with dynamic typing have been
partially included in the implementation of programming languages such as
Boo, Visual Basic (VB) .Net, Cobra, Dylan, Strongtalk, and the recently
released C# 4.0. Some programming languages have taken the approach of
adding a new dynamic type as proposed in [1] (dynamic in C# and Cobra,
and duck in Boo), whereas others represent dynamic types by removing type
annotations in variable declarations (VB and Dylan) [20]. Strongtalk follows
a completely different approach based on the concept of pluggable type sys-
tems [5]. In these languages, dynamic types are implicitly coerced to static
ones following the approach defined in [21] and [20], opposite to the explicit
use of a conversion instruction like the typecase statement proposed by [1].
Since these implicit coercions may fail at runtime, a dynamic type-check is
inserted in the generated code as described in [9].

The key contributions of this paper are:

• A new programming language (StaDyn [15]), which supports both dy-
namic and static typing. This paper describes a minimal core of Sta-
Dyn, focusing on the main inference rules of its type system and a
runtime performance evaluation of the code generated. Its abstract
syntax, type system and erasure semantics by translating it into to C#
are detailed in [17].

• A type system that defines a novel subtyping relation for dynamic union
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and intersection types (Section 3) in order to obtain static type infor-
mation of dynamic references. The type system is flow-sensitive [10]
and interprets static information along the control flow path, merging
the type information of the incoming branches with union and intersec-
tion types [19]. This information is used to improve both the efficiency
and the robustness of programs written in this language.

• A runtime performance assessment (Section 4) of a type erasure trans-
lation to C# that makes use of the static type information gathered
by the compiler. We compare runtime performance of the StaDyn core
with that of the C# 4.0 and VB 10 programming languages. For this
evaluation, we have used two dynamically typed benchmarks, a hy-
brid statically and dynamically typed program, and a synthetic micro-
benchmark that measures the relationship between execution time and
type information inferred by the compiler.

2. A Hybrid Static and Dynamic Typing Example

The benefits offered by dynamically-typed programming languages have
caused the addition of dynamic typing to some statically typed languages.
A clear example of this trend is the newly added dynamic type to the C#
4.0 programming language [23]. This new type instructs the compiler to
postpone every static type checking operation until runtime. With this new
characteristic, it is possible to develop more flexible code, even in the pres-
ence of the advanced C# static type system. It is also possible to directly
access dynamically typed programs written in IronPython, IronRuby and the
JavaScript code used in Silverlight, exploiting Dynamic Language Runtime
(DLR) services [11].

Figure 1 shows an example use of the dynamic type included in C# 4.0.
The first benefit is duck typing. Duck typing [22] is a property offered by
most dynamically typed languages that means that an object is interchange-
able with any other object that implements the same dynamic interface,
regardless of whether those objects have a related inheritance hierarchy or
not. Therefore, it is possible to create a function that receives any figure
object (Circle, Square, Sphere or Cone) and access to its x field, with-
out creating a common superclass (or interface) for all the figures; the only
requirement is that the object must expose a public x field. In line 33 (Fig-
ure 1) the x field of the elements in the v array are accessed regardless of
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their type (they are declared as dynamic). This means that the parameter
of the sortXCoordinate method must be an array of any object that imple-
ments an x field. These objects do not need to belong to a specific hierarchy
defining the shared x message, and they do not have to be instances of the
same type either (duck typing). An example of this flexibility is shown in
Figure 1, where the shapes array passed to the sortXCoordinate (line 27)
holds instances of four unrelated classes.

01: using System; 30:   static dynamic[] sortXCoordinate( 
02: class Circle {                               dynamic[] v) { 
03:   public int x, y; 31:     for (int i = 0; i < v.Length - 1; i++) 
04:   public int radius, dimensions = 2; 32:       for (int j = v.Length - 1; j > i; j--) 
05: } 33:         if (v[j-1].x > v[j].x) { 
06: class Square { 34:           var temp = v[j-1]; 
07:   public int x, y; 35:           v[j-1] = v[j]; 
08:   public int side, dimensions = 2; 36:           v[j] = temp; 
09: } 37:         } 
10: class Sphere { 38:     return v; 
11:   public int x, y, z;  39:   } 
12:   public int radius, dimensions = 3; 40:   static dynamic nearestToOrigin3D( 
13: }                               dynamic[] v) { 
14: class Cone { 41:     //int center=v[0].center;//No comp.error 
15:   public int x, y, z; 42:     double minDistance = Double.MaxValue; 
16:   public int radius, height,  43:     int indexOfMin = -1; 

             dimensions = 3; 44:     for (int i = 0; i < v.Length; i++) 
17: } 45:       if (v[i].dimensions == 3) { 
18: class Shapes { 46:         double distance =  
19:   static void Main() { 47:                Math.Sqrt(Math.Pow(v[i].x,2)+ 
20:     dynamic[] shapes = new dynamic[] { 48:                Math.Pow(v[i].y, 2) +  
21:       new Circle{ x=2, y=-2, radius=5 }, 49:                Math.Pow(v[i].z, 2)); 
22:       new Square{ x=-1, y=1, side=3 }, 50:         if (distance < minDistance) { 
23:       new Sphere{ x=5, y=-6, z=2, 51:           minDistance = distance; 

                   radius=7 }, 52:           indexOfMin = i; 
24:       new Cone { x=0, y=1, z=1,  53:         } 

                 radius=2, height=5 } 54:       } 
25:     }; 55:     if (indexOfMin != -1) 
26:     //shapes[0] = 3; // No comp. error 56:       return v[indexOfMin]; 
27:     dynamic[]sorted = sortXCoordinate( 57:     return null; 

                                shapes); 58:   } 
28:     var shape=nearestToOrigin3D(shapes); 59: } 
29:   }   

   

Figure 1: Sample C# 4.0 code that makes use of dynamic typing.

Dynamic typing is also used in the nearestToOrigin3D method. In
this case, the parameter should be a type of any object that implements
a dimensions field comparable with an integer. Moreover, those objects
whose dimensions field value is 3 must implement the x, y and z fields, and
they must be subtypes of double (they are passed as parameters to the Pow

method). The returned object is the one that fulfills these conditions, being
that nearest to the origin of coordinates. This example shows how the type
system considers dynamic conditions.
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01: var[] sortXCoordinate(var[] v, 29:       if (distance<minDistance) { 
                      int size) { 30:         minDistance = distance;  

02:   int i, j;  31:         indexOfMin = i;  
03:   var temp;  32:       } 
04:   i = 0;  33:     } 
05:   while (i<size-1) { 34:     i = i+1;  
06:     j = size-1;  35:   } 
07:     while (j>i) { 36:   if (indexOfMin != 0-1)  
08:       if (v[j-1].x > v[j].x) { 37:     result = v[indexOfMin]; 
09:         temp = v[j-1];  38:   else 
10:         v[j-1] = v[j];  39:     result = 0; 
11:         v[j] = temp; 40:   return result; 
12:       } 41: } 
13:       j = j-1;  42: void main() { 
14:     } 43:   var[] shapes, sorted; 
15:     i = i+1;  44:   var shape; 
16:   } 45:   shapes = new var[4]; 
17:   return v; 46:   shapes[0] = new {x=2, y=0-2, 
18:} 47:        radius=5, dimensions=2}; 
19: var nearestToOrigin3D( 48:   shapes[1] = new {x=0-1, y=1, 

        /*dyn*/ var[] v, int size){         side=3, dimensions=2}; 
20:   int i, minDistance, indexOfMin, 49:   shapes[2] = new {x=5, y=0-6, z=2, 

      distance;         radius=7, dimensions=3}; 
21:   var result;  50:   shapes[3] = new { x=0, y=1, z=1, 
22:   //i = v[0].center; // Comp error         radius=2, height=5, 
23:   minDistance = 2147483647;          dimensions=3 }; 
24:   indexOfMin = 0-1;  51:   //shapes[0] = 3; // Comp. Error 
25:   i = 0;  52:   sorted = sortXCoordinate(shapes, 4); 
26:   while (i<size) { 53:   shape = nearestToOrigin3D(shapes, 4); 
27:     if (v[i].dimensions == 3){ 54: } 
28:       distance = v[i].x*v[i].x +   

                 v[i].y*v[i].y +    
                 v[i].z*v[i].z;   
   

Figure 2: Example coded in the minimal core of StaDyn.

3. The StaDyn core Language

StaDyn is an object-oriented programming language based on C# 3.0
that supports both dynamic and static typing. Although the current imple-
mentation of StaDyn offers most of the features of C# [15], its minimal core is
focused on formalizing how to include dynamic and static typing in the same
programming language. For that purpose, only its minimal core features are
specified here: functions, objects (without methods), arrays, assignments,
and integer and boolean expressions. Type variables are also included to
offer implicit type reconstruction by means of extending the usage of the
var reserved word added in C# 3.0 [14]. In the StaDyn core, var references
can be set as static (by default) or dynamic, modifying how type-checking is
performed.

A formal specification of the StaDyn core programming language is pre-
sented in [17]: its abstract syntax; the hybrid static and dynamic type system;
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and, based on the semantics of C#, the erasure semantics of the minimal core
of StaDyn, depicting the translation templates used to generate .Net code
optimized by means of the static type information gathered by the compiler.

Figure 2 shows the StaDyn core translation of the C# program in Fig-
ure 1. In the StaDyn core, the dynamism of var references is explicitly stated
with the dyn reserved word. The major benefit of using the StaDyn core is
that static type checking is performed even over dynamic references. For
instance, the sortXCoordinate function statically checks that each object
in the v array provides a public x field. Unlike C#, the StaDyn core prompts
a compilation error in line 52 (function invocation in Figure 2), if code in
line 51 is commented out. The error indicates that one of the elements in
the array (the integer) does not provide the x message. In contrast, C# 4.0
compiles the code and the error is produced at runtime (line 26 in Figure 1).

3.1. Union Types

The StaDyn core gathers type information at compile time in order to
perform static type checking over dynamic references. One of the elements
we have used for this purpose is union types [19]. A union type T1 ∨ T2

denotes the ordinary union of the set of values belonging to T1 and the set of
values belonging to T2 [4], representing the least upper bound of T1 and T2

[2]. A union type holds all the possible types a reference may have. The set
of operations (e.g., addition, field access, assignment, invocation or indexing)
that can be applied to a union type are those accepted by every type in the
union type: S-SUnionL in Figure 3—subtyping rules are specified with the
general judgment Γ ` T1 ≤ T2 | C; Γ′, meaning that under constraints C,
and environment Γ, the type T1 is a subtype of T2, producing the output
environment Γ′.

Union types were already included in object-oriented languages, in type
systems where they were explicitly declared [12] or inferred from implicitly
typed references [3]. We have taken the subtyping rules defined by other
authors such as [19] and [8] (S-SUnionL and S-SUnionR), adding the
new dynamic typing rule S-DUnionL. If a union type is static, the set
of operations that can be applied to that union type are those accepted by
every type in the union type (S-SUnionL). But if the reference is dynamic,
type-checking is more permissive. In that case, it is possible to perform an
operation when it is accepted by at least one of the types in the union type
(S-DUnionL)—∪Γi and ∪Ci represent the union of all the Γi and Ci that
fulfill the predicate in the premise. If the operation cannot be applied to any
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type, a type error will be generated even if the reference is dynamic. With
this new interpretation of union types, only static union types sta T1 ∨ T2

are the least upper bound of T1 and T2, not the dynamic ones, dyn T1 ∨ T2,
because dyn T1 ∨ T2 6≤ T1 and dyn T1 ∨ T2 6≤ T2.

(S-SUnionL)

∀ i ∈ [1, n],Γ ` Ti ≤ T | Ci; Γi

Γ ` sta T1 ∨ . . . ∨ Tn ≤ T | C1 ∪ . . . ∪ Cn; Γ1 ∪ . . . ∪ Γn

(S-SUnionR)

Γ ` T i∈1..n
i ≤ sta T1 ∨ . . . ∨ Tn | ∅; Γ

(S-DUnionL)

∃ i ∈ [1, n],Γ ` Ti ≤ T | Ci; Γi

Γ ` dyn T1 ∨ . . . ∨ Tn ≤ T | ∪ Ci;∪Γi

Figure 3: Subtyping relation for union types.

In our example, the type inferred for the shapes array in line 52 (Fig-
ure 2) is Array(Circle∨Square∨Sphere∨Cone)1. In the invocation of the
sortXCoordinate function (line 52), it is statically checked that the argu-
ment is a subtype of an array of objects each of which provides an x field.
Since this condition is statically fulfilled, the program is compiled by the Sta-
Dyn core compiler without errors (and the static type information is used to
optimize its execution). However, if we uncomment line 51, an error message
will be shown.

3.2. Intersection Types

The nearestToOrigin3D function imposes more constraints on the v pa-
rameter. Objects in the array must provide the dimensions, x, y and z fields.
We represent these constraints by means of intersection types [19]. T1 ∧ T2

denotes all the values belonging to both T1 and T2 [4], representing the great-
est lower bound of T1 and T2 [2]. A type promotes to a static intersection
type only if it is a subtype of all the types collected by the intersection type
(S-SInterR rule in Figure 4). Just as with union types, we have added
a new subtyping rule for dynamic types to be more lenient, accepting the
promotion when a type promotes to at least one of the types in the dynamic
intersection type (rule S-DInterR). This prevents the dynamic intersection
type dyn T1 ∧ T2 from being the greatest lower bound of T1 and T2.

1Although the StaDyn core does not name the object types, we use the class identifiers
for the sake of legibility.
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(S-SInterL)

Γ ` sta T1 ∧ . . . ∧ Tn ≤ T i∈1..n
i | ∅; Γ

(S-SInterR)

∀ i ∈ [1, n],Γ ` T ≤ Ti | Ci; Γi

Γ ` T ≤ sta T1 ∧ . . . ∧ Tn | C1 ∪ . . . ∪ Cn; Γ1 ∪ . . . ∪ Γn

(S-DInterR)

∃ i ∈ [1, n],Γ ` T ≤ Ti | Ci; Γi

Γ ` T ≤ dyn T1 ∧ . . . ∧ Tn | ∪ Ci;∪Γi

Figure 4: Subtyping relation for intersection types.

(S-OMember)

∀ i ∈ [1,m], ∃ j ∈ [1, n], id′i = idj , Γi−1 ` T ′i ≡ Tj | Ci; Γi

Γ0 ` {id1 : T1 . . . idn : Tn} ≤ [id′1 : T ′1 . . . id
′
m : T ′m] | C1 ∪ . . . ∪ Cm; Γm

Figure 5: Subtyping relation between object and member types.

In the StaDyn core type system, Xi meta-variables range over type vari-
ables. The parser assigns them a unique sequential number when a (dyn)
var type (its concrete syntax) is parsed. Object types are specified describ-
ing a collection of their fields between curly braces, not including methods as
part of them. Therefore, the circle object created in line 46 of Figure 2 has
the object type {x:int, y:int, radius:int, dimensions:int}. Member types
([(id :T )∗]) represent the collection of fields an object may hold. We have
introduced member types in constraints to define structural width coercion
of object types to member types, because objects in StaDyn do not define
width subtyping. Therefore, as shown in the S-OMember subtyping rule in
Figure 5, an object promotes to a member type when the object has all the
fields in the member types, and their types are equivalent among themselves.

In the example code in Figure 2, the constraints of the nearestToOrigin3D
function require its v argument to be a subtype of Array(X1), being X1 ≤
[dimensions:X2] ∧ [x:X3] ∧ [y:X4] ∧ [z:X5] (an object with all these four
fields). Therefore, the invocation in line 53 produces a compilation error
because the type of shapes is Array(Circle ∨ Square ∨ Sphere ∨ Cone).
Since the four types in the union type should promote to the intersection
type (S-SUnionL), and neither Circle nor Square (S-SInterR) promote
to [z:X5] (S-OMember), the program is rejected by the compiler.

StaDyn offers a more lenient type system without renouncing static type
checking. The v parameter of the nearestToOrigin3D function can be de-
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clared as dynamic (uncommenting the dyn type qualification in line 19, Fig-
ure 2). In this case, the promotion to intersection types is more permissive:
the argument should be a subtype of at least one of the types in the intersec-
tion type (rule S-DInterR). Then, the program would generate no error be-
cause the four types offer a public dimensions field—the output environment
(∪Γi) and the constraint set (∪Ci) generated by applying the S-DInterR
rule are only the ones generated by the coercion to [dimensions:X2]. This
relaxation of the subtyping relation when references are declared as dynamic
is also applied to union types (S-DUnionL in Figure 3): the promotion
should be fulfilled by at least one of the types in the union type.

It is worth noting that type checking is still performed at compile time,
even when the programmer uses dynamic references. As an example, if line
22 in Figure 2 is commented out, an error is shown even though v has been
declared as dynamic (the center message is not accepted by any of the four
possible types); whereas C# compiles the code, producing the type error at
runtime (line 41 in Figure 1). This example shows the objective of StaDyn: to
offer both the flexibility of dynamic typing and the robustness and efficiency
of static typing.

4. Runtime Performance

We have evaluated the runtime performance of the StaDyn core presented
in this paper. An assessment of the whole StaDyn implementation can be
consulted in [18].

4.1. Methodology

We have compared the StaDyn core runtime performance with probably
the two most widely used programming languages over the .Net platform,
compiled with their maximum optimization options:

1. C# 4.0. The C# programming language version 4.0 combines static
and dynamic typing [23]. When dynamic code is used, the recently
released Dynamic Language Runtime (DLR) is used to optimize the
execution of dynamic code [7]. The DLR is now part of the .Net
framework 4.0.
The translation of programs from the StaDyn core to C# 4.0 has been
accomplished by coding functions as static methods, translating ev-
ery (dyn) var reference into a dynamic one, and assigning expressions
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(excluding function invocation and assignment) to temporary object
references.

2. Visual Basic 10. The VB 10 programming language also supports
both dynamic and static typing [24]. A dynamic reference is declared
with the Dim reserved word, without setting a type. With this syntax,
the compiler does not infer any type information statically, performing
type checking at runtime. The main difference between VB 10 and C#
4.0 is that the former uses the Common Language Runtime (CLR),
whereas the latter employs the DLR. Translation from the StaDyn core
to VB has been done the same way as to C# 4.0, but using the VB
syntax.

3. StaDyn core. Programs coded in the StaDyn core programming lan-
guage presented in this paper.

We have not included other dynamic programming languages such as
Python or Ruby to avoid the introduction of a bias in the translation of
source code (translation from C# to VB is almost direct). Both C# and VB
compile code to the .Net framework, facilitating the comparison of perfor-
mance results. This way, the measurements obtained show the performance
improvement of gathering type information of dynamic references at compile
time.

We have divided the programs we have used to make the comparison into
three different groups:

1. Micro-benchmark. We have coded a synthetic micro-benchmark to
evaluate the influence of static type information gathered by the com-
piler, taking the following scenarios into account:

• Explicit static type declaration. No var references are used at all,
explicitly stating the type of every variable.

• Implicit dynamic type reference declaration, when the compiler is
able to infer types. Although dyn var references are used, the
StaDyn core compiler infers their possible types statically. Dif-
ferent types are inferred as a single union type. The number of
possible types in the union type produces different runtime perfor-
mance. In this micro-benchmark we have considered this, writing
programs where 1, 5, 10 or 50 different possible types are statically
inferred.
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• Implicit dynamic type reference declaration, when the compiler
does not infer any type.

For each scenario, we perform three different operations: accessing a
field of an object, accessing an element of an array, and performing an
arithmetical operation over two variables. These three operations are
performed in a loop of 5 million iterations.

2. Hybrid static and dynamic typing code. To evaluate hybrid stat-
ically and dynamically typed code, we have extended the StaDyn core
program in Figure 2, filling the shapes array with 1,000 random fig-
ures (Circle, Square, Sphere or Cone). The two sortXCoordinate

and nearestToOrigin3D functions are called passing the shapes array
as an argument.

3. Existing benchmarks for dynamically typed languages to obtain an
estimate of possible benefits over dynamically typed languages. For
this scenario we have taken two well-known benchmarks for the Python
programming language: Pystone (a translation of the Dhrystone bench-
mark) and Pybench (a collection of tests that provides a standardized
way to measure the performance of Python implementations). From
the second one we have selected those tests that could be translated into
the StaDyn core (arithmetic, calls, constructs, instances, lists, lookups,
new instances and numbers). Python code was first translated into
the StaDyn core; afterwards, the StaDyn core code was translated into
both C# 4.0 and VB following the method described above.

Since the StaDyn core type system does not support method overriding,
all the tests in the selected benchmarks make no use of dynamic binding in
order to not bias the runtime performance measurements.

The code has been instrumented with hooks to evaluate runtime perfor-
mance, recording the value of the processor’s time stamp counter. We have
measured the difference between the value between the beginning and the
end of each benchmark to obtain the total execution time of each program.

All the programs have been executed over the .Net framework 4.0 on a
lightly loaded E6750 2.67 GHz Core 2 Duo system with 2 GB of RAM run-
ning Windows 7 Professional, build 6.1.7600. Every test has been compiled
without debugging information and with full optimization. To evaluate aver-
age percentages, ratios and orders of magnitude, we have used the geometric
mean.
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Benchmark Test StaDyn core C# VB

Micro-benchmark

Explicit Typing 15.63 15.63 15.63
One possible type 15.63 2,906.25 28,953.13
Five possible types 406.25 2,937.50 29,640.63
Ten possible types 484.38 2,984.38 29,484.38
Fifty possible type 921.88 3,156.25 29,937.50
No type information 1,671.88 3,175.65 30,328.13

Hybrid Shapes 843.75 2,031.25 8,265.63

D
y
n
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ic

a
ll

y
T

y
p

ed

Pybench

Arithmetic 31.25 2,109.38 671.88
Calls 203.13 2,765.63 2,796.88
Constructs 31.25 3,343.75 3,250.00
Instances 296.88 2,421.88 1,109.38
Lists 812.50 20,765.63 76,109.38
Lookups 93.75 2,453.13 52,062.50
NewInstances 31.25 1,796.88 9,421.88
Numbers 31.25 1,250.00 78.13

Pystone 281.25 2,937.50 9,218.75

Table 1: Execution time expressed in milliseconds.

4.2. Assessment

Table 1 shows the results expressed in milliseconds. The first six rows
show the results of the micro-benchmark; following this, the hybrid static and
dynamic typing Shapes example. Finally, the dynamic typing benchmarks:
Pybench (8 rows) and Pystone (last row).

Beginning with the micro-benchmark, the test with explicit type decla-
ration reveals that the three implementations offer exactly the same runtime
performance (the IL code generated is almost the same). The performance
assessment when the exact single type of every dyn var reference is inferred
shows the repercussion of our approach. Runtime performance of the StaDyn
core is the same as using explicitly typed references (in fact, the code gener-
ated is precisely the same). In this special scenario, the StaDyn core shows
a huge performance improvement. If the compiler infers the exact type of
dyn var references, the StaDyn core is more than 1,252 VB and, in the same
situation, 185 times faster than C# 4.0. This vast difference is caused by the
lack of static type inferencing in both VB and C# 4.0. These two languages
perform every type-checking operation over dynamic references at runtime,
using reflection. The use of reflective operations in the .Net platform has an
important performance cost [16]. The difference between C# and VB shows
the performance benefit of using the DLR in this scenario.
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Figure 6: Execution time of the micro-benchmark.

Figure 6 shows the progression of execution time when the compiler infers
1, 5, 10 or 50 possible types. The last value is when no type information is
gathered by the compiler. Although C# is 8.5 times faster than VB, both
runtime performance trends are nearly constant: the standard deviation of
VB is 1.7% and that of C# is 4.14%. This small variation is caused by the
lack of static type information gathered for dynamic references. Therefore,
the generated code does not seem to depend on the number of possible types.

The runtime performance of StaDyn core programs evolves in a different
way. Execution time shows a linear increase in the number of types inferred
by the compiler (the performance benefit drops when the number of possible
types increases). As an example, the runtime performance benefit drops to
32 and 3.42 times better than VB and C# respectively, when the compiler
infers 50 possible types for dyn var references. This difference between our
approach and others is justified by the amount of type information gathered
by the compiler. StaDyn continues collecting type information, even when
references are set as dynamic, and this information is used to optimize the
generated code. In contrast, both C# 4.0 and VB perform no static type
inference once a reference is declared as dynamic.

When the compiler obtains no static type information, runtime perfor-
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Figure 7: Execution time ratios to C#.

mance is the worst in the three programming languages. However, the Sta-
Dyn core requires 5.52% and 52.65% of the execution time that VB and C#
respectively employ to run the same programs. In this scenario, the DLR
implies a considerable performance improvement (C# vs. VB).

Figure 7 shows the ratios of execution time to C# for the hybrid (Shapes)
and dynamic typing benchmarks (Pybench and Pystone). Running hybrid
code, the performance benefit is 140.74% and 879.63% compared to C# and
VB respectively. This benefit increases as the number of dynamic references
in the code grows: average benefit (geometric mean) running the dynamic
typing code is 3,106.29% (C#) and 3,381.3% (VB). Since the StaDyn core
optimizations are obtained by means of collecting type information of dy-
namic references, the compiler has more opportunities to optimize the code
when dyn var references are used. Therefore, our language offers the flex-
ibility of dynamic typing, and a number of optimizations to come closer to
the runtime performance of static typing.

The lowest performance benefit obtained by the StaDyn core running
dynamic code is with the numbers test of Pybench (150% compared to VB).
Since this test performs almost all the operations over constant numbers
(few variables are used), our optimizations are hardly applied. Differences
between C# and VB may be due to the appropriateness of using the DLR
(C#) as opposed to the Reflection namespace (VB) for dynamically typed
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code.

5. Conclusions

The StaDyn programming language combines static and dynamic typing,
improving the runtime performance of dynamic typing and the flexibility of
static typing. Its type system performs type inference of both static and
dynamic implicit references in order to improve its runtime performance and
statically type-check dynamic types. At the same time, the type information
gathered by the compiler allows interoperation between both kinds of code,
sharing the same type system. The key feature of the type system is a
new interpretation of union and intersection types to consider the differences
between type checking dynamic and static types.

The static type information has been used to optimize the .Net code
generated. Runtime performance has been compared with C# 4.0 and VB 10.
The StaDyn core type inference system has entailed significant performance
benefits. Since the StaDyn optimizations are based on statically obtaining
type information of dynamic references, the highest benefit is achieved when
running dynamically typed benchmarks (on average, more than 30 times
faster). However, our approach has also exhibited a notable improvement
running hybrid code (from 141% to 880%). The worst scenario is when
the type system does not infer any type information of dynamic references,
obtaining at least a performance benefit of 89.9%.

Future work will be focused on formalizing the operational semantics of
the language core aimed at proving its type safety when static references are
used, and demonstrating specific properties of the type system—in particular
those regarding dynamic code.

The C# implementation of the StaDyn minimal core, including its type
system, the translation to C# (described in [17]), and all the examples
presented in this paper, are freely available at http://www.reflection.

uniovi.es/stadyn/download/2010/ipletters.
The current release of the whole StaDyn programming language im-

plementation and its source code can be downloaded from http://www.

reflection.uniovi.es/stadyn.
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