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Abstract

The segment minimization problem consists of finding the smallest set of integer matrices that sum
to a given intensity matrix, such that each summand has only one non-zero value, and the non-zeroes
in each row are consecutive. This has direct applications inintensity-modulated radiation therapy,
an effective form of cancer treatment. We develop three approximation algorithms for matrices with
arbitrarily many rows. Our first two algorithms improve the approximation factor from the previous
best of1 + log2 h to (roughly)3/2 · (1 + log3 h) and11/6 · (1 + log4 h), respectively, whereh is the
largest entry in the intensity matrix. We illustrate the limitations of the specific approach used to obtain
these two algorithms by proving a lower bound of(2b−2)

b
· log

b
h+ 1

b
on the approximation guarantee.

Our third algorithm improves the approximation factor from2 · (logD + 1) to 24/13 · (logD + 1),
whereD is (roughly) the largest difference between consecutive elements of a row of the intensity
matrix. Finally, experimentation with these algorithms shows that they perform well with respect to the
optimum and outperform other approximation algorithms on 77% of the 122 test cases we consider,
which include both real world and synthetic data.

1 Introduction

Intensity-modulated radiation therapy (IMRT) is an effective form of cancer treatment in which the region
to be treated is discretized into a grid and a treatment plan specifies the amount of radiation to be delivered
to the area of body surface corresponding to each grid cell. Adevice called a multileaf collimator (MLC)
is used to administer the treatment plan in a series of steps.In each step, two banks of metal leaves in the
MLC are positioned to cover certain portions of the body surface, while leaving others exposed, and the
latter are then subjected to a specific amount of radiation.

A treatment plan can be represented as anm × n intensity matrixT of non-negative integer values,
whose entries represent the amount of radiation to be delivered to the corresponding grid cells. The leaves
of the MLC can be seen as partially covering rows ofT ; for each rowi of T there are two leaves, one of
which may slide inwards from the left to cover the elements incolumns1..l of that row, while the other
may slide inwards from the right to cover the elements in columnsr..n. After each step of the treatment,
the amount of radiation applied in that step (this can differper step) is subtracted from each entry ofT
that has not been covered. The treatment is completed when all entries ofT have reached0.

Setting leaf positions in each step of the treatment plan requires time. Minimizing the number of steps
reduces treatment time and can result in increased patient throughput, reduced machine wear and tear,
and overall reduced cost of the procedure. Minimizing the number of steps for a given treatment plan is
the objective of this paper.
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Formally, asegmentis a matrixS such that non-zeroes in each row ofS are consecutive, and all
non-zero entries ofS are the same integer, which we call thesegment-value. A segmentationof T is a set
of segment matrices that sum toT , and we call the cardinality of such a set thesizeof that segmentation.
Thesegmentation problemis, given an intensity matrixT , to find a minimum-size segmentation ofT . We
will often consider the special case of a matrixT with one row, which we call thesingle-row segmentation
problemas opposed to thefull-matrix segmentation problem.

The segmentation problem is known to be NP-complete in the strong sense, even for a single row [3, 4,
10], as well as APX-complete [5]. A number of heuristics are known [1, 4, 13, 15, 19, 21]. Approaches for
obtaining optimal (exact) solutions also exist [2, 8, 16, 20]; of course, these approaches do not necessarily
terminate in polynomial time in the size of the input. Bansalet al. [5] provide a24/13-approximation
algorithm for the single-row problem and give some better approximations for more constrained versions.
Collinset al. [12] show that the singlecolumnversion of the problem is NP-complete and provides some
non-trivial lower bounds given certain constraints. Work by Luan et al. [18] gives two approximation
algorithms for the fullm × n problem where the approximation factor depends on other parameters of
the problem, e.g. the largest entryh in the target matrix. They do not consider the performance oftheir
algorithms in practice. More recent work by [16] has shown that them× n case can be solved optimally
with time complexityO(m · n2h+2); this approach is shown to computationally intensive even for small
h in practice.

Our Contributions

Luan et al. [18] used two properties to obtain approximationalgorithms. First, the segmentation problem
is straightforward whenh = 1 (0/1-matrices). Second, segmentations for the single-rowproblem with
small segment-values can be used to obtain good segmentations for the full-matrix problem. By exploiting
these two properties, Luanet al. obtained two algorithms with respective approximation factors of1 +
log2 h and2(1+log2 D) whereh is the largest value inT , andD is roughly the largest difference between
consecutive elements in a row ofT .1

In this paper, we extend the ideas of Luanet al. In particular, we prove that the segmentation problem
can be approximated whenh = 2 andh = 3; this is far less straightforward than the caseh = 1. This
yields two fast algorithms for the full-matrix segmentation problem with approximation factors (roughly)
3
2 · (1 + log3 h) and 11

6 · (1 + log4 h), respectively, both of which are less than1 + log h. While we show
that the general two-stage approach of Luanet al. [18] can be extended to provide superior approximation
algorithms, we also prove a limitation of this approach.

We also provide a new approximation algorithm with approximation factor (roughly)α logD, where
α is the best approximation factor for the single-row problem. The current best knownα is α = 24/13
[5]; any improved approximation result for the single-row problem would directly lead to an improved
approximation result for the full problem. This second approximation algorithm expands on the second
approximation algorithm by Luan et al.; they used one specific 2-approximation algorithm for the single-
row problem, whereas we show that in fact anyα-approximation algorithm can be used.

Finally, we give an empirical evaluation of known approximation algorithms for the fullm × n seg-
mentation problem, using both synthetic and real-world clinical data. Our experiments demonstrate that
the constant factor improvements made by our algorithms yield significant performance gains in prac-
tice. Therefore, in both theO(log h) andO(logD) scenarios, our new algorithms improve on previous
approximation algorithms theoretically and experimentally.

2 Improved Approximation Algorithms

A vital insight for our approximation algorithm is the concept of amarker([18]; this was calledtick in
[5].) A markerin row i of the target matrixT is an index where the entry ofT changes while going along
the row. Formally, it is an indexj for whichT [i, j − 1] 6= T [i, j], or j = 1 andT [i, 1] 6= 0, or j = n+ 1
andT [i, n] 6= 0.

Let ρi denote the number of markers in rowi of T , and defineρ = max
All rows i in T

{ρi}, i.e. the number of

markers in the row ofT which has the most markers over all rows. We begin by restating the following
observation noted by Luanet al. that we will later find useful.

1Throughout, we uselogb x to mean⌈ logb x⌉.
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Observation 1. (Luan et al. [18]) LetOPT be the size of a minimal segmentation of an intensity matrix
T . Thenρ ≤ 2 ·OPT .

The first approximation algorithm given by Luan et al. [18] works as follows. Split the given intensity
matrixT into matricesP0, . . . , Pk such thatT =

∑k
ℓ=0 2

ℓ · Pℓ (by taking the bits of the base-2 represen-
tation of entries ofT ) wherek = log2 h and eachPℓ is a0/1-matrix. A segmentation forT can then be
obtained by taking segmentations of eachPℓ, multiplying their values by2ℓ, and taking their union. Since
eachPℓ is a 0/1-matrix, an optimal segmentation of it can be found easily, and an approximation bound
of 1 + log h can be shown.

We use a similar approach, but change the baseb, writing T =
∑k

ℓ=0 b
ℓ · Pℓ for some integerb ≥ 3.

This raises nontrivial question: How can we solve the segmentation problem in a matrix that has values in
{0, 1, . . . , b− 1}? And is the resulting segmentation a good approximation of the optimal segmentation?

Assume that we haveα-approximate segmentationsfor eachPℓ, i.e., for eachℓ we have a segmentation
Sℓ of Pℓ that is within a factorα of the optimum forPℓ, for someα ≥ 1. Wecombinethese segmentations
as follows: For each segmentS of Sℓ, addbℓ · S to S. One easily verifies thatS is a segmentation of
T . But it is not obvious that this is a good approximation of theoptimum segmentation ofT . One might
think that it is anα(logb(h) + 1)-approximation of the optimal segmentation ofT , but this isnot true in
general; see also Section 2.3.

It is also not clear how to find a segmentation ofPℓ that is good. As mentioned earlier, the optimal
segmentation can be found in polynomial time ifb is a constant [16], but the running time is not practical,
and it is not clear whether it yields a good approximation. Our main contribution is that an approximation
guarantee can be established forb = 3, 4. Moreover, it suffices to use a segmentation ofPℓ that is not
necessarily optimal, but can be found in linear time.

More specifically, we show how to find a segmention of one row ofPℓ that can be bound in size
depending on the number of markersρ. Moreover, the segmentations of each row can be combined easily
into one segmentation ofPℓ, and the segmentations of all thePℓ’s can be combined into a segmentation
of T , while carrying the bound in terms ofρ along. By Observation 1, this will allow us to bound the size
of resulting segmentation relative to the optimum.

We briefly give here the simple algorithm GREEDYROWPACKING that we use to combine segmenta-
tions of rows of a target-matrixPℓ (with values in1, . . . , b − 1) into a segmentation of the whole matrix
Pℓ. Check for each valuev ∈ {1, . . . , b − 1} whether any segment in any row has this value. If there is
one, then remove a segment of valuev from each row that has one. Combine all these segments into one
segment-matrix (also with valuev), and add it toS. Continue until all segments in all rows have been
used in a segment-matrix. Clearly if each row has at leastni i-segments(i.e., segments with valuei),
then GREEDYROWPACKING gives a segmentation ofPℓ with at mostni i-segments (andn1+ · · ·+nb−1

segments in total.)

2.1 Basis b = 3

We now explain in detail the approach when the target-matrixhas been split by baseb = 3. Thus, we are
now interested in obtaining a segmentation of an intensity matrix Pℓ that has all entries in{0, 1, 2}; we
call this a0/1/2-matrix. Recall thatρi is the number of markers in theith row of the target matrixT . We
useρiℓ to denote he number of markers in theith row ofPℓ.

Lemma 1. There exists a segmentation of rowi of a0/1/2-matrixPℓ such that the number of 1-segments
is at most12 · ρiℓ, and the number of 2-segments is at most1

4 · ρiℓ +
1
2 .

Proof. We prove this by induction onρiℓ. The base case will be that none of the cases for the induction
can be applied, and hence will be treated last. For the induction, we prove this by repeatedly identifying a
subsequence of the row for which we can add a few segments and remove many markers, where “remove”
means that if we subtracted the segments from the target row,we would have fewer markers. To identify
subsequences of the row, we use regular expression notation. The bound then follows by induction.

We will give this in detail only for the first of the cases in theinduction step, and only briefly sketch
the others:

1. Assume that the row contains a subsequence of the form12+1. Let s be a 1-segment that covers
exactly the subsequence of2s, and considerP ′ = P − s. ThenP ′ has two fewer markers in

3



theith row (at the endpoints ofs), and so by induction theith row can be segmented using at most
1
2 ·(ρ

i
ℓ−2) 1-segments, and14 ·(ρ

i
ℓ−1)+ 1

2 2-segments. Adding the 1-segments to this segmentation
yields the desired result.

2. If there exists a subsequence of the form01+0, then similarly apply a 1-segment at the subsequence
of 1s. This removes 2 markers, and adds one 1-segment, and no 2-segment to the inductively
obtained segmentation.

3. If there exists a subsequence of the form02+1+2+0, then similarly apply a 2-segment at the first
subsequence of2s, then two 1-segments to remove the remaining1+2+. This removes 4 markers,
and adds two 1-segments, and one 2-segment to the inductively obtained segmentation.

4. If there exist two subsequences of the form02+1+0 or01+2+0, then similarly apply one 1-segment
to one subsequence of2s, and one 2-segment to the other subsequence of2s, then apply two 1-
segments to the two remaining sequences of1s. This removes 6 markers, and adds three 1-segments
and one 2-segment to the inductively obtained segmentation.

5. If there exist two subsequences of the form02+0, then similarly apply one 2-segment to one of
them, and two 1-segments to the other. This removes 4 markers, and adds two 1-segments and one
2-segment to the inductively obtained segmentation.

6. If there exists one subsequence of the form02+1+0 or 01+2+0, and one subsequence of the form
02+0, then similarly apply one 2-segment to the subsequence02+0, and two one 1-segments to the
other subsequence. This removes 5 markers, and adds two 1-segments and one 2-segment to the
inductively obtained segmentation

Now assume that none of the above cases can be applied (i.e., the base case.) We argue that in fact
at most three markers are left. Let0(1 + 2)+0 be a subsequence that has markers in it. Assume first the
leftmost non-zero is a 1. Then the subsequence must contain a2 somewhere (otherwise we’re in case (2)),
so it has the form01+2+(1+2)+0. But after the 2s, no 1 can follow (otherwise we’re in case (1)), so this
subsequence has the form01+2+0. Likewise, if the last non-zero is 1, then the subsequence has the form
02+1+0. If the first and last non-zero are 2, then the subsequence hasthe form02+0 (otherwise we’re in
case (1) or (3)).

If we had two subsequences0(1+2)+0, then each would have the form01+2+0 or 02+1+0 or 02+0,
and we would be in case (4), (5) or (6). So there is only one of them, and it has at most three markers. We
can now eliminate either three remaining markers with a 1-segment and a 2-segment, or two remaining
markers with a 2-segment; either way the bound holds.

02+1+2+012+1 01+0

02+0 01+2+002+1+0 02+0 02+001+2+0

Figure 1: A segmentation where the number of segments is bounded by markers. This illustrates cases
(1) through (6) of the proof of Lemma 1.

Using the segmentations of each row obtained with Lemma 1, and combining them with algorithm
GREEDYROWPACKING, gives a segmentationSℓ of each 0/1/2-matrixPℓ. We now show that combining
these segments gives a provably good approximation of the optimal segmentation ofT .

Lemma 2. AssumeT =
∑k

ℓ=0 3
ℓPℓ, wherek = log3 h and eachPℓ is a 0/1/2-matrix. Combining the

above segmentationsS0, . . . ,S
∗

k for matricesP0, . . . , Pk gives a segmentationS for T of size at most
3
2 · k · OPT + 1

2 · k, whereOPT is the size of a minimal segmentation ofT .
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Proof. Recall that the segmention of rowi of Pℓ has at most12 · ρiℓ 1-segments and at most1
4 · ρiℓ +

1
2

2-segments (Lemma 1). Letρℓ = maxi ρ
i
ℓ be the maximum number of markers within any row ofPℓ.

By algorithm GREEDYPACKING segmentationSℓ of Pℓ then has at most12 · ρℓ 1-segments and at most
1
4 · ρℓ +

1
2 2-segments. So

|Sℓ| ≤
3

4
· ρℓ +

1

2
.

Matrix Pℓ can have a marker only if matrixT has a marker in the same location, soρℓ ≤ ρ [18]. By
Observation 1,ρ ≤ 2 · OPT . Putting it all together, we have

|S| =

k
∑

ℓ=0

|Sℓ| ≤

k
∑

ℓ=0

(

3

4
· ρℓ +

1

2

)

≤

k
∑

ℓ=0

(

3

4
· 2 · OPT +

1

2

)

=

(

3

2
· OPT +

1

2

)

· (1 + log3 h)

which proves the result.

The above result showed the approximation bound for the segmentation obtained by packing the
segmentations of the rows of Lemma 1 into matrices. For each matrix Pℓ, this requiresO(m · n) time;
therefore, the entire algorithm runs in timeO(m · n · log h).

We note here that in the above proof, one could also have used an optimal segmentationS∗

ℓ of Pℓ

instead of the segmentationSℓ; since|S∗

ℓ | ≤ |Sℓ|, the same approximation bound holds for the resulting
segmentation ofT . However, it is doubtful whether the increased run-time ofO(mn6) to find the optimal
segmentation [16] is worth the improvement in quality.

We can now restate our result as a theorem:

Theorem 1. There exists an algorithm running inO(m · n · log h) time that for any intensity matrixT
with maximum valueh finds a segmentationS ofT size at most32 · (log3 h+1) ·OPT + 1

2 · (log3 h+1),
whereOPT is the size of a minimal segmentation ofT .

2.2 Basis b = 4

With an extensive case analysis, we can provide an analogue to Lemma 1 forb = 4 as well; we provide
this analysis here for completeness. From now on, letPℓ be a0/1/2/3-matrix (a matrix with entries in
{0, 1, 2, 3}) and as before letρiℓ be the number of markers in rowi of Pℓ. We have the following result:

Lemma 3. There exists a segmentation of rowi of the0/1/2/3-matrixPℓ consisting of at most12ρ
i
ℓ+O(1)

1-segments,14ρ
i
ℓ 2-segments, and16ρ

i
ℓ 3-segments.

Proof. The proof is similar to Lemma 1 in structure, and proceeds by induction onρiℓ. The base case is
that none of the inductive cases can be applied; we will return to this later.

In the induction step, just as in Lemma 1 we search for subsequences (described by regular expres-
sions), and show how we can “remove”mi markers from a given subsequence by using at most1

2m
i

1-segments,14m
i 2-segments, and16m

i 3-segments. As will be apparent, it suffices to only consider
sequences that contain anisland, where an island is a sequences that begins and ends with the same
number and has only larger numbers inbetween, i.e., there isa unique symbolσ ∈ {0, 1, 2} for which
s = σ+((σ + 1)| · · · |3)+σ+.

We generate the set of possible sequences that begin with0 and contain at at most one island by
considering the tree whose recursive construction is defined as follows:

1. Each node is a sequence over0(0|1|2|3)+.

2. Set the root to string 0.

3. If a node contains an island, then that node is a leaf, otherwise it is an internal node with three
children.

4. If a nodes is an interior node with last symbolσ, then its children ares0, s1, s2 ands3. Since
σ ∈ {0, 1, 2, 3}, we omit the child whose last two symbols areσσ, resulting in only three children.
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Figure 2: Generating all substrings that begin with 0. Substrings that contain an island are marked with
an asterisk and not evaluated further. Multiple consecutive symbols are omitted; only the first instance of
the symbol is included.

The complete tree is illustrated in Figure 2 and each leaf contains an island. In particular, this shows that
any subsequence must contain an island, so it suffices to showhow to segment islands.

Table 1 gives a segmentation of each leaf node string (or multiple copies of that leaf node string) that
respects the bound. If the island contained in the leaf node begins withσ > 0, then the segmentation is
the same as for the island where all values have been decreased byσ; in such cases, Table 1 refers to the
matching island.

We illustrate how to read this table for case 030 only; all other cases are similar. Assume there are 6
occurrences of the pattern03+0, which hence have 12 markers. Define 6 1-segments, 3 2-segments and
2 3-segments that together cover these 6 substrings. Apply induction to the rest of the row, and add these
11 segments to the resulting segmentation; this then gives asegmentation of theith row ofPℓ with the
desired bounds.

Applying similar arguments to all other cases yields the inductive step. Since we have covered all
possible patterns containing one island, the only case remaining for the base case is that some patterns
occurs, but not as often as demanded in Table 1. Since there isa finite number of patterns, each of which
has a finite number of markers, there are hence onlyO(1) markers left and clearly this can be covered
with O(1) 1-segments.

We now have the following theorem:

Theorem 2. There exists an algorithm running inO(m·n· log h) time that for any intensity matrixT with
maximum valueh finds a segmentationS ofT of size at most116 ·(log4 h+1) ·OPT +O(1) ·(log4 h+1),
whereOPT is the size of a minimal segmentation ofT .

Proof. Split T into 0/1/2/3-matricesPℓ, for ℓ = 0, ..., log4 h, such thatT =
∑log

4
h

ℓ=0 4ℓPℓ. By Lemma 3,
every row ofPℓ can be segmented using at mostρ/2 + O(1) 1-segments,ρ/4 2-segments, andρ/6 3-

6



leaf node bounded segmentation
leaf island copies ρ 1-seg 2-seg 3-seg

010 010 1 2 1 0 0
020 020 2 4 2 1 0
030 030 6 12 6 3 2

0120 0120 2 6 3 1 0
0121 121 see 010
0130 0130 2 6 2 1 1
0131 131 see 020
0210 0210 see 0120
0230 0230 2 6 3 1 1
0232 232 see 010
0310 0310 see 0130
0320 0320 see 0230

01230 01230 1 4 2 1 0
01231 1231 see 0120
01232 232 see 010
01320 01320 1 4 2 1 0
01321 1321 see 0210
02120 02120 1 4 2 1 0
02121 121 see 010
02130 02130 2 8 3 2 1
02131 131 see 020
02310 02310 see 01320
03120 03120 see 02130
03121 121 see 010
03130 03130 2 8 4 2 1
03131 131 see 020
03210 03210 see 01230
03230 03230 1 4 2 1 0
03232 232 see 010

013230 013230 2 10 3 2 1
013231 13231 see 02120
013232 232 see 010
021230 021230 2 10 5 2 1
021231 1231 see 0120
021232 232 see 010
021320 021320 1 5 2 1 0

leaf node bounded segmentation
leaf island copies ρ 1-seg 2-seg 3-seg

021321 1321 see 0210
023120 023120 see 021320
023121 121 see 010
023130 023130 2 10 4 2 1
032131 131 see 020
032132 2132 see 0120
032310 032310 see 013230

0213230 0213230 1 6 3 1 1
0213231 13231 see 02120
0213232 232 see 010
0231230 0231230 1 6 2 1 1
0231231 1231 see 0120
0231232 232 see 010
0231320 0231320 1 6 3 1 1
0231321 1321 see 0210
0313230 0313230 1 6 2 1 1
0313231 13231 see 02120
0313232 232 see 010
0321230 0321230 1 6 3 1 1
0321231 1231 see 0120
0321232 232 see 010
0323120 0323120 see 0213230
0323121 121 see 010
0323130 0323130 see 0313230
0323131 131 see 020

02313230 02313230 2 14 6 3 2
02313231 13231 see 02120
02313232 232 see 010
03231230 03231230 2 14 7 3 2
03231231 1231 see 0120
03231232 232 see 010
03231320 03231320 see 02313230
03231321 1321 see 0210

032313230 03231323 1 8 2 2 1
032313231 13231 see 02120
032313232 232 see 010

Table 1: Segmentations for each leaf in Figure 2. Horizontalrules separate leaves from different levels in
the tree.

segments. Therefore, the total number of segments requiredfor eachPℓ using GREEDYROWPACKING
is at mostρ/2 + ρ/4 + ρ/6 + O(1). The total number of segments required forT is then at most
(ρ/2 + ρ/4 + ρ/6 + O(1)) · (log4 h + 1). By Observation 1,OPT ≥ ρ/2. Therefore, the size of the
segmentation is at most(116 OPT +O(1)) · (log4 h+ 1) which proves the result.

Note that116 log4(h) <
3
2 log3(h) < log2(h), so for sufficiently largeOPT andh, the new algorithm

provides the best approximation guarantee and is better by afactor of 1211 . From a theoretical perspective,
Theorem 2 is valuable because it guarantees that solvingPℓ matrices (either with the algorithm implicit
in Lemma 3 or optimally using the results of [16]) yields an approximation guarantee. From an empirical
perspective, preliminary experimental results indicatedthat using baseb = 4 is no better than using base
b = 3 in practice, and we did not pursue this approach further in our experiments (see Section 4).

2.3 Even higher bases?

In theory, our approach could be taken further, using basesb = 5, 6, . . . . There are two obstacles to doing
so. First, how to find a good segmentation of a matrix with entries in 0, . . . , b − 1? One can find the
optimal segmentation in timeO(mn2b−4) [16], but this quickly becomes computationally infeasible. Are
there faster algorithms?

Secondly, would using an optimal segmentation give a good approximation? This is not immediately
clear, and in fact, the following example shows that the approximation factor is not much better than
2 logb(h).

7



Theorem 3. Consider any approximation algorithm that obtains a segmentation ofT by decomposing
T into 1 + logb h matricesPℓ and then combining segmentations of eachPℓ. Any such algorithm can
yield an approximation factor no better than(2b−2)

b · logb h+ 1
b in the worst case, even for a single-row

problem.

Proof. Define forℓ = 0, . . . , k − 1 matrixPℓ to be

(1 2 3 4 · · · (b− 1) 0 (b − 1) · · · 3 2 1),

and set matrixPk to be
(0 0 0 0 · · · 0 1 0 · · · 0 0 0).

Finally, setT =
∑k

ℓ=0 b
ℓPℓ.

ClearlyPℓ, for ℓ < k requires at least2(b − 1) segments in any segmentation, andPk requires one
segment, so any segmentation ofT obtained with this approach has2(b − 1)k + 1 segments. On the
other hand, matrixT can be segmented with justb segments: Fori = 1, . . . , b − 1, theith segment has
value(011 · · ·1)b in baseb and extends from columni to column2b− i, and thebth segment contains a
single1 in the columnb and is otherwise 0. Hence, a solution obtained with this approach will have an
approximation factor of at least(2b−2)

b · logb h+ 1
b .

If higher bases are to be used, then one way to prove an approximation factor would be to generalize
Lemmas 1 and 3. Here, we offer the following:

Conjecture 1. For any matrixPℓ with entries in0, 1, . . . , b − 1, there exists a segmentation of rowi of
Pℓ that uses at most12vρ

i
ℓ +O(1) segments of valuev, for v = 1, . . . , b− 1.

Notice that Lemmas 1 and 3 prove this conjecture forb = 3, 4. If the conjecture were true, this
could be used to obtain a segmentation ofT of size(Hb−1OPT + O(1))(logb(h) + 1), whereHb−1 =
1 + 1

2 + · · ·+ 1
b−1 is theharmonic number. SinceHb−1 ≈ ln(b − 1), this means that the approximation

factor is≈ ln(h) after ignoring some lower-order terms.
While we are not able to prove the conjecture, we can at least show that nothing better is possible.

Lemma 4. There exists a matrixP with entries in0, 1, . . . , b − 1 such that any segmentation ofP uses
at leastHb−1 · ρ/2 segments.

Proof. LetP be the matrix












1 0 1 0 . . . 1 0 1
2 0 2 0 . . . 2 0 2
3 0 3 0 . . . 3 0 3
...

...
...

... . . .
...

...
...

b− 1 0 b− 1 0 . . . b− 1 0 b− 1













,

where the number of non-zeros in each row, which is the same asρ/2, can be chosen arbitrarily. Assume
P has been segmented usingnv segments of valuev.

Consider theith row ofP , and count not only the markers, but also the amount by which the values
at each marker change. Thus, letµi be the sum of the changes between consecutive values in rowi;
thenµi = i · ρ. (Similarly as for markers, changes at the leftmost and rightmost end of the matrix are
included.) Each segment of valuev in row i can only account for up to2v change between consecutive
values (namely, at its two ends). Also notice that necessarily v ≤ i since all values in rowi are at mosti.
So we must have

i
∑

v=1

2v · nv ≥ µi = i · ρ.

How small cann1+ · · ·+nb−1 be, subject to this constraint (as well as the obviousni ≥ 0 for all i)? This
is a linear program, and using duality theory (see e.g. [11]), one can easily see that the optimal primal
solution isn∗

v = 1
v · ρ/2. (The optimal dual solution assigns1

i(i+1) to row i < b − 1 and 1
b−1 to the

last row.) The optimal primal (and dual) solution has valueHb−1 · ρ/2. While n∗

v need not be integral
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in general, this nevertheless shows that any segmentation cannot be smaller than the value of the optimal
primal solution. So any segmentation ofPℓ, ℓ < k requires at leastHb−1 · ρ/2 segments.

Note that the above matrix can in fact be segmentated using1
v · ρ/2 segments of valuev if ρ/2 is a

multiple of2 · (b − 1)!. What remains to do to show Conjecture 1 is to show that this matrix is the worst
case that could happen.

We suspect that this (or a similar) matrix could also be used to devise a target-matrix where no ap-
proximation better than≈ ln(h) is possible with the split-by-base-b-approach, but have not been able to
find one.

3 Approximation by modifying row-segmentations

Our previous approximation algorithm can be summarized as follows: split the intensity matrix by digits,
split each resulting matrix into rows, segment each row and then put the segments together. The second
approximation algorithm by Luan et al. [18] uses another approach that is in some sense reverse: split
the intensity matrix into rows, segment each row, split eachresulting segment into multiple segments
by digits, and then put the segments together. The quality ofthis second approximation depends on
two factors: the approximation guarantee and the largest value used by a segment in any of the row-
segmentations. Without formally stating it in these terms,Luan et al. proved the following result:

Lemma 5. (Luan et al. [18]) Assume that for any single-row problem we can find anα-approximate solu-
tion where all segments have value at mostM . Then we can compute in polynomial time anα(logM+1)-
approximate segmentation ofT .

Luan et al. used this property by showing that any single-rowproblem has a 2-approximate solution
where any segment has value at mostD, where therow-differenceD is the maximum difference between
consecutive elements in a row, or the maximum of the first and last entries in the row, whichever is larger.
We can slightly improve on this with two observations. First, anysegmentation can be converted into a
segmentation with values at mostD, without adding any new segments. Secondly, valuesα < 2 can be
found in existing results.

Lemma 6. Let S be any segmentation of a single-row intensity matrixT with row-differenceD. Then
there exists a segmentationS ′ with |S ′| ≤ |S| for which all segments have value at mostD.

Proof. Modify S such that no two segments meet, i.e., if some segment ends at indexi, then no segment
starts ati+1. This can always be done ithout increasing th number of segments, see e.g. [4]. Any segment
S must then have valuev ≤ D, for if S ends ati, thenT [i + 1] = T [i] − v since no segment starts at
i+ 1.

Theorem 4 follows immediately from Lemma 5 and Lemma 6, usingM = D:

Theorem 4. There exists a polynomial-time algorithm that, for any intensity matrixT with maximum
row-differenceD, finds a segmentationS of T size at mostα · (logD + 1)OPT . Hereα ≤ 24

13 ≈ 1.846
in the general case by [5].

If the running time for obtaining anα-approximation for the single row problem istα, then this
algorithm runs inO(tα ·m · log h); theα ≤ 24

13 algorithm can be implemented inO(h · n2) time. For the
general case, this approximation result improves upon the2 ·(logD+1) approximation result for the full-
matrix problem in [18]. In particular, forα = 24

13 , if D ≤ (h13/8)1/16, then to the best of our knowledge,
this is the tightest approximation to the segmentation problem with no restriction on the intensity matrix
values.

4 Experimental Results

To examine the impact of our algorithms in practice, we implemented our new approximation algorithms
as well as those of [18]. In particular, our experiments use the following algorithms:

1. ALGb=2: The(log2 h+ 1) approximation algorithm of [18].

9



2. ALGb=3: The 3
2 · (log3 h+ 1) approximation algorithm of Section 2.

3. ALGα=2: The2(logD + 1) approximation algorithm of [18].

4. ALGα=24/13: The 24
13 · (logD + 1) approximation algorithm of Section 3, which utilizes our im-

plementations of algorithms from [5, 6].

5. OPT: The optimal solution obtained via a recent state-of-the-art exact algorithm of [8] which im-
proves the running time over the related work in [2].

All approximation algorithms were implemented in Java while an implementation of OPT was provided
as a binary executable by the author of [8].

Scope of Our Experiments: We restrict our investigation to algorithms with approximation guarantees.
Aside from their practical performance, approximation algorithms play an important role by providing
an efficient method for checking the quality of solutions provided by heuristics. While heuristics may
perform well in practice, their lack of a performance guarantee means that low-quality solutions cannot
be ruled out. On the other hand, as demonstrated by previous works [2, 8] and by our experimental work
here, computing the optimum is computationally intensive and can require a significant amount of time;
moreover, such exact approaches are only possible with intensity matrices of limited size andh values.
Therefore, at the very least, approximation algorithms allow one to quickly verify that a heuristic is not
producing a poor result; moreover, the approximate solution may indeed provide a satisfactory solution.
While a comprehensive comparison involving the large body of literature on heuristic approaches would
be of interest, such an undertaking is outside the scope of this current work.

4.1 Data Sets

We use the following test data:

• Data Set I:a real-world data set comprised of70 clinical intensity matrices obtained from the
Department of Radiation Oncology at the University of California at the San Francisco School of
Medicine. The levels are specified in terms of percentages inincrements of20% of some maximum
value. We extract the common factor of20 to obtain values in{1, 2, 3, 4, 5}.

• Data Set II:a real-world data set containing a prostate case, a brain case and a head-neck case
obtained from the Department of Radiation Oncology at the University of Maryland School of
Medicine. This data set consists of22 clinical intensity matrices with fractional values specified
absolutely; the floor of these values are used for our experiments.

• Data Set III: a synthetic data set of30 intensity matrices. Each matrix is obtained as follows:
compute the sum of the probability density functions of seven bivariate Gaussians generated from
two independent standard univariate Gaussian distributions where the amplitudeA and the centers
of the distributions are sampled uniformly at random. The distributions are discretized by adding
as the value in them × n-grid the integer part of the corresponding function value.The choice of
seven Gaussians and the range of the amplitude (we chose 1-25) was made to ensure some peaks
and valleys in the intensity matrix, while keeping the matrices reasonably small for the purposes of
computing an optimal solution.

The utility of Data Set III is that it allows for testing on intensity matrices whereD values are relatively
small compared toh. Such data allows us to address our third line of investigation by examining the effect
of smallD values on the performance of our approximation algorithms.Moreover, testing on matrices
with smallD values is pertinent assuming improvements in treatment technology. Higher precision MLCs
can allow for more fine-grained intensity matrices and current technologies exist for supporting MLCs
with up to 60 leaf pairs. Finally, we note that theh values used in each of our data sets are fairly small -
this is necessary in order for the exact algorithm of [8] to complete within a reasonable amount of time
as we discuss in more detail later.
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4.2 Results of Experiments

Tables 2-5 below contain the results for each instance of ourexperimental evaluation. All experiments
were conducted on a machine with a1 GHz Pentium CPU and1 GB of RAM. In Tables 4 & 5, the running
times for computing the optimum are also included since these were significant.

Instance m n h D OPT ALGb=2 ALGb=3 ALGα=2 ALGα=24/13

1 20 19 5 5 7 10 8 12 12
2 19 18 5 5 8 11 9 11 11
3 19 14 5 5 9 11 10 15 15
4 19 14 5 5 8 10 10 13 15
5 19 16 5 5 8 12 9 14 13
6 20 16 5 5 8 11 9 12 12
7 20 16 5 5 9 12 9 14 15
8 20 16 5 5 8 12 10 13 13
9 20 11 5 5 7 8 8 12 12
10 27 21 5 5 10 13 14 13 14
11 27 20 5 5 10 12 13 11 11
12 26 18 5 5 8 9 10 12 12
13 26 15 5 5 7 9 9 10 10
14 26 18 5 5 8 11 12 12 14
15 26 17 5 5 8 11 11 10 10
16 26 13 5 5 7 10 9 10 10
17 26 18 5 5 8 11 11 11 11
18 27 20 5 5 8 11 10 10 10
19 21 19 5 5 11 15 12 13 13
20 21 17 5 5 7 9 10 12 12
21 21 15 5 5 8 11 8 11 11
22 20 18 5 5 9 12 9 14 14
23 21 18 5 5 9 11 10 12 12
24 21 15 5 5 6 8 7 9 9
25 21 17 5 5 9 12 9 15 14
26 21 19 5 5 9 13 10 14 12
27 21 21 5 5 11 14 14 13 13
28 21 19 5 5 10 14 13 13 13
29 22 16 5 5 8 11 9 11 11
30 21 11 5 5 5 6 7 7 7
31 20 20 5 5 10 14 13 14 14
32 20 19 5 5 9 11 11 12 13
33 22 15 5 5 8 11 10 10 10
34 21 20 5 5 10 13 12 14 14
35 21 16 5 5 8 9 9 10 10

Table 2: The experimental instances 1-35 of Data Set I with the best result provided by the approximation
algorithms underscored.
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Instance m n h D OPT ALGb=2 ALGb=3 ALGα=2 ALGα=24/13

36 21 14 5 5 8 11 11 12 12
37 25 18 5 5 7 10 10 11 10
38 25 21 5 5 11 14 13 14 13
39 25 18 5 5 8 11 10 13 12
40 26 19 5 5 11 12 14 20 14
41 26 21 5 5 13 16 15 19 17
42 26 18 5 5 9 11 11 12 12
43 25 18 5 5 8 10 10 11 9
44 25 17 5 5 8 11 10 12 12
45 25 21 5 5 11 15 12 15 15
46 7 7 5 5 5 7 6 7 7
47 7 8 5 5 4 6 4 7 7
48 8 9 5 5 5 8 7 7 7
49 8 8 5 5 5 7 6 7 7
50 8 9 5 5 5 7 6 7 6
51 8 9 5 5 6 9 7 11 11
52 8 9 5 5 5 8 5 6 6
53 8 7 5 5 5 7 5 7 7
54 8 9 5 5 6 8 7 8 8
55 21 17 5 5 8 10 10 10 10
56 20 19 5 5 7 9 8 9 9
57 19 14 5 5 5 7 8 6 6
58 20 18 5 5 7 7 8 9 9
59 20 17 5 5 6 7 7 8 8
60 19 15 5 5 3 5 6 4 4
61 20 18 5 5 8 9 10 10 10
62 21 18 5 5 8 10 10 12 12
63 21 20 5 5 8 10 10 10 10
64 23 19 5 5 11 15 12 16 16
65 23 16 5 5 6 10 8 8 8
66 23 12 5 5 4 6 6 7 7
67 23 18 5 5 8 12 10 13 11
68 23 17 5 5 8 11 9 11 11
69 22 14 5 5 5 7 7 8 7
70 22 16 5 5 7 8 9 9 9

Table 3: The experimental instances 36-70 of Data Set I with the best result provided by the approximation
algorithms underscored.

Instance m n h D OPT ALGb=2 ALGb=3 ALGα=2 ALGα=24/13

1 15 16 10 8 8 (0.12) 18 15 12 12
2 15 16 10 8 11 (0.12) 16 15 15 15
3 15 15 10 9 8 (0.07) 15 16 10 10
4 16 13 10 9 7 (0.02) 14 8 10 10
5 16 16 10 9 9 (0.18) 14 14 14 14
6 16 16 10 8 10 (0.08) 21 13 17 15
7 15 13 10 10 5 (0.01) 8 9 10 9
8 23 27 10 9 14 (3.61) 24 21 25 25
9 24 24 10 7 14 (0.32) 21 18 17 19
10 23 32 10 10 16 (1.26) 24 23 23 20
11 23 24 10 8 14 (2.95) 22 20 19 19
12 23 26 10 8 12 (0.24) 25 17 17 18
13 23 33 10 7 16 (2.32) 23 19 19 18
14 23 36 10 10 17 (4.89) 27 24 22 20
15 20 23 10 9 9 (0.12) 14 14 13 14
16 20 19 9 8 10 (0.02) 14 16 12 13
17 20 22 10 10 10 (0.08) 15 13 13 13
18 20 22 10 9 10 (0.98) 15 17 16 15
19 20 21 10 7 10 (0.07) 16 14 15 14
20 20 19 10 6 9 (0.03) 14 12 11 13
21 20 23 10 10 11 (3.24) 17 16 19 19
22 21 20 10 10 10 (0.36) 17 17 18 15

Table 4: The experimental instances using Data Set II with the best result provided by the approximation
algorithms underscored. The running time in CPU seconds (rounded to the nearest integer) for OPT is
provided in parentheses.
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Instance m n h D OPT ALGb=2 ALGb=3 ALGα=2 ALGα=24/13

1 57 64 23 2 26 (21485) 50 44 30 29
2 54 58 25 2 26 (141) 49 46 32 30
3 57 58 24 2 23 (5) 42 38 28 26
4 61 57 22 2 23 (17) 42 42 25 25
5 56 57 24 2 22 (1037) 41 37 25 25
6 59 51 20 2 22 (6) 40 39 23 23
7 50 67 24 2 29 (9260) 56 49 34 34
8 69 62 25 2 24 (692) 47 44 30 30
9 62 64 18 2 19 (2) 36 34 20 21
10 59 59 23 2 28 (120822) 54 49 32 32
11 51 51 23 2 21 (15) 40 37 25 22
12 59 60 23 2 25 (8) 47 46 28 27
13 49 50 23 2 20 (25) 38 35 26 25
14 59 45 23 2 19 (104) 34 33 22 22
15 46 53 18 2 22 (2) 42 40 27 23
16 53 63 21 2 22 (11) 45 40 24 24
17 49 66 24 2 24 (848) 45 41 29 29
18 64 64 25 2 24 (6) 44 43 33 31
19 53 53 25 2 22 (121) 41 40 27 25
20 51 57 25 2 23 (564) 45 42 28 24
21 50 46 24 2 19 (3) 35 33 26 22
22 61 58 24 2 25 (5060) 48 44 26 26
23 57 62 19 2 22 (3) 43 38 26 22
24 58 65 21 2 26 (53) 51 44 27 29
25 59 45 24 2 21 (4) 38 35 26 26
26 54 50 15 2 19 (1) 34 33 20 20
27 67 61 20 2 17 (3) 32 29 19 19
28 63 64 25 2 26 (506) 50 46 31 31
29 54 60 18 2 21 (1) 43 38 24 23
30 63 58 24 2 23 (317) 45 42 26 25

Table 5: The experimental instances using Data Set III with the best result provided by the approximation
algorithms underscored. The running time in CPU seconds (rounded to the nearest integer) for OPT is
provided in parentheses.
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4.3 Analysis & Discussion

Table 6 summarizes the performance of our approximation algorithms by enumerating the number of
instances in which each algorithm outperformed all others (excluding OPT) with ties included.

# Instances ALGb=2 ALGb=3 ALGα=2 ALGα=24/13

Data Set I 70 24 (34.3%) 55 (78.6%) 14 (20.0%) 18 (25.7%)
Data Set II 22 3 (13.6%) 9 (40.9%) 11 (50.0%) 12 (54.5%)
Data Set III 30 0 (0.0%) 0 (0.0%) 16 (53.3%) 28 (93.3%)

Table 6: The number of instances where each of approximationalgorithms achieves the smallest segmen-
tation with ties included. The largest value in each row is bolded.

In testing our algorithms, we focus on three questions:

1. How do our improved algorithms compare against their older counterparts in [18]?

2. How do the algorithms with anO(log h) approximation guarantee compare to those with anO(logD)
approximation guarantee?

3. How do these approximation algorithms compare against the optimum solution?

Question 1: With respect to our first question, Table 6 illustrates that ALGb=3 and ALGα=24/13 outper-
form on a larger number of instances than the algorithms of [18] in all three data sets for a total of95 out
of 122 instances (77.8%). In particular, ALGb=3 ties or outperforms all other approximation algorithms in
55 out of the70 instances (78.5%) in Data Set I while ALGα=24/13 ties or outperforms all other approx-
imation algorithms in12 out of the22 instances (54.5%) in Data Set II and in28 out of the30 instances
(93.3%) in Data Set III. We also enumerate the number of timesone of our new algorithms outperforms
an older algorithm on an instance-by-instance basis; this comparison is summarized in Table 7 along with
ties (percentages along a row may not sum exactly to 100% due to rounding). The results indicate that
our new algorithms perform better than their older counterparts on a significant number of instances.

ALGb=2 outperforms ALGb=3 ALGb=3 outperforms ALGb=2 Ties

Data Set I 12 (17.1%) 40 (57.1%) 18 (25.7%)
Data Set II 4 (18.2%) 15 (68.2%) 3 (13.6)
Data Set III 0 (0.0%) 29 (96.7%) 1 (3.3%)

ALGα=2 outperforms ALGα= 24

13

ALGα= 24

13

outperforms ALGα=2 Ties

Data Set I 5 (7.1%) 12 (17.1%) 53 (75.7%)
Data Set II 5 (22.7%) 8 (36.4%) 9 (40.9%)
Data Set III 2 (6.7%) 14 (46.7%) 14 (46.7%)

Table 7: An instance-by-instance comparison of old vs. newO(log h) algorithms, old vs. newO(logD)
algorithms.

Given these positive results, we also wish to know byhow muchwe improve. We look at the number of
segments required by an algorithm per instance and calculate the ratio of these two values; the average
(Ave.), median (Med.), minimum (Min.) and maximum (Max.) ratios over all instances is reported
in Table 8. These values demonstrate that ALGb=3 performs substantially better than ALGb=2 overall
judging by both the average and median values. In the case of ALGα=24/13 and ALGα=2, our gains are
smaller, yet we still observe a small overall improvement judging by the average values.

Question 2: Next we address our second question regarding the performance of the algorithms with an
O(log h) approximation guarantee versus those with anO(logD) approximation guarantee. We restrict
ourselves to a comparison of ALGb=3 and ALGα=24/13 given the results of the previous discussion. Ta-
ble 9 provides the results of our comparison on an instance-by-instance basis. As before, we also calculate
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Ratio of ALGb=3 over ALGb=2 Ratio of ALGα= 24

13

over ALGα=2

Data Set I

Ave. 0.9262 0.9860
Med. 0.9161 1.0000
Min. 0.6250 0.7000
Max. 1.2000 1.1667

Data Set II

Ave. 0.9074 0.9878
Med. 0.8990 1.0000
Min. 0.5714 0.8333
Max. 1.1429 1.1818

Data Set III

Ave. 0.9280 0.9650
Med. 0.9230 1.0000
Min. 0.8627 0.8462
Max. 1.0000 1.0741

Table 8: Average, median, minimum and maximum ratios measuring the extent of our improvements.

the average, median, minimum and maximum ratios on a per-instance basis of ALGα=24/13 over ALGb=3;
these statistics are in Table 10.

ALGb=3 outperforms ALGα= 24

13

ALGα= 24

13

outperforms ALGb=3 Ties

Data Set I 47 (67.1%) 6 (8.6%) 17 (24.3%)
Data Set II 7 (31.8%) 9 (40.9%) 6 (27.3%)
Data Set III 0 (0.0%) 30 (100.0%) 0 (0.0%)

Table 9: An instance-by-instance comparison of ALGb=3 and ALGα=24/13.

Average Median Minimum Maximum

Data Set I 1.1650 1.1111 0.4444 1.8889
Data Set II 0.9810 1.000 0.6250 1.2500
Data Set III 0.6413 0.6526 0.5714 0.7429

Table 10: Average, median, minimum and maximum ratios of ALGα=24/13 over ALGb=3.

We can tentatively draw some conclusions from our analysis.We observe that whenh andD are
relatively equal, the32 · (log3 h+1) approximation can yield superior performance in practice judging by
both the instance-by-instance comparison in Table 9 and theaverage and median values of Table 10; this
is certainly the case for Data Set I. However, as Data Set II illustrates, there are exceptions and neither al-
gorithm is clearly superior here. For the case whereD is significantly smaller thanh, all statistics suggest
that the24/13 · (logD + 1) approximation can yield substantially better solutions.

Question 3: We address our third question by examining the performance of our approximation algo-
rithms against the optimum number of segments. Table 11 provides the average, the median, the worst,
the best, and thebest(the smallest) theoretical approximation factor achievedby each algorithm over
each data set. We observe that the theoretical values appearpessimistic as our approximation algorithms
generally do much better. We also note that the theoretical approximation values for ALGb=3 are worse
than that of ALGb=2 sinceh andOPT are not sufficiently large for our theoretical improvementsto
emerge. Relatively smallh values are required in order to compute the optimum; however, we still ob-
serve improved performance from ALGb=3 despite the pessimistic approximation guarantee. Moreover,
we observe that the approximation algorithms never exceed an approximation factor of2.25 in practice
and the other statistics demonstrate that the approximation factor can be significantly lower. Indeed, by
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executing all four approximation algorithms, we never exceed an approximation factor of1.80 (thisworst
case occurs in Data Set II with ALGα=24/13) over all instances in all data sets. Such computations can
be performed easily since these algorithms incur low computational overhead. By performing such an
operation and taking thebestperformance on an instance-by-instance basis, the statistics presented in
Table 12 can be obtained. In conclusion, the statistics in Tables 11 and 12 show that these algorithms can
provide very good approximations to the optimum.

ALGb=2 ALGb=3 ALGα=2 ALGα=24/13

Data Set I

Average 1.34 1.23 1.44 1.41
Median 1.37 1.24 1.4 1.39
Worst 1.67 2.00 1.83 1.87
Best 1.00 1.00 1.10 1.10
Theory 3.32 3.79 6.64 6.13

Data Set II

Average 1.66 1.49 1.47 1.44
Median 1.56 1.43 1.43 1.44
Worst 2.25 2.00 2.00 1.80
Best 1.40 1.14 1.19 1.12
Theory 4.17 4.65 7.17 6.62

Data Set III

Average 1.90 1.76 1.17 1.13
Median 1.90 1.76 1.17 1.12
Worst 2.05 1.84 1.40 1.29
Best 1.79 1.65 1.04 1.00
Theory 4.90 5.29 4.00 3.69

Table 11: Statistics on the approximation factors achievedby the approximation algorithms.

Average Median Worst Best

Data Set I 1.19 1.18 1.50 1.00
Data Set II 1.35 1.36 1.60 1.13
Data Set III 1.12 1.12 1.29 1.00

Table 12: Statistics on thebestapproximation factor achieved by running all approximation algorithms
on each instance of a data set and taking the best result.

Running Time: Finally, we notethe running times of the approximation algorithms are negligible. In
particular, all approximation algorithms completed each instance withinat most0.01 CPU seconds on
Data Set I,0.02 CPU seconds on Data Set II, and0.240 CPU seconds on Data Set III. In contrast, the
running time for computing an optimal solution can be significant. For Data Set II, the algorithm of [8]
runs in a reasonable amount of time. However, recall that thevalues in this data set are rounded down -
this was done to ensure that an optimal solution could be computed. While incorporating another decimal
place of the data values improves the accuracy of the treatment solution, the resulting intensity matrices
simply cannot be solved optimally in any reasonable amount of time due to anh value that has now
become one order of magnitude larger; this is a concern for present-day real-world instances. From a
more forward-looking perspective, larger intensity matrices may become feasible as technology advances
(MLCs with 60 leaf pairs currently exist); however, increasing the dimensions of the matrix also increases
the running time of the exact algorithm. The impact of these two factors begins to become apparent in
Data Set III where computing an optimal solution for certaintest cases requires substantial CPU time
(hundreds to thousands of CPU seconds - see Table 5) for moderately larger matrices and forh ≤ 25.
Therefore, while exact algorithms like [8] are an extremelyvaluable approach to solving these problems,
their utility may be limited.
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5 Conclusion
We provided new approximation algorithms for the full-matrix segmentation problem. We first showed
that the single-row segmentation problem is fixed-parameter tractable in the largest value of the intensity
matrix. Using this yields provably good approximate segmentations for the full matrix, after suitably
splitting either the intensity matrix or approximate segmentations of its rows according to some base-b
representation. Finally, our experimental results demonstrate that our theoretical improvements yield new
algorithms that, in both theO(log h) andO(logD) cases, significantly outperform previous approxima-
tion algorithms in practice and can achieve reasonable approximations to the optimal solution, especially
if executed in concert.

It may be of interest to explore the case ofb ≥ 4. Can approximation algorithms that perform better
in practice be obtained? Are further heuristic improvements possible, such that empirical performance in
practically relevant cases is increased, while maintaining desirable theoretical approximation guarantees?
Can we more exactly determine the threshhold where theO(log h) approximation andO(logD) approx-
imation lead to differing performance in practice? Finally, a comprehensive comparison of heuristic and
approximation algorithms is an interesting avenue of future work.
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