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Abstract

The segment minimization problem consists of finding thellesieset of integer matrices that sum
to a given intensity matrix, such that each summand has amynon-zero value, and the non-zeroes
in each row are consecutive. This has direct applicationstensity-modulated radiation therapy,
an effective form of cancer treatment. We develop three@@pration algorithms for matrices with
arbitrarily many rows. Our first two algorithms improve thgpeoximation factor from the previous
best ofl + log, h to (roughly)3/2 - (1 +log, k) and11/6 - (1 + log, h), respectively, wheré is the
largest entry in the intensity matrix. We illustrate theitmtions of the specific approach used to obtain
these two algorithms by proving a lower bound%‘fb’—m -log, h + % on the approximation guarantee.
Our third algorithm improves the approximation factor fr@m(log D + 1) to 24/13 - (log D + 1),
where D is (roughly) the largest difference between consecutigenehts of a row of the intensity
matrix. Finally, experimentation with these algorithmswhs that they perform well with respect to the
optimum and outperform other approximation algorithms @fb67of the 122 test cases we consider,
which include both real world and synthetic data.

1 Introduction

Intensity-modulated radiation therapy (IMRT) is an effeeform of cancer treatment in which the region

to be treated is discretized into a grid and a treatment glacifies the amount of radiation to be delivered
to the area of body surface corresponding to each grid calkevAce called a multileaf collimator (MLC)

is used to administer the treatment plan in a series of skegsch step, two banks of metal leaves in the
MLC are positioned to cover certain portions of the bodyacef while leaving others exposed, and the
latter are then subjected to a specific amount of radiation.

A treatment plan can be represented asrar n intensity matrixI’ of non-negative integer values,
whose entries represent the amount of radiation to be detivte the corresponding grid cells. The leaves
of the MLC can be seen as partially covering rowg offor each rowi of 7" there are two leaves, one of
which may slide inwards from the left to cover the elementsdlumnsl..i of that row, while the other
may slide inwards from the right to cover the elements incwisr..n. After each step of the treatment,
the amount of radiation applied in that step (this can differ step) is subtracted from each entrylof
that has not been covered. The treatment is completed whemntaés of7" have reached.

Setting leaf positions in each step of the treatment planireg time. Minimizing the number of steps
reduces treatment time and can result in increased pakiemighput, reduced machine wear and tear,
and overall reduced cost of the procedure. Minimizing theber of steps for a given treatment plan is
the objective of this paper.
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Formally, asegmenis a matrix.S such that non-zeroes in each row ®fare consecutive, and all
non-zero entries a$ are the same integer, which we call #egment-valueA segmentationf 7' is a set
of segment matrices that sum’tg and we call the cardinality of such a set #ieeof that segmentation.
Thesegmentation problers, given an intensity matri¥’, to find a minimum-size segmentationbf We
will often consider the special case of a matffixvith one row, which we call theingle-row segmentation
problemas opposed to thielll-matrix segmentation problem.

The segmentation problem is known to be NP-complete in thegtsense, even for a single row([3, 4,
[10], as well as APX-completg][5]. A number of heuristics anewn [1[4[ 18, 15, 19, 21]. Approaches for
obtaining optimal (exact) solutions also exist[?, 8,[16; dbcourse, these approaches do not necessarily
terminate in polynomial time in the size of the input. Bans@hl. [5] provide a24/13-approximation
algorithm for the single-row problem and give some bett@rapimations for more constrained versions.
Collins et al. [12] show that the singleolumnversion of the problem is NP-complete and provides some
non-trivial lower bounds given certain constraints. Wosklluan et al. [18] gives two approximation
algorithms for the fullm x n problem where the approximation factor depends on othempeters of
the problem, e.g. the largest enfryin the target matrix. They do not consider the performandbeif
algorithms in practice. More recent work by [16] has showat them x n case can be solved optimally
with time complexityO (m - n?"*2); this approach is shown to computationally intensive ewgrsmall
h in practice.

Our Contributions

Luan et al.[[18] used two properties to obtain approximagityorithms. First, the segmentation problem
is straightforward whe = 1 (0/1-matrices). Second, segmentations for the singlepmblem with
small segment-values can be used to obtain good segmenstdidhe full-matrix problem. By exploiting
these two properties, Luaat al. obtained two algorithms with respective approximatiortdes of 1 +
log, h and2(1+log, D) whereh is the largest value i, andD is roughly the largest difference between
consecutive elements in a row Bl

In this paper, we extend the ideas of Lugtral. In particular, we prove that the segmentation problem
can be approximated whén= 2 andh = 3; this is far less straightforward than the c@se- 1. This
yields two fast algorithms for the full-matrix segmentatjgroblem with approximation factors (roughly)
2. (1+logg h) and4L - (1 +log, h), respectively, both of which are less thaa- log h. While we show
t%at the general two-stage approach of Leaal. [18] can be extended to provide superior approximation
algorithms, we also prove a limitation of this approach.

We also provide a new approximation algorithm with appreadion factor (roughly)x log D, where
« is the best approximation factor for the single-row prohlérhe current best knowa is a = 24/13
[5]; any improved approximation result for the single-rovolplem would directly lead to an improved
approximation result for the full problem. This second apgmation algorithm expands on the second
approximation algorithm by Luan et al.; they used one spe2ifipproximation algorithm for the single-
row problem, whereas we show that in fact amgpproximation algorithm can be used.

Finally, we give an empirical evaluation of known approxtioa algorithms for the fulln x n seg-
mentation problem, using both synthetic and real-worldicil data. Our experiments demonstrate that
the constant factor improvements made by our algorithmisl iginificant performance gains in prac-
tice. Therefore, in both th®(log k) andO(log D) scenarios, our new algorithms improve on previous
approximation algorithms theoretically and experimdnptal

2 Improved Approximation Algorithms

A vital insight for our approximation algorithm is the comptef a marker ([18]; this was calledick in
[5].) A markerin row ; of the target matri<” is an index where the entry @f changes while going along
the row. Formally, it is an index for whichT'[¢, j — 1] # T'[¢,j],0orj = 1 andT[i, 1] £ 0,0rj =n+1
andT'[i, n] # 0. _

Let p* denote the number of markers in rewf 7', and definep = max {p’}, i.e. the number of

Allrows 7 in T

markers in the row of” which has the most markers over all rows. We begin by restdtia following
observation noted by Luaeat al. that we will later find useful.

1Throughout, we uskbg, 2 to mean[ log;, z].



Observation 1. (Luan et al. [18]) LetOPT be the size of a minimal segmentation of an intensity matrix
T. Thenp < 2-OPT.

The first approximation algorithm given by Luan et BLI[18]®as follows. Split the given intensity

matrix 7" into matricesP,, . . ., P such thafl’ = Z?:o 2¢. P, (by taking the bits of the base-2 represen-
tation of entries ofl’") wherek = log, h and each?, is a0/1-matrix. A segmentation fdf' can then be
obtained by taking segmentations of ed@hmultiplying their values by*, and taking their union. Since
eachP; is a 0/1-matrix, an optimal segmentation of it can be foursilgaand an approximation bound
of 1 + log h can be shown.

We use a similar approach, but change the basgiting 7' = Zfzo bt - P, for some integeb > 3.
This raises nontrivial question: How can we solve the sedatiem problem in a matrix that has values in
{0,1,...,b— 1}? And is the resulting segmentation a good approximatioh@bptimal segmentation?

Assume that we have-approximate segmentatiofes eachF,, i.e., for eaclf we have a segmentation
Sy of P, that is within a factory of the optimum forP,, for somen > 1. Wecombinghese segmentations
as follows: For each segmeftof S;, addb’ - S to S. One easily verifies tha$ is a segmentation of
T'. But it is not obvious that this is a good approximation of tipgimum segmentation &. One might
think that it is ana(log, (k) + 1)-approximation of the optimal segmentation@fbut this isnottrue in
general; see also Sectibn2.3.

It is also not clear how to find a segmentation/&fthat is good. As mentioned earlier, the optimal
segmentation can be found in polynomial timé i§ a constant[16], but the running time is not practical,
and it is not clear whether it yields a good approximationt @ain contribution is that an approximation
guarantee can be established o 3,4. Moreover, it suffices to use a segmentationfthat is not
necessarily optimal, but can be found in linear time.

More specifically, we show how to find a segmention of one rowPpthat can be bound in size
depending on the number of markeravioreover, the segmentations of each row can be combindyg eas
into one segmentation df,, and the segmentations of all tli%’'s can be combined into a segmentation
of T', while carrying the bound in terms pfalong. By Observatio] 1, this will allow us to bound the size
of resulting segmentation relative to the optimum.

We briefly give here the simple algorithmREEDYROWPACKING that we use to combine segmenta-
tions of rows of a target-matri®, (with valuesinil,..., b — 1) into a segmentation of the whole matrix
P,. Check for each value € {1,...,b — 1} whether any segment in any row has this value. If there is
one, then remove a segment of valugom each row that has one. Combine all these segments igto on
segment-matrix (also with valug, and add it taS. Continue until all segments in all rows have been
used in a segment-matrix. Clearly if each row has at leastsegmentgi.e., segments with valug,
then GREEDYROWPACKING gives a segmentation ¢, with at mostn,; i-segments (and; + - - - +n4_1
segments in total.)

21 Basisb=3

We now explain in detail the approach when the target-matisbeen split by bage= 3. Thus, we are
now interested in obtaining a segmentation of an intensagrion P, that has all entries i0, 1, 2}; we
call this a0/1/2-matrix. Recall tha’ is the number of markers in thith row of the target matrif’. We
usepz to denote he number of markers in tile row of 7.

Lemmal. There exists a segmentation of ronf a0/1/2-matrix P, such that the number of 1-segments
is at most} - py, and the number of 2-segments is at mpsp;, + 3.

Proof. We prove this by induction op}. The base case will be that none of the cases for the induction
can be applied, and hence will be treated last. For the ifmhyatre prove this by repeatedly identifying a
subsequence of the row for which we can add a few segmentearaye many markers, where “remove”
means that if we subtracted the segments from the targetwvewyould have fewer markers. To identify
subsequences of the row, we use regular expression notatierbound then follows by induction.

We will give this in detail only for the first of the cases in timeluction step, and only briefly sketch
the others:

1. Assume that the row contains a subsequence of the form. Let s be a 1-segment that covers
exactly the subsequence 2¢, and consideP” = P — s. Then P’ has two fewer markers in



theith row (at the endpoints of), and so by induction th&h row can be segmented using at most
1-(pi—2) 1-segments, andl- (p, —1)+1 2-segments. Adding the 1-segmetb this segmentation
yields the desired result.

2. Ifthere exists a subsequence of the form0, then similarly apply a 1-segment at the subsequence
of 1s. This removes 2 markers, and adds one 1-segment, and rpriziseto the inductively
obtained segmentation.

3. If there exists a subsequence of the faxerr 17270, then similarly apply a 2-segment at the first
subsequence @fs, then two 1-segments to remove the remainih@™. This removes 4 markers,
and adds two 1-segments, and one 2-segment to the indyativielined segmentation.

4. Ifthere exist two subsequences of the fo2i 170 or 017210, then similarly apply one 1-segment
to one subsequence 8§, and one 2-segment to the other subsequenes,dhen apply two 1-
segments to the two remaining sequencesof his removes 6 markers, and adds three 1-segments
and one 2-segment to the inductively obtained segmentation

5. If there exist two subsequences of the fdi 0, then similarly apply one 2-segment to one of
them, and two 1-segments to the other. This removes 4 madmaisadds two 1-segments and one
2-segment to the inductively obtained segmentation.

6. If there exists one subsequence of the f6&m170 or 017270, and one subsequence of the form
0270, then similarly apply one 2-segment to the subsequénté, and two one 1-segments to the
other subsequence. This removes 5 markers, and adds twgniests and one 2-segment to the
inductively obtained segmentation

Now assume that none of the above cases can be appliedh@dase case.) We argue that in fact
at most three markers are left. L&tl + 2)"0 be a subsequence that has markers in it. Assume first the
leftmost non-zerois a 1. Then the subsequence must coranmewhere (otherwise we're in case (2)),
so it has the fornd1+27% (1 4 2)*0. But after the 2s, no 1 can follow (otherwise we're in casg, € this
subsequence has the foomt270. Likewise, if the last non-zero is 1, then the subsequenséteform
027170. If the first and last non-zero are 2, then the subsequendbddéisrm02™0 (otherwise we're in
case (1) or (3)).

If we had two subsequenceél + 2)0, then each would have the for 270 or 02170 or 02+0,
and we would be in case (4), (5) or (6). So there is only oneafithand it has at most three markers. We
can now eliminate either three remaining markers with adgiv@nt and a 2-segment, or two remaining

markers with a 2-segment; either way the bound holds. O
e — -
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02+t1T0 017270 0270 0270 0270 012170

Figure 1: A segmentation where the number of segments isdemliny markers. This illustrates cases
(1) through (6) of the proof of Lemnid 1.

Using the segmentations of each row obtained with Lefimad cambining them with algorithm
GREEDYROWPACKING, gives a segmentatia$y of each 0/1/2-matrix’,. We now show that combining
these segments gives a provably good approximation of tlimalsegmentation df.

Lemma 2. Assumel’ = Z?:o 3¢Py, wherek = logs h and eachP, is a 0/1/2-matrix. Combining the
above segmentationsy, ..., S;; for matricesP, ..., P, gives a segmentatioi for T of size at most

% -k-OPT + % - k, whereOPT is the size of a minimal segmentationaf

4



Proof. Recall that the segmention of roinof P, has at mos% - pb 1-segments and at m0§t- oy + %
2-segments (Lemnid 1). Let = max; p), be the maximum number of markers within any rowZf
By algorithm GREEDYPACKING segmentatioib, of P, then has at mos} - p¢ 1-segments and at most
1. pe+ 3 2-segments. So

3 1
|Sel < = pe+ 3
Matrix P, can have a marker only if matriX has a marker in the same location, s0< p [18]. By
Observatiollp < 2 - OPT. Putting it all together, we have

k

S| = Z|sg|<z( pg—i—) Z(%?-OPT—F%):(;OPT—F%)-(1+log3h)

(=0
which proves the result. O

The above result showed the approximation bound for the eatation obtained by packing the
segmentations of the rows of Lemina 1 into matrices. For eaathixn?, this require)(m - n) time;
therefore, the entire algorithm runs in tifd&m - n - log h).

We note here that in the above proof, one could also have usegtanal segmentatios; of
instead of the segmentatidh; since|S; | < |S,|, the same approximation bound holds for the resulting
segmentation df". However, it is doubtful whether the increased run-tim&¢fn%) to find the optimal
segmentationi [16] is worth the improvement in quality.

We can now restate our result as a theorem:

Theorem 1. There exists an algorithm running i0(m - n - log k) time that for any intensity matri¥
with maximum valué finds a segmentatiofi of 7" size at mosé - (logg b+ 1) - OPT + % - (logg h + 1),
whereO PT is the size of a minimal segmentatiorilaf

2.2 Basisb=14

With an extensive case analysis, we can provide an analoguemimdl forh = 4 as well; we provide
this analysis here for completeness. From now onPjebe a0/1/2/3-matrix (a matrix with entries in
{0,1,2,3})and as before let; be the number of markers in roiof P,. We have the following result:

Lemma3. There exists a segmentation of rowf the0/1,/2/3-matrix P, consisting of at mos}p}+O(1)
1-segments; p, 2-segments, anglp; 3-segments.

Proof. The proof is similar to Lemm@ 1 in structure, and proceedsidydtion onp). The base case is
that none of the inductive cases can be applied; we will netiithis later.

In the induction step, just as in Lemink 1 we search for sulesezps (described by regular expres-
sions), and show how we can “removei’Z markers from a given subsequence by using at némi
1-segmentsim’ 2-segments, andm’ 3- -segments. As will be apparent, it suffices to only consider
sequences ﬁwat contain &tand, where an island is a sequenc¢hat begins and ends with the same
number and has only Iarger numbers inbetween, i.e., thexaiique symbob € {0, 1,2} for which
s=ot((c+ 1) |3)T

We generate the set of possible sequences that beginOvéttd contain at at most one island by
considering the tree whose recursive construction is defisdfollows:

1. Each node is a sequence 00&y[1]2|3)*.
2. Setthe root to string 0.

3. If a node contains an island, then that node is a leaf, wikerit is an internal node with three
children.

4. If a nodes is an interior node with last symbei, then its children arg0, s1, s2 ands3. Since
o €{0,1,2, 3}, we omit the child whose last two symbols are, resulting in only three children.
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0120% 0121* 0123  0130* 0131* 0132 0210* 0212 0213 0230* 0231 0232* 0310* 0312 0313 0320* 0321 0323

7 /]

01230* 01320* 02120* 02130* 02310* 03120* 03130* 03210* 03230*
01231%* 01321* 02121* 02131* 02312 03121* 03131* 03212 03231
01232%* 01323 02123 02132 02313 03 123 03132 03213 3232%
013230%* 021230* 021320%* 023120% 071120 0%1210 011%70 032120* 032130* 032310*
013231* 021231* 021321* 023121* 023131* 031231* 031321* 032121* 032131* 032312
013232* 021232* 021323 023123 023132 031232* 031323 032123 0321322 032313
0213230* 0231230* 0231320* 0313230* 0321230* 0323120* 0323130*
0213231* 0231231* 0231321* 0313231* 0321231* 0323121* 0323131*
0213232* 0231232% 0231323 0313232* 0321232% 0323123 0323132
02313230* 02313231* 02313232%* 03231230* 03231231* 03231232% 03231320%* 03231321%* 03231323

]

032313230*  032313231*  032313232%

Figure 2: Generating all substrings that begin with 0. Sifgs that contain an island are marked with
an asterisk and not evaluated further. Multiple conseelgymbols are omitted; only the first instance of
the symbol is included.

The complete tree is illustrated in Figlide 2 and each leafados an island. In particular, this shows that
any subsequence must contain an island, so it suffices tolstto segment islands.

Table[d gives a segmentation of each leaf node string (oliptuttopies of that leaf node string) that
respects the bound. If the island contained in the leaf nedék witho > 0, then the segmentation is
the same as for the island where all values have been dedrepsein such cases, Tahlé 1 refers to the
matching island.

We illustrate how to read this table for case 030 only; aleottases are similar. Assume there are 6
occurrences of the patte@3*0, which hence have 12 markers. Define 6 1-segments, 3 2-sé¢garah
2 3-segments that together cover these 6 substrings. Apgliction to the rest of the row, and add these
11 segments to the resulting segmentation; this then gigegmentation of théh row of P, with the
desired bounds.

Applying similar arguments to all other cases yields theusiive step. Since we have covered all
possible patterns containing one island, the only caseinémgafor the base case is that some patterns
occurs, but not as often as demanded in Table 1. Since tharfinite number of patterns, each of which
has a finite number of markers, there are hence aill) markers left and clearly this can be covered
with O(1) 1-segments. O

We now have the following theorem:

Theorem 2. There exists an algorithm running @(m-n- log h) time that for any intensity matrix with
maximum valué finds a segmentatiafi of " of size at most! - (log, h+1)-OPT+O(1)- (log, h+1),
whereOPT is the size of a minimal segmentatiori/af

Proof. SplitT into 0/1/2/3-matrice$’, for £ = 0, ...,log, h, such thafl’ = Zl"g“ 4°P,. By Lemmd3,
every row of P, can be segmented using at mp;étz +0(1) 1- segmentSp/4 2 -segments, angd/6 3-



[ leaf node [ bounded segmentation | | leaf node [ bounded segmentation |
[ leaf | island | copies[ p [ I-seg| 2-seg| 3-seg| | leaf | island | copies [ p [ 1-seg[ 2-seg | 3-seg |
010 010 [ 1 2 1 0 0 021321 1321 | see 0210
020 020 | 2 4 2 1 0 023120 023120 | see 021320
030 030 | 6 12 | 6 3 2 023121 121 | see 010
0120 0120 1 2 [6 [3 [ 1 [0 023130 023130 | 2 [10] 4 [ 2 [1
0121 121 | see 010 032131 131 | see 020
0130 0130 | 2 [6 [ 2 [1 [1 032132 2132 | see 0120
0131 131 | see 020 032310 032310 | see 013230
0210 | 0210 | see 0120 0213230 0213230 1 [6 [3 1 1
0230 | 0230 | 2 [6 [3 [1 1 0213231 13231 | see 02120
0232 232 | see 010 0213232 232 | see 010
0310 0310 | see 0130 0231230 | 0231230 1 [6 2 [1 [1
0320 0320 | see 0230 0231231 1231 | see 0120
01230 01230 | 1 | a | 2 | 1 | 0 0231232 232 | see010
01231 1531 | see 0120 0231320 | 0231320 | 1 [6 [3 [1 [1
01232 232 | see 010 0231321 1321 | see 0210
01320 01320 | 1 [4 [ 2 [1 [0 0313230 | 0313230 1 [6 [2 [1 [1
01321 1321 | see 0210 0313231 13231 | see 02120
02120 02120 | 1 [4 ]2 [1 [0 0313232 232 | see 010
02121 121 | see 010 0321230 | 0321230 1 [6 [3 [1 [1
02130 02130 | 2 | 8 | 3 | 2 | 1 0321231 1231 | see 0120
02131 131 | see 020 0321232 232 | see 010
02310 | 02310 | see 01320 0323120 | 0323120 | see 0213230
03120 | 03120 | see 02130 0323121 121 | see 010
03121 121 | see 010 0323130 | 0323130 | see 0313230
03130 03130 | 2 [8 [4 [2 [1 0323131 131 | see 020
03131 131 | see 020 02313230 | 02313230 2 | 14 | 6 | 3 | 2
03210 | 03210 | see 01230 02313231 13231 | see 02120
03230 | 03230 | 1 [4 J2 [1 JoO 02313232 232 | see 010
03232 232 | see 010 03231230 | 03231230 2 [14T]7 [ 3 [ 2
013230 | 013230 | 2 | 10 | 3 | 2 | 1 03231231 1231 | see 0120
013231 | 13231 | see 02120 03231232 232 | see 010
013232 232 | see 010 03231320 | 03231320 | see 02313230
021230 | 021230 | 2 | 10 | 5 | 2 | 1 03231321 1321 | see 0210
021231 | 1231 | see 0120 032313230 03231323] 1 [8 [2 2 1
021232 232 | see 010 032313231 13231 | see 02120
021320 | 021320 | 1 | 5 | 2 | 1 | 0 032313232 232 | see 010

Table 1: Segmentations for each leaf in Fidure 2. Horizanilaks separate leaves from different levels in
the tree.

segments. Therefore, the total number of segments reqiarexhch P, using GREEDYROWPACKING
is at mostp/2 + p/4 4+ p/6 + O(1). The total number of segments required ris then at most
(p/2 + p/4+ p/6 + O(1)) - (log, h + 1). By ObservatiohlOPT > p/2. Therefore, the size of the
segmentation is at most- OPT + O(1)) - (log, h + 1) which proves the result. O

Note that'f log, (h) < 3 logs(h) < log,(h), so for sufficiently large€) PT andh, the new algorithm

provides the best approximation guarantee and is bettefdtar of}—g. From a theoretical perspective,
TheoreniR is valuable because it guarantees that soRjimgatrices teither with the algorithm implicit

in Lemmd3B or optimally using the results 6f[16]) yields apagximation guarantee. From an empirical
perspective, preliminary experimental results indicdled using basé = 4 is no better than using base
b = 3 in practice, and we did not pursue this approach further ireperiments (see Sectibh 4).

2.3 Even higher bases?

In theory, our approach could be taken further, using bases, 6, . . .. There are two obstacles to doing
so. First, how to find a good segmentation of a matrix withieatn0,...,b — 1? One can find the
optimal segmentation in tim@ (mn?2*—*) [16], but this quickly becomes computationally infeasitiee
there faster algorithms?

Secondly, would using an optimal segmentation give a gopdogmation? This is not immediately
clear, and in fact, the following example shows that the apipnation factor is not much better than
21ogy (h).



Theorem 3. Consider any approximation algorithm that obtains a segtaon of 7' by decomposing
T into 1 + log, h matricesP, and then combining segmentations of e&th Any such algorithm can

yield an approximation factor no better théﬁ”;—m -logy, h + % in the worst case, even for a single-row
problem.

Proof. Define for¢ =0, ...,k — 1 matrix P, to be
(1234 - (b=1)0(b—=1) --- 321),

and set matrix?;, to be
0000 ---010 ---000).

Finally, setT = Zfzo =

Clearly P, for ¢ < k requires at leas2(b — 1) segments in any segmentation, aBdrequires one
segment, so any segmentationZofobtained with this approach hasb — 1)k + 1 segments. On the
other hand, matri¥’ can be segmented with jussegments: Foi = 1,...,b — 1, theith segment has
value(011 - --1), in baseb and extends from columnto column2b — 4, and thebth segment contains a
single1 in the columnb and is otherwise 0. Hence, a solution obtained with this @ggr will have an

approximation factor of at Ieaé?bb;” -logy h + % 0O

If higher bases are to be used, then one way to prove an apmat&n factor would be to generalize
Lemmagdl andl3. Here, we offer the following:

Conjecture 1. For any matrix P, with entries in0,1,...,b — 1, there exists a segmentation of rowf
Py that uses at mo%p; + O(1) segments of valug forv =1,...,b — 1.

Notice that LemmaE]1 arid 3 prove this conjecturetfor 3, 4. If the conjecture were true, this
could be used to obtain a segmentatioT odf size (H,_1OPT + O(1))(log,(h) + 1), whereH,_; =

14 % + -4 ﬁ is theharmonic numberSinceH,_; = In(b — 1), this means that the approximation
factor is~ In(h) after ignoring some lower-order terms.
While we are not able to prove the conjecture, we can at léast shat nothing better is possible.

Lemma 4. There exists a matri® with entries in0, 1,...,b — 1 such that any segmentation Bfuses
at leastH,_; - p/2 segments.

Proof. Let P be the matrix

1 0 1 0 10 1
2 0 2 0 2 0 2
3 0 3 0 3 0 3

b—1 0 b—1 0 ... b—1 0 b—1

where the number of non-zeros in each row, which is the sarpé2agan be chosen arbitrarily. Assume
P has been segmented usingsegments of value.

Consider theth row of P, and count not only the markers, but also the amount by whietvalues
at each marker change. Thus, Jetbe the sum of the changes between consecutive values in; row
thenyu; = i - p. (Similarly as for markers, changes at the leftmost andtmigist end of the matrix are
included.) Each segment of valudn row i can only account for up tdv change between consecutive
values (namely, at its two ends). Also notice that necdgsark i since all values in row are at most.
So we must have

K2
> wen, > pi=i-p.

v=1

How small cam; + - - - +n;_1 be, subject to this constraint (as well as the obvieus 0 for all :)? This
is a linear program, and using duality theory (see €.gl [IdjE can easily see that the optimal primal
solution isn} = 1. p/2. (The optimal dual solution assigr;»ﬁi—l) torowi < b — 1 and;1; to the

last row.) The optimal primal (and dual) solution has valiie ; - p/2. While n* need not be integral



in general, this nevertheless shows that any segmentatiomt be smaller than the value of the optimal
primal solution. So any segmentation®f, ¢ < k requires at leastf;_; - p/2 segments. O

Note that the above matrix can in fact be segmentated u}Jsi-ng/2 segments of value if p/2 is a
multiple of 2 - (b — 1)!. What remains to do to show Conjectliie 1 is to show that thisixia the worst
case that could happen.

We suspect that this (or a similar) matrix could also be usedktise a target-matrix where no ap-
proximation better thar: in(h) is possible with the split-by-badeapproach, but have not been able to
find one.

3 Approximation by modifying row-segmentations

Our previous approximation algorithm can be summarizedkmAs: split the intensity matrix by digits,
split each resulting matrix into rows, segment each row aed put the segments together. The second
approximation algorithm by Luan et al._[18] uses anotheraagh that is in some sense reverse: split
the intensity matrix into rows, segment each row, split easulting segment into multiple segments
by digits, and then put the segments together. The qualithisfsecond approximation depends on
two factors: the approximation guarantee and the largdeevased by a segment in any of the row-
segmentations. Without formally stating it in these terimgn et al. proved the following result:

Lemmab5. (Luan etal. [18]) Assume that for any single-row problem \aa find anc-approximate solu-
tion where all segments have value at mstThen we can compute in polynomial timegog M +1)-
approximate segmentation of

Luan et al. used this property by showing that any singlepovblem has a 2-approximate solution
where any segment has value at mbstwhere theow-differenceD is the maximum difference between
consecutive elements in a row, or the maximum of the first asgdntries in the row, whichever is larger.
We can slightly improve on this with two observations. Fiesty segmentation can be converted into a
segmentation with values at mast without adding any new segments. Secondly, values 2 can be
found in existing results.

Lemma 6. LetS be any segmentation of a single-row intensity maffiwith row-differenceD. Then
there exists a segmentatiéh with |S’| < |S| for which all segments have value at mést

Proof. Modify S such that no two segments meet, i.e., if some segment enadeatij then no segment
starts at + 1. This can always be done ithout increasing th number of satgngee e.g.[4]. Any segment
S must then have value < D, for if S ends ati, thenT[i + 1] = T'[i] — v since no segment starts at
i+ 1. O

Theoreni# follows immediately from Lemrh& 5 and Lenitha 6, usifg- D:

Theorem 4. There exists a polynomial-time algorithm that, for any isiéy matrix7" with maximum
row-differenceD, finds a segmentatiafi of 7" size at mosty - (log D + 1)OPT. Herea < f—g ~ 1.846
in the general case by [5].

If the running time for obtaining am-approximation for the single row problem is, then this
algorithm runsirO(t, - m - log h); thea < % algorithm can be implemented i(h - n?) time. For the
general case, this approximation result improves upog tfleg D + 1) approximation result for the full-

matrix problem in[[18]. In particular, for = 2%, if D < (h'®/8)/16, then to the best of our knowledge,
this is the tightest approximation to the segmentation jeratwith no restriction on the intensity matrix
values.

4 Experimental Results

To examine the impact of our algorithms in practice, we impated our new approximation algorithms
as well as those of[18]. In particular, our experiments hedfollowing algorithms:

1. ALGy—2: The(log, h + 1) approximation algorithm of[18].



2. ALG,—3: The - (logs h + 1) approximation algorithm of Sectién 2.
3. ALG,—2: The2(log D + 1) approximation algorithm of18].

4. ALG,—24/13: Thef—4 - (log D + 1) approximation algorithm of Sectidn 3, which utilizes our-im
plementations of alggorithms frorl[5), 6].

5. OPT: The optimal solution obtained via a recent statéhefart exact algorithm of [8] which im-
proves the running time over the related worklih [2].

All approximation algorithms were implemented in Java wlgh implementation of OPT was provided
as a binary executable by the authordf [8].

Scope of Our Experiments: We restrict our investigation to algorithms with approxifoa guarantees.
Aside from their practical performance, approximationogithms play an important role by providing
an efficient method for checking the quality of solutionsyded by heuristics. While heuristics may
perform well in practice, their lack of a performance guéameans that low-quality solutions cannot
be ruled out. On the other hand, as demonstrated by previotks\Wz,[8] and by our experimental work
here, computing the optimum is computationally intensing ean require a significant amount of time;
moreover, such exact approaches are only possible withsityematrices of limited size and values.
Therefore, at the very least, approximation algorithmaevalbne to quickly verify that a heuristic is not
producing a poor result; moreover, the approximate saiutiay indeed provide a satisfactory solution.
While a comprehensive comparison involving the large bdditerature on heuristic approaches would
be of interest, such an undertaking is outside the scopesoftirent work.

4.1 Data Sets

We use the following test data:

e Data Set I:a real-world data set comprised ©f clinical intensity matrices obtained from the
Department of Radiation Oncology at the University of Galifia at the San Francisco School of
Medicine. The levels are specified in terms of percentagesiements o20% of some maximum
value. We extract the common factor2if to obtain values i{1, 2, 3,4, 5}.

e Data Set Il:a real-world data set containing a prostate case, a brasmaas a head-neck case
obtained from the Department of Radiation Oncology at thévérsity of Maryland School of
Medicine. This data set consists 2if clinical intensity matrices with fractional values speaifi
absolutely; the floor of these values are used for our exarisn

e Data Set lll: a synthetic data set &0 intensity matrices. Each matrix is obtained as follows:
compute the sum of the probability density functions of sevigariate Gaussians generated from
two independent standard univariate Gaussian distribsitichere the amplitudg and the centers
of the distributions are sampled uniformly at random. Thsdriiutions are discretized by adding
as the value in the: x n-grid the integer part of the corresponding function valliee choice of
seven Gaussians and the range of the amplitude (we chospvilag5nade to ensure some peaks
and valleys in the intensity matrix, while keeping the nws reasonably small for the purposes of
computing an optimal solution.

The utility of Data Set lll is that it allows for testing on @nisity matrices wherB values are relatively
small compared td. Such data allows us to address our third line of investigdty examining the effect
of small D values on the performance of our approximation algorithmMereover, testing on matrices
with small D values is pertinent assuming improvements in treatmehntgogy. Higher precision MLCs
can allow for more fine-grained intensity matrices and aqurtechnologies exist for supporting MLCs
with up to 60 leaf pairs. Finally, we note that thevalues used in each of our data sets are fairly small -

this is necessary in order for the exact algorithm[df [8] taxgulete within a reasonable amount of time
as we discuss in more detail later.
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4.2 Resultsof Experiments

Tabled b below contain the results for each instance otrperimental evaluation. All experiments
were conducted on a machine with &Hz Pentium CPU antlGB of RAM. In Table$# &5, the running
times for computing the optimum are also included sincegheere significant.

Instance | m n h D OPT | ALGp—o ALGp—3 ALGn—2 ALG,—24/13
1 20 19| 5 5 7 10 8 12 12
2 19 | 18 | 5 5 8 11 9 11 11
3 19 | 14| 5 5 9 11 10 15 15
4 19 | 14| 5 5 8 10 10 13 15
5 19 | 16 | 5 5 8 12 9 14 13
6 20| 16 | 5 5 8 11 9 12 12
7 20| 16 | 5 5 9 12 9 14 15
8 20| 16 | 5 5 8 12 10 13 13
9 20| 11 | 5 5 7 8 8 12 12
10 271 21| 5 5 10 13 14 13 14
11 271 20 | 5 5 10 12 13 11 11
12 26 | 18 | 5 5 8 9 10 12 12
13 26 | 15 | 5 5 7 9 9 10 10
14 26 | 18 | 5 5 8 11 12 12 14
15 26| 17 | 5 5 8 11 11 10 10
16 26| 13| 5 5 7 10 9 10 10
17 26 | 18 | 5 5 8 11 11 11 11
18 27120 | 5 5 8 11 10 10 10
19 21| 19| 5 5 11 15 12 13 13

20 21| 17 | 5 5 7 9 10 12 12
21 21| 15| 5 5 8 11 8 11 11
22 20| 18 | 5 5 9 12 9 14 14
23 21| 18 | 5 5 9 11 10 12 12
24 21| 15| 5 5 6 8 7 9 9

25 21| 17 | 5 5 9 12 9 15 14
26 21| 19| 5 5 9 13 10 14 12
27 21| 21| 5 5 11 14 14 13 13
28 21| 19| 5 5 10 14 13 13 13
29 22|16 | 5 5 8 11 9 11 11
30 21| 11 | 5 5 5 6 7 7 7

31 20| 20 | 5 5 10 14 13 14 14
32 20| 19 | 5 5 9 11 11 12 13
33 22| 15| 5 5 8 11 10 10 10
34 21| 20 | 5 5 10 13 12 14 14
35 21| 16 | 5 5 8 9 9 10 10

Table 2: The experimental instances 1-35 of Data Set | wittb#st result provided by the approximation
algorithms underscored.
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Instance | m n h D OPT | ALGp—2o ALGp—3 ALGn—2o ALG,—24/13
36 21| 14| 5 5 8 11 11 12 12
37 25| 18 | 5 5 7 10 10 11 10
38 25| 21| 5 5 11 14 13 14 13
39 25| 18 | 5 5 8 11 10 13 12
40 26| 19 | 5 5 11 12 14 20 14
41 26 | 21| 5 5 13 16 15 19 17
42 26 | 18 | 5 5 9 11 11 12 12
43 25| 18 | 5 5 8 10 10 11 9
44 25| 17 | 5 5 8 11 10 12 12
45 25| 21| 5 5 11 15 12 15 15
46 7 7 5 5 5 7 6 7 7
47 7 8 5 5 4 6 4 7 7
48 8 9 5 5 5 8 7 7 7
49 8 8 5 5 5 7 6 7 7
50 8 9 5 5 5 7 6 7 6
51 8 9 5 5 6 9 7 11 11
52 8 9 5 5 5 8 5 6 6
53 8 7 5 5 5 7 5 7 7
54 8 9 5 5 6 8 7 8 8
55 21| 17 | 5 5 8 10 10 10 10
56 20| 19 | 5 5 7 9 8 9 9
57 19 | 14| 5 5 5 7 8 6 6
58 20| 18 | 5 5 7 7 8 9 9
59 20| 17 | 5 5 6 7 7 8 8
60 19 | 15| 5 5 3 5 6 4 4
61 20| 18 | 5 5 8 9 10 10 10
62 21| 18 | 5 5 8 10 10 12 12
63 21| 20 | 5 5 8 10 10 10 10
64 231 19| 5 5 11 15 12 16 16
65 23|16 | 5 5 6 10 8 8 8
66 23|12 | 5 5 4 6 6 7 7
67 23| 18| 5 5 8 12 10 13 11
68 23| 17| 5 5 8 11 9 11 11
69 22| 14| 5 5 5 7 7 8 7
70 22|16 | 5 5 7 8 9 9 9

Table 3: The experimental instances 36-70 of Data Set | Wélibest result provided by the approximation
algorithms underscored.

Instance | m n h | D OPT ALGy—2 | ALGp—3 | ALGa—2 | ALGa—24/13
T 15| 16 | 10 | 8 | 8(0.12) 18 15 12 12
2 15| 16 | 10 | 8 | 11(0.12) 16 15 15 15
3 15| 15| 10 | 9 | 8(0.07) 15 16 10 10
4 16 | 13| 10| 9 | 7(0.02) 14 8 10 10
5 16| 16 | 10 | 9 | 9(0.18) 14 14 14 14
6 16 | 16 | 10 | 8 | 10(0.08) 21 13 17 15
7 15 | 13 | 10 | 10 | 5(0.01) 8 9 10 9
8 23| 27| 10| 9 | 14(361) 24 21 25 25
9 24| 24| 10| 7 | 14(0.32) 21 18 17 19
10 23| 32| 10| 10 | 16(1.26) 24 23 23 20
11 23| 24| 10| 8 | 14(2.95) 22 20 19 19
12 23| 26| 10| 8 | 12(0.29) 25 17 17 18
13 23 33|10 7 | 16(232) 23 19 19 18
14 23| 36 | 10 | 10 | 17(4.89) 27 24 22 20
15 20| 23| 10] 9 | 9(0.12) 14 14 13 14
16 20| 19| 9 | 8 | 10(0.02 14 16 12 13
17 20| 22| 10 | 10 | 10(0.08) 15 13 13 13
18 20| 22| 10| 9 | 10(0.98) 15 17 16 15
19 20| 21|10 7 | 10(0.07) 16 14 15 14
20 20| 19| 10| 6 | 9(0.03) 14 12 1 13
21 20| 23| 10| 10 | 11(3.29) 17 16 19 19
22 21| 20| 10| 10 | 10(0.36) 17 17 18 15

Table 4: The experimental instances using Data Set Il wigtbist result provided by the approximation
algorithms underscored. The running time in CPU seconds(ted to the nearest integer) for OPT is
provided in parentheses.
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Instance | m n h | D OPT ALGy—5 | ALGy—3 | AlLGa—2 | ALGa—24/13
T 57 | 64 | 23 | 2 | 26 (21485) 50 az 30 29
2 54 | 58 | 25 | 2 26 (141) 49 46 32 30
3 57 | 58| 24| 2 23 (5) 42 38 28 26
4 61| 57 | 22| 2 23 (17) 42 42 25 25
5 56 | 57 | 24 | 2 | 22(1037) a1 37 25 25
6 59 | 51| 20| 2 22 (6) 40 39 23 23
7 50 | 67 | 24 | 2 | 29(9260) 56 49 34 34
8 69 | 62 | 25 | 2 24 (692) a7 a4 30 30
9 62| 64 | 18| 2 19 (2) 36 34 20 21
10 59 | 59 | 23 | 2 | 28(120822) 54 49 32 32
11 51| 51| 23| 2 21 (15) 40 37 25 22
12 59 | 60 | 23| 2 25 (8) a7 46 28 27
13 49 | 50 | 23| 2 20 (25) 38 35 26 25
14 59 | 45 | 23| 2 19 (104) 34 33 22 22
15 46 | 53| 18| 2 22(2) 42 40 27 23
16 53| 63| 21| 2 22 (11) 45 40 24 24
17 49 | 66 | 24 | 2 24 (848) 45 a1 29 29
18 64 | 64 | 25| 2 24 (6) a4 43 33 31
19 53 | 53| 25| 2 22 (121) a1 40 27 25
20 51| 57 | 25| 2 23 (564) 45 42 28 24
21 50 | 46 | 24 | 2 19 (3) 35 33 26 22
22 61| 58 | 24| 2 | 25(5060) 48 a4 26 26
23 57| 62| 19| 2 22 (3) 43 38 26 22
24 58 | 65 | 21| 2 26 (53) 51 a4 27 29
25 59 | 45 | 24 | 2 21 (4) 38 35 26 26
26 54 | 50 | 15| 2 19 (1) 34 33 20 20
27 67 | 61| 20| 2 17 (3) 32 29 19 19
28 63| 64 | 25| 2 26 (506) 50 46 31 31
29 54 | 60 | 18 | 2 21 (1) 43 38 24 23
30 63 | 58 | 24 | 2 23 (317) 45 42 26 25

Table 5: The experimental instances using Data Set Il viighbtest result provided by the approximation
algorithms underscored. The running time in CPU seconds(ted to the nearest integer) for OPT is
provided in parentheses.
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4.3 Analysis& Discussion

Table[® summarizes the performance of our approximatioaritgns by enumerating the number of
instances in which each algorithm outperformed all othexsliding OPT) with ties included.

| | #Instance§  ALGy,—2 | ALGy—3 | ALGsa—2 | ALGu_24/13 |
Data Set | 70 24 (34.3%)| 55 (78.6%)| 14 (20.0%)] 18 (25.7%)
Data Set Il 22 3 (13.6%)| 9 (40.9%)| 11 (50.0%)| 12 (54.5%)
Data Set Il 30 0 (0.0%) 0 (0.0%) 16 (53.3%)| 28 (93.3%)

Table 6: The number of instances where each of approximalgmrithms achieves the smallest segmen-
tation with ties included. The largest value in each row isibd.

In testing our algorithms, we focus on three questions:
1. How do our improved algorithms compare against theirratdenterparts in [18]?

2. How do the algorithms with af(log ) approximation guarantee compare to those withéog D)
approximation guarantee?

3. How do these approximation algorithms compare agaiesbptimum solution?

Question 1: With respect to our first question, Talple 6 illustrates thaGA-; and ALG,—24/13 Outper-
form on a larger number of instances than the algorithms&ififiLall three data sets for a total 85 out

of 122 instances (77.8%). In particularL&,_3 ties or outperforms all other approximation algorithms in
55 out of the70 instances (78.5%) in Data Set | while.8,_»,/,3 ties or outperforms all other approx-
imation algorithms inl2 out of the22 instances (54.5%) in Data Set || and2& out of the30 instances
(93.3%) in Data Set Ill. We also enumerate the number of tiomesof our new algorithms outperforms
an older algorithm on an instance-by-instance basis; tiigparison is summarized in Talle 7 along with
ties (percentages along a row may not sum exactly to 100%armunhding). The results indicate that
our new algorithms perform better than their older courggrpon a significant number of instances.

| ALG,—; outperforms AG,—3

| ALG,—3 outperforms AG,—,

| Ties |

Data Set | 12 (17.1%) 20 (57.1%) 18 (25.7%)
Data Set Il 4 (18.2%) 15 (68.2%) 3 (13.6)
Data Set Ili 0 (0.0%) 29 (96.7%) 1 (3.3%)
ALG.—> outperforms AG,_z: | ALG,_z: outperforms AG,—o | Ties |
Data Set | 5 (7.1%) 12 (17.1%) 53 (75.7%)
Data Set Il 5 (22.7%) 8 (36.4%) 9 (40.9%)
Data Set Ili 2 (6.7%) 14 (46.7%) 14 (46.7%)

Table 7: An instance-by-instance comparison of old vs. 68Wwg h) algorithms, old vs. new(log D)
algorithms.

Given these positive results, we also wish to knowhoyw muchwe improve. We look at the number of
segments required by an algorithm per instance and cadctiiatratio of these two values; the average
(Ave.), median (Med.), minimum (Min.) and maximum (Max.)tic& over all instances is reported
in Table[8. These values demonstrate thatA_; performs substantially better than.é,—, overall
judging by both the average and median values. In the case®f, A, /,3 and ALG,—», Our gains are
smaller, yet we still observe a small overall improvemedgjng by the average values.

Question 2: Next we address our second question regarding the perfaerafrthe algorithms with an
O(log h) approximation guarantee versus those withCHiog D) approximation guarantee. We restrict
ourselves to a comparison ofLld,—3 and ALG,—»4/13 given the results of the previous discussion. Ta-
ble[d provides the results of our comparison on an instayeiegiance basis. As before, we also calculate
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Ratio of ALG,—3 over ALG,—> | Ratio of ALGQZ% over ALG,—»

Ave. 0.9262 0.9860
Med. 0.9161 1.0000
Data Setl | . 0.6250 0.7000
Max. 1.2000 1.1667
Ave. 0.9074 0.9878
Med. 0.8990 1.0000
Data Setll| . 0.5714 0.8333
Max. 1.1429 1.1818
Ave. 0.9280 0.9650
Med. 0.9230 1.0000
Data Setlll| 0.8627 0.8462
Max. 1.0000 1.0741

Table 8: Average, median, minimum and maximum ratios méagtine extent of our improvements.

the average, median, minimum and maximum ratios on a p&arios basis of AG 24,13 OVer ALG—3;
these statistics are in Taljle] 10.

| | ALGy—3 outperforms AG,_z1 | ALG,_z1 outperforms AGy—s | Ties |
Data Set | 47 (67.1%) 6 (8.6%) 17 (24.3%)
Data Set Il 7 (31.8%) 9 (40.9%) 6 (27.3%)
Data Set 1l 0 (0.0%) 30 (100.0%) 0 (0.0%)

Table 9: An instance-by-instance comparison afzh—3 and ALG,—24/13-

| | Average| Median [ Minimum | Maximum |
Data Setl | 1.1650 | 1.1111| 0.4444 1.8889
Data Setll | 0.9810 | 1.000 0.6250 1.2500
Data Setlll| 0.6413 | 0.6526 | 0.5714 0.7429

Table 10: Average, median, minimum and maximum ratios 66 A_,, /13 over ALG—3.

We can tentatively draw some conclusions from our analydis. observe that wheh and D are
relatively equal, th% - (logs h + 1) approximation can yield superior performance in practicigjng by
both the instance-by-instance comparison in Teble 9 andwbrmge and median values of Tablé 10; this
is certainly the case for Data Set |. However, as Data Sdtuftilates, there are exceptions and neither al-
gorithm is clearly superior here. For the case whetis significantly smaller thah, all statistics suggest
that the24/13 - (log D + 1) approximation can yield substantially better solutions.

Question 3: We address our third question by examining the performahcgioapproximation algo-
rithms against the optimum number of segments. Table 1liges\the average, the median, the worst,
the best, and theest(the smallest) theoretical approximation factor achieligdeach algorithm over
each data set. We observe that the theoretical values apgssimistic as our approximation algorithms
generally do much better. We also note that the theoretaioximation values for AG,—3 are worse
than that of AG,—s sinceh and OPT are not sufficiently large for our theoretical improvemetats
emerge. Relatively small values are required in order to compute the optimum; howeweistill ob-
serve improved performance fromL4,_3; despite the pessimistic approximation guarantee. Moreove
we observe that the approximation algorithms never excaeexpproximation factor o2.25 in practice
and the other statistics demonstrate that the approximéiior can be significantly lower. Indeed, by

15



executing all four approximation algorithms, we never extan approximation factor 6f80 (thisworst
case occurs in Data Set Il withus,,_,4/,3) over all instances in all data sets. Such computations can
be performed easily since these algorithms incur low coatpirtal overhead. By performing such an
operation and taking theestperformance on an instance-by-instance basis, the &tatftesented in
Table[12 can be obtained. In conclusion, the statistics meBall an@ 2 show that these algorithms can
provide very good approximations to the optimum.

| | ALGy—3 | ALGy—3 | ALGa—2 | ALGa—24/13 |

Average| 1.34 1.23 1.44 1.41
Median 1.37 1.24 1.4 1.39
Data Set | | Worst 1.67 2.00 1.83 1.87
Best 1.00 1.00 1.10 1.10
Theory 3.32 3.79 6.64 6.13
Average| 1.66 1.49 1.47 1.44
Data Set II Median 1.56 1.43 1.43 1.44
Worst 2.25 2.00 2.00 1.80
Best 1.40 1.14 1.19 1.12
Theory 4.17 4.65 7.17 6.62
Average| 1.90 1.76 1.17 1.13
Data Set II| Median 1.90 1.76 1.17 1.12
Worst 2.05 1.84 1.40 1.29
Best 1.79 1.65 1.04 1.00
Theory 4.90 5.29 4.00 3.69

Table 11: Statistics on the approximation factors achidwetthe approximation algorithms.

| | Average| Median | Worst | Best |
Data Set | 1.19 1.18 1.50 | 1.00

Data Set Il 1.35 1.36 1.60 | 1.13
Data Setlll| 1.12 1.12 1.29 | 1.00

Table 12: Statistics on thieestapproximation factor achieved by running all approximatidgorithms
on each instance of a data set and taking the best result.

Running Time: Finally, we notethe running times of the approximation algorithms are rgiple. In
particular, all approximation algorithms completed eawstance withinat most0.01 CPU seconds on
Data Set 1,0.02 CPU seconds on Data Set Il, ab240 CPU seconds on Data Set Ill. In contrast, the
running time for computing an optimal solution can be sigaifit. For Data Set Il, the algorithm 6¢f[8]
runs in a reasonable amount of time. However, recall thavahees in this data set are rounded down -
this was done to ensure that an optimal solution could be céedp While incorporating another decimal
place of the data values improves the accuracy of the tredtsodution, the resulting intensity matrices
simply cannot be solved optimally in any reasonable amofiimee due to anh value that has now
become one order of magnitude larger; this is a concern fsgnt-day real-world instances. From a
more forward-looking perspective, larger intensity nts may become feasible as technology advances
(MLCs with 60 leaf pairs currently exist); however, increasing the digiens of the matrix also increases
the running time of the exact algorithm. The impact of thege factors begins to become apparent in
Data Set Ill where computing an optimal solution for certegst cases requires substantial CPU time
(hundreds to thousands of CPU seconds - see Table 5) for atetielarger matrices and fdr < 25.
Therefore, while exact algorithms likel[8] are an extremeljuable approach to solving these problems,
their utility may be limited.
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5 Conclusion

We provided new approximation algorithms for the full-nbasegmentation problem. We first showed
that the single-row segmentation problem is fixed-parantigtetable in the largest value of the intensity
matrix. Using this yields provably good approximate segtagons for the full matrix, after suitably
splitting either the intensity matrix or approximate segma¢ions of its rows according to some base-
representation. Finally, our experimental results dermatesthat our theoretical improvements yield new
algorithms that, in both th®(log h) andO(log D) cases, significantly outperform previous approxima-
tion algorithms in practice and can achieve reasonableoappations to the optimal solution, especially
if executed in concert.

It may be of interest to explore the casebof 4. Can approximation algorithms that perform better
in practice be obtained? Are further heuristic improveraguaissible, such that empirical performance in
practically relevant cases is increased, while maintgidiesirable theoretical approximation guarantees?
Can we more exactly determine the threshhold wheréxtfieg 1) approximation and(log D) approx-
imation lead to differing performance in practice? Finadycomprehensive comparison of heuristic and
approximation algorithms is an interesting avenue of fituork.
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