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Abstract

In this paper, we use the concept of colored edge graphs telrhodhogeneous faults in networks. We then use this
model to study the minimum connectivity (and design) regmients of networks for being robust against homogeneous
faults within certain thresholds. In particular, necegsand sufficient conditions for most interesting cases ateioéd.

For example, we will study the following cases: (1) the numbfecolors (or the number of non-homogeneous network
device types) is one more than the homogeneous fault tHie(®) there is only one homogeneous fault (i.e., only one
color could fail); and (3) the number of non-homogeneousvagk device types is less than five.

1 Background and colored edge graph

In network communications, the communication could faioine nodes or some edges are broken. Though the failure of
a modem could be considered the failure of a node, we can ntloidedcenario also as the failure of the communication
link (the edge) attached to this modem. Thus it is sufficiertdnsider edge failures in communication networks. Itseal
important to note that several nodes (or edges) in a netwaulddail at the same time. For example, all brand X routers
in a network could fail at the same time due to a platform ddpahcomputer worm (virus) attack. In order to design
survivable communication networks, it is essential to dersthis kind of homogeneous faults for networks. Existing
works on network quality of services have not addressedgbige in detail and there is no existing model to study neéwor
reliability in this aspect. In this paper, we use the cologdde graphs which could be used to model homogeneous faults
in networks. The model is then used to optimize the designifigble networks and to study the minimum connectivity
(and design) requirements of networks for being robustreghiomogeneous faults within certain thresholds.

Definition 1.1 A colored edge graphis atup@(V, E, C, f), with V' the node setF the edge set; the color set, and a
map fromE ontoC'. The structure
Zer=4{Z:Z CEand|f(Z) <t}

is called at-color adversary structure. Led, B € V be distinct nodes af’. A, B are called(t + 1)-color connectedor
t > 1if for any color setC; C C of sizet, there is a pattp from A to B in G such that the edges gndo not contain any
color in C;. A colored edge graply is (¢t + 1)-color connectedf and only if for any two nodesl and B in G, they are
(t 4+ 1)-color connected.

The interpretation of the above definition is as follows. Imedwork, if two edges have the same color, then they could
fail at the same time. This may happen when the two edges aignael with same technologies (e.g., with same operating
systems, with same application software, with same hamwarwith same hardware and software). If a colored edge
network is(¢ 4+ 1)-color connected, then the network communication is robgsint the failure of edges of anycolors
(that is, the adversary may tear down arypes of devices).

In practice, one communication link may be attached to difiebrands of network devices (e.g., routers, modems) on
both sides. For this case, the edge can have two differeatscdf any of these colors is broken, the edge is broken. Thus
from a reliability viewpoint, if one designs networks witlid colors on the same edge, the same reliability/securiiybea
obtained by having only one color on each edge. In the folgudiscussion, we will only consider the case with one color
on each edge. Meanwhile, multiple edges between two nodawaallowed either.

We are interested in the following practical questions. &given number. of nodes inV” (i.e., the number of network
nodes), a given numben of the colors (e.g., the number of network device types), agiven numbet, how can we
design &t + 1)-color connected colored edge graghd/, E') with minimum number\ of edges? In another words, how
can we use minimum resources (e.g., communication linkdegign a network that will keep working evertifypes of
devices in the network fail?
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For practical network designs, one needs first to have amat&ion the number of homogeneous faults. For example,
the numbet of brands of routers that could fail at the same time. Thes suifficient to design & + 1)-color connected
network withm = ¢ 4+ 1 colors (e.g., witht + 1 different brands of routers). Necessary and sufficient itimmd for this
kind of network design will be obtained in this paper.

Another important issue that should be taken into constaberan practical network designs is that the numbeof
colors (e.g., the number of brands for routers) is quite bnkar examplen is normally less than five. Necessary and
sufficient conditions for network designs with < 5 and with optimized resources will be obtained in this papete that
for cases with smalh, we may haven > ¢ + 1.

The outline of the paper is as follows. Sect[dn 3 describesnicessary and sufficient conditions for the case of
m = t + 1 without optimizing the number of edges in the networks. ®ed gives a necessary condition for colored
edge networks in terms of optimized number of edges. Sebt&imows that the necessary conditions in Se¢fion 4 are also
sufficient for the most important three cases:«{l)= ¢t + 1; (2) ¢ = 1; and (3)m < 5. SectiorL6 shows that it iSP-hard
to determine whether a given colored edge grafh s 1)-connected.

2 Related works

Though colored-edge graph is a new concept which we useddelmetwork survivability issues, there are related resear
topics in this field. For example, edge-disjoint (colorfefanning trees have been extensively studied in the literésee,
e.g., [2]). These results are mainly related to our disoussi the next section for the casernaf= ¢ + 1. A colored edge
graphG is properif whenever two edges share an end point they carry differalors. A spanning tree for a colored edge
graph is called colorful if no two of its edges have the samerc@wo spanning trees of a graph are edge disjoint if they do
not share common edges. For a non-negative intedet K, denote the complete graph ervertices. A classical result

of Euler states that the edgesig§,, can be partitioned inte isomorphic spanning trees (paths, for example) and each of
these spanning trees can easily be made colorful, but th#ingsedge colored graph usually fails to be proper.

Though it is important to design colored edge graphs withiireg security parameters, for several scenarios it is also
important to calculate the robustness of a given colore@ gglgphs. Roskind and Tarjen [9] designed a greedy algorithm
to find (¢ + 1)-edge disjoint spanning trees in a given graph. This isedl& the question& + 1)-color connectivity for
the case ofn = ¢t + 1. We are not aware of any approximate algorithms for deciging 1)-color connectivity of a given
colored edge graph. Indeed, we will show that this probleNRshard.

3 Necessary and sufficient conditions fom =t + 1

In this section, we show necessary and sufficient condifimnsome special cases.

Lemma 3.1 A colored edge graph&(V, E, C, f) is (t + 1)-color connected if and only if, for ath, io, ..., i;m—t < m,
(V,E;, UE;, U---UEFE; _,)isaconnected graph, whetg , E, ..., E,, is a partition of E under them different colors.

As we have mentioned in the previous section, the classisailtrby Euler states thdf,,, can be partitioned inta
spanning trees. Thus, by Lemimal3.1, we have the followingrére.

Theorem 3.2 (Euler) Forn = 2m, there is a coloratiorG(V, E, C, f) of K,, such thatG is (m — 1)-color connected.
In the following, we extend Theorelm 3.2 to the general case Bf2m.

Lemma 3.3 For n > 2m andm > 2, there exists a grapt(V, E) with |V| = n,|E| = m(n — 1), andE = E; U B2 U
---U E,, such that the following conditions are satisfied:

1. G(V, E;) is a connected graph for all < i < m;

2. E;NE; =0foralli,j <m.

Proof. We prove the Lemma by induction enandm. Forn = 2 andm = 1, the Lemma holds obviously. Assume that
the Lemma holds fong = 2mg.

In the following, we show that the Lemma holds for= ng + 1, m = mg and forn = ng + 2,m = mgy + 1. Let
G(Vo, Eo) be the graph withVy| = ng, |Eo| = mo(no — 1), andEy = EY U E9 U --- U EJ, such that the conditions in
the Lemma are satisfied:

For the case ofi = ng + 1 andm = mg, letV = V, U {u} whereu is a new node that is not ifig, and let
Ey = EY U{(u,u1)}, B2 = ESU{(u,u2)}, ..., Emy = B, U{(u, um,)} Whereuy, us, ..., un, are distinct nodes from



Vo. Itis straightforward to show thaV'| = n, |E| = m(n — 1), G(V, E;) is a connected graph, atgl N E; = ( for all
1,7 < m. Thus the Lemma holds for this case.

For the case of. = ng + 2 andm = mgy + 1, letV = V, U {u, v} whereu, v are new nodes that are notlf, and
defineFs, ..., E,, as follows.

1. SetE,, = 0 andU = 0, whereU is a temporary variable.
2. DefineE;:

(@) Selectan edg@,vs2) € EY.
(b) LetEl = (E? \ {(1)1, UQ)}) U{(vlv u)v (uv 1)), (1}, UQ)}'
(c) LetE,, = E,, U{(v,v1), (v1,v2), (v2,u)} andU = U U {vy, va}.

3. DefineE; for2 < i < my:

(a) Selectvgi_l , U2 ¢ U.
(b) LetFE; = EZO U {(’U,,Ugi_l), (U,Ugi)}.
(C) LetEm = Em U {(1}, 1)21',1), (u, 1)21')} andU = U U {’021'71,’021'}.

It is straightforward to show thdV'| = n,|E;| = (n — 1) (thus|E| = m(n — 1)), G(V, E;) is a connected graph, and
E;NE; =(foralli,j <m. This completes the proof of the Lemma. Q.E.D.

Theorem 3.4 Givenn, m, t withm = ¢+ 1, there exists &t + 1)-color connected colored edge grapf$V, E, C, f) with
|[V| =nand|C| = mifand only ifn > 2m.

Proof. By Lemmd3.1, &t + 1)-color connected colored edge gragh@/, E, C, f) with |V| =nand|C|=m =t +1
contains at leasti(n — 1) edges. Meanwhilez(V, E, C, f) contains at most(n — 1)/2 edges. Thus fon < 2m, we
haven(n — 1)/2 < m(n — 1). In nother words, fon < 2m, there is no(t + 1)-color connected colored edge graphs
G(V,E,C, f) with |V| = nand|C| = m =t + 1. Now the theorem follows from Lemmas B.1 dnd| 3.3. Q.E.D

4 Necessary conditions for general cases

First we note that for a colored edge graptio be(¢ + 1)-color connected, each node must have a degree of atleakt
Thus the total degree of arnode graph should be at least + 1). This implies the following lemma.

Lemma4.1 Form > t+ 1 > 1, and a(¢ + 1)-color connected colored edge grapi{V, E, C, f) with |V| = n, |E| = A,
and|C| = m, we have\ > (¢t + 1)n.

In the following, we use cover free family concepts to study hecessary conditions for colored edge graphs connec-
tivity.

Definition 4.2 Let X be a finite set withX| = X\ and F be a set of mutually disjoint subsetsX¥fwith | 7| = m. Then
(X, F) is called a(\, m)-partition of X if X = (Jp.» P. Letn,t be positive integers. A\, m)-partition (X, F) is
called a(¢; n — 1)-cover free family (oft; n — 1)-CFF(\, m)) if, for anyt elementsBy, ..., B; € F, we have that

‘X\(OBZ> >n—1 <or Zn—l)

It should be noted that our above definition of cover-freeifiais different from the generalized cover-free family
definition for set systems in the literature (see, €.gl, 03).1n [10], a set systenl.X, F) is called &(w, t; n — 1)-cover free
family if for any w blocks A, ..., A,, € F and anyt blocks By, ..., B; € F, one hag (N, 4;) \ (Ui, B)| > n — 1.
Specifically, there are two major differences between(aum)-partition system and the set systems in the literBture

N x\B)
=1

1. For a set systerfiX, F), 7 may contain repeated elements.

2. For a set systerfiX, F), the elements itF are not necessarily mutually disjoint.

1The first author of this paper would like to thank Prof. Doum&ain for pointing this out to the author.



It is straightforward to show that a colored edge grépls (¢ + 1)-color connected if and only if for any color set
C, C C of sizet, after the removal of edges i@ with colors inC;, G remains connected. Assume tlfatcontainsn
nodes. Then a necessary condition for connectivity is¢hebntains at least — 1 edges. From this discussion, we get the
following lemma.

Lemma 4.3 For a colored edge grapltz(V, E, C, f), with [V| = n, |[E| = A, |C| = m, a necessary condition for
G(V, E,C, f) to be(t + 1)-color connected is that th@\, m)-partition (X, F) is a(t; n — 1)-CFF(\, m) with X = E and
F={E.:ceC}whereE, = {e: f(e) =c,e € E}.

In the following, we analyze lower bounds for the numbef edges for the existence of g n — 1)-CFFQ\, m). For a
set partition( X, F) and a positive integer, let

w(X, Fit) = min{‘X\ <OBl>

=1

ZBl,...,BtEJ:}

Itis straightforward to see that(a, m)-partition (X, F) is a(t;n — 1)-CFFQ, m) if and only if u(X, F;t) > n — 1.
Given positive integers, m, ¢, let

p(A,m;t) = max {u(X, F;t) : (X, F)is a(\, m)-partition}
From the above discussion and Lenimd 4.1, we have the foltpthigorem.

Theorem 4.4 Let A\, m, t be given positive integerg.(\, m;t) > n — 1 and2X > (¢ + 1)n are necessary conditions for
the existence of & + 1)-color connected colored edge graphV, E, C, f), with |[V| = n, |E| = A, |C| = m.

Theorem 4.5 Let \, m, t be given positive integers. Then we have

(A mst) = i o2 A= (5] m
HATBE = (m—t) - 2]+ (A= 2]-m—t) otherwise
Proof. For a given(\, m)-partition (X, F), let By, ..., B, be an enumeration of elementsjinsuch that B;| < |B;11]
forall i < m. Itis straightforward to show that(X, F;t) = .7 "|B;|. Thusu(\,m;t) takes the maximum value

if Z;’;t | B;| is maximized. It is straightforward to show that this valeeriaximized when thé\, m)-partition (X, F)
satisfies the following conditions:

1. |Bi|=|2]fori<m— (A= [2]-m),and
2. |Bil= 2] +1form>i>m— (A— 2] -m).

The theorem follows from the above discussion. Q.E.D.

Example 1 Forn =7, A = 10, m = 5, and¢ = 2, we haveu(10,5;2) = 6 = n — 1. However2A = 20 < (t + 1)n = 21.
This shows that the conditi@) > (¢ + 1)n in Theorenii4} is not redundant.

Example 2 There are nqt + 1)-color connected colored edge grapfi$V, E, C, f) for the following special cases:
1.m=2t=1n=3.
2. m=4,t=2,n=4.
3 m=3,t=2,n<5.

Proof. Before we consider the specific cases, we observe that, whandt are fixed, the function. is nondecreasing
when)\ increases.

1. In this case, the maximum value thatould take is3. Thusu(3,2;1) = 1 < n — 1 = 2. That s, there is no
(1;2)-CFF@, 2), which implies the claim. Note that this result also follfstom Theorerh 314.

2. In this case, the maximum value thatould take is5. Thusy(6,4;2) =2 <n —1= 3.

3. We only show this for the case = 3,¢ = 2,n = 5. In this case, the maximum value thatould take isl0. Thus
(10, 3;2) =1 < n — 1 = 4. Note that this result also follows from Theoreml3.4. Q.E.D

The following theorem is a variant of Theoréml4.4.



Theorem 4.6 For m — 1 > t > 0, a necessary condition for the existence ¢f & 1)-color connected colored edge graph
G(V,E,C, f)with |V| =n, |E| = A, and|C| = mis that2\ > (¢ + 1)n and the following conditions are satisfied:

o If n = (m — t)k for some integek > 0, then\ > mk — 1.

o If n = (m —t)k + 1 for some integek > 0, then\ > mk.

e If n = (m — t)k + 2 for some integek > 0, then\ > mk + ¢ + 1.

o .

o If n=(m—t)k+m —t—1for some integek > 0, then\ > mk +m — 2.
Proof. Form > ¢ + 1, by Theoreni 4l5, we have

(m — )k if A=mk'+ifor 0<i<t¢
(m—t)k +1 ifA=mk'+t+1

m—t4+m—-t—1 fAx=mk+m-—1

(A, mst) =

Thus the necessary conditipig\, m;¢) > n — 1 in Theoreni 44 can be interpreted as the following condtion

a2zl ifA=mk' +ifor 0<i<t
pos ) omer A= mE gl

";—’f“ ifAX=mk'+m—1

In other words, for &t + 1)-color connected colored edge graghéV, E, C, f), the followingm — ¢ conditions (the
disjunction not conjunction) are satisfied:

o |V|=n,|E|>m ;%ﬂ and|C| = m.

o |[V|=n,|E|>m Zz;*ﬂ +t+1,and|C| = m.

o [Vl=n,|E|=m "‘—m“ﬂ +m —1,and|C| = m.

m—t

By distinguishing the cases far= (m —t)k,n = (m —t)k + 1, ---, andn = (m — t)k +m — ¢t — 1, and by reorganizing
above lines, these necessary conditions can be intersti followingn — ¢ conditions:

e n=(m—t)kand\ > mk — 1 for somek > 0. Note that this follows from the last line of the above coiudiis (one
can surely take other lines, but then the valua @fould be larger). This comment applies to following casses al

e n=(m—t)k+ 1and\ > mk for somek > 0.

e n=(m—t)k+2and\ > mk 4+t + 1 for somek > 0.

e n=(m—t)k+m—t—1land\ > mk+m — 2 for somek > 0.
Q.E.D.

5 Necessary and sufficient conditions for practical cases (th small m and t)

Generally we are interested in the question whether thessacg condition in Theorerhs 4.4 dndl4.6 are also sufficiant. |
the following, we show that this is true for several impottaractical cases.

Theorem 5.1 The necessary condition in Theorem 4.4 is sufficient for dse ofm = t + 1.



Proof. Since\ — | 2 | - m is the remainder of divided bym, Wetr|V|aIIy havet = m—1> A—|2]-m. Now assume that
m > 2. By Theoreni 45, we have(\, m;t) = 2| < L%J — 1. The rest follows from Theorem3.4. Q.E.D.

Before we show that the necessary conditions in Theofemarlfd.6 are sufficient for the caseof= 1, we first
present two lemmas whose proofs are straightforward.

Lemma 5.2 Forn = m = X\ > 3 andt = 1, the followingm-node circle graph ig1 + 1)-color connected:
{(vla 1)2), (1)2,1)3), ceey (’Um, 1)1)}
with (v, vi41) = ¢; fori < m and f (v, v1) = cm.

Lemma5.3 Fort =1, m > 3,andm < n < 2m — 2, the graph in Figuréll that is defined in the following is+ 1)-color

connected
{(UI7U2)7 (U21 U3)7 ey ('Um,Ul)} U {(Uma Um+l)7 (Um+1,'l}m+2), ceey ('Un, 'Ul)}
with
foi,vip1) =¢ fori<i<m-—1

)
(Um,’Ul) =Cm
f(Um+z 17Um+z) =c¢ fori1<i<n-—-m

)

((’Un,’Ul) = Cn—m+1

Vm

Vm+1

Figure 1: Graph for Lemnia5.3

Theorem 5.4 The necessary conditions in Theoréms 4.4[and 4.6 are safffoiethe case of = 1.

Proof. For the case ofn = 2 andt = 1, it follows from Theoreni 5J1. Now assume that> 2 andt = 1. In this special
case, the necessary conditions in Thedrem 4.6 is as follows:

e n=(m—1)kand\ > mk — 1 for somek > 0.
e n=(m—1)k+ 1and\ > mk for somek > 0.

e n=(m—1)k+2andX > mk + 2 for somek > 0.

e n=(m—1)k+m—2and\ > mk+m — 2 for somek > 0.

In the following we first show that the conditiom'= (m — 1)k + 1 and\ > km” is sufficient. Let the graph in Figufd 2
be defined as follows:

s vO0 \ S
v K
\
\) \)
m-1 m

Figure 2: Graph for the case= (m — 1)k + 1 and\ > km



V = {UOavl "'av(mfl)k}a

E1 = {(vo,v(m_l)Hl) :0 S ) S k— 1}

Ej = {(Vn-1)itj-1:Vm-1)i4j) : 0<i <k —1}for2<j<m—1
En = {(Wm-1)iv0) : 1 <i <k}

FE = FiUE,U---UE,,

For eache € E; with i < m, let f(e) = ¢;. Then itis straightforward to check that the colored edgpbsG(V, E, C, f)
is (1 + 1)-color connectedV | = (m — 1)k + 1, and|E| = mk.

Now we show that the conditiom'= (m—1)k+j and\ > km+j for2 < j < m—1"is sufficient. LetG(V, E, C, f)
be the colored edge graph that we have just constructed Wjth: (m — 1)k + 1, and|E| = mk.

Let V' = V U {v(m-1)k+1,-- > Vm—1)k+j—1)- Define a new colored edge grapitV’, E’, C, f') (see Figurél3) by
attaching the following edges to the-node circle{(vg, v1), (v1,v2), ..., (Um-1,v0)}:

{('Um—lav(mfl)kJrl)a (U(mfl)k+1av(mfl)k+2)a s (U(mfl)kJrjfla Uo)}

The colors for the new edges are defined by letfif{@(,,,—1)k-+i» Vm—1)k+i+1) = civ1 foro <i < j—2andf’ (v(m—1)r+j—1,v0) =
¢;. Itis straightforward to check th&(V’, E’, C, f') is (1 4+ 1)-color connectedV | = (m — 1)k + j, and|E| = mk + j.

Q.E.D.
e vO \\\

\

Vm—l vV

m
\
v |

(m-1)k+1

Figure 3: Graphforcase= (m — 1)k +jandA>km+jfor2<j<m -1

Corollary 5.5 Fort =1 andm, n, A > 1, there exists a1 + 1)-color connected colored edge graphV, E, C, f) with
|[V| =nand|E| = Xif and only if

—1 -2 - 1
A>min<m i ,m i +2,....,m n-mwz m+ +m—-1.
m—1 m—1 m—1

Proof. It follows from the proof of Theoref 5.4. Q.E.D
Theorem 5.6 The conditions in Theorerhs #.4 dnd|4.6 are sufficient for tse ofm = 4,¢ = 2.

Proof. It is sufficient to show that both of the conditions = (m — t)k + 1 andX > km” and “‘n = (m — t)k + 2
and\ > mk + t + 1” are sufficient (note thatn = 4 andt = 2). In the following we first show that the condition
“n=(m —t)k+1and\ > km”is sufficient by induction ork.

For the case of = 2, we haven = 5, \ = 8, m = 4, andt = 2. Let the graphG in Figurel4 be defined as

G = {(v1,v2)1, (v2,v3)2, (v3,v4)1, (Va, V5)3, (U5, V1)2, (V1,V3)3, (V1,V4)4, (V2,0V5)a}

where(v,v’); means that the edde, v") takes colok;. Itis straightforward to check that; is (2 + 1)-color connected.
For the case of = 3, we haven = 7,\ = 12, m = 4, andt = 2. Let the graph&, in Figure[® be defined as

{(v1,v2)1, (v2,v3)2, (V4,v5)3, (vs, v1)2, (V1,V3)3, (V1,V4)4,
(v2,v5)4, (v3,6)1, (V6, V7)3, (V7,V4)1, (V4,V6)4, (v3,v7)2}

where(v,v’); means that the edde, v") takes colok;. Itis straightforward to check that, is (2 + 1)-color connected.

Now for k = 2r (r > 2), we haven = (m — t)k + 1 = 4r + 1 and X = km = 8r. If we glue thev; node ofr copies
of G1, we get a(t + 1)-color connected colored graghwith n = 4r + 1 and\ = 8r. Thus the condition for the case of
k = 2r holds.

Fork =2r+1(r > 2),we haven = (m—t)k+1 = 4r+3 andX\ = km = 8r+4. If we glue glue the;, node ofr — 1
copies ofG; and one copy of72, we get a(t + 1)-color connected colored graghwithn = 4(r — 1)+ 1+ 6 = 4r + 3
andX = 8(r — 1) + 12 = 8r + 4. Thus the condition for the case bf= 2r + 1 holds. This completes the induction.

Forthe condition#, = (m—t)k+2 and\ > mk+t+1", one can add one node to the graph for the case“(m—t)k+1
andX\ > km” with 3 edges (with distinct colors) to any three nodes. The ragutiraph meets the requirements. Q.E.D.

Theoreni5.6 could be extended to the casaicf 5 andt = 3.



vl

V2 v5

v3 v4

Figure 4: Graph, forthecaser =5, m = 4,t =2

vl
v2 %\ V5
v7
v3 v4
v6

Figure 5: GrapltG, for the casen = 7,m = 4,t = 2

Theorem 5.7 The conditions in Theorerhs #.4 dndl4.6 are sufficient for éise ofm = 5 andt = 3.

Proof. It is sufficient to show that both of the conditions = (m — t)k + 1 andA > km” and “n = (m — t)k + 2 and
A > mk +t + 1" are sufficient (note that, — ¢ = 2). In the following we first show that the conditiom'= 2k + 1 and
A > km” is sufficient by induction ork andm.

Form = 5 andk = 2, we haven = 5, A = 10. The graph in Figurel6 shows that the condition is sufficiésd.aFor the
vl

V2 v5

v3 v4
Figure 6: GraplGs ; forthe caser = 5,m = 5,t =3

case ofc = 3, we haven = 7, A = 15. The graph in Figurgl7 shows that the condition is suffici¢st.a

Fork = 2r (r > 2), the condition becomes= (m — ¢)k + 1 = 4r + 1 and\ = km = 10r. If we glue thev; node of
r copies ofGs 1, we get &t + 1)-color connected colored graghwith n = 4r + 1 andA = 10r. Thus the condition for
the case of = 2r holds.

Fork = 2r + 1 (r > 2), the condition becomes = (m — t)k + 1 = 4r + 3 and\ = km = 10r + 5. If we glue
glue thev; node ofr — 1 copies ofG5 ; and one copy of7s 2, we get a(t + 1)-color connected colored graygh with
n=4(r—1)+1+6=4r+3and\ = 10(r — 1) + 15 = 10r + 5. Thus the condition for the case bf= 2r + 1 holds.
This completes the induction.

For the condition fi = (m — t)k + 2 andX > mk + ¢t + 17, we haven = 2k + 2 and\ > 5k + 4. We can add one
node to the graph for the case = (m — t)k + 1 and\ > km” with 4 edges (with distinct colors) to any four nodes. The
resulting graph meets the requirements. Q.E.D.

Open Questions:We showed in this section that the conditions in TheorlemsAd4.6 are sufficient for practical cases.
It would be interesting to show that these conditions are sudficient for general cases. We leave this as an open questi
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Figure 7: GraplG; » forthe caser = 7,m = 5,t =3

6 Hardness results

We have given necessary and sufficient conditiong#af 1)-color connected colored edge graphs. Sometimes, it is also
important to determine whether a given grapl¥is- 1)-color connected. Unfortunately, the following Theoremwsh that
the problem ceConnect @®NP-complete. The ceConnect problem is defined as follows.

INSTANCE: A colored edge grapi = G(V, E, C, f), two nodesd, B € V, and a positive integer< |C/|.
QUESTION: AreA andB t-color connected?

Before we prove the hardness result, we first introduce theet of color separator. For a colored edge graph
G(V,E,C, f), a color separator for two nodesand B of the graphG is a color set”’ C C such that the removal of
all edges with colors i’ from the graphz will disconnect4 and B. It is straightforward to observe that and B are
(t + 1)-color connected if and only there is nize color separator fot and B.

Theorem 6.1 The problem ceConnecté®NP-complete.
Proof. It is straightforward to show that the problem isdoNP. Thus it is sufficient to show that it isSlP-hard. The
reduction is from the Vertex Cover problem. The VC problerasgollows (definition taken froni [7]):

INSTANCE: A graphG = (V, E) and a positive integer< |V|.
QUESTION: Is there a vertex cover of sizer less forG, that is, a subsdt’ C V such thaiV’| < ¢t and, for each edge
(u,v) € E, at least one of; andv belongs toV/'?

For a given instancé& = (V, E) of VC, we construct a colored edge gragh = (V., E., f, C) as follows. First assume
that the vertex sét” is ordered as iV = {v1,...,v,}. Let

Ve = {ABYU{e(v,): (vi,v;) € Eandi < j}
EC - {(Aae(vi,Uj))a (e(ui,Uj)aB) : (Uiavj) S E}
C = {cy:veVy}

~
|

{f(Aae(vi,Uj)) = C’Umf(e(vi,vj)aB) = Cy; ¢ (’Uiavj) EEi< .7}

In the following, we show that there is a vertex cover of size G if and only if there is &-color edge separator f@¥..
Without loss of generality, assume thét= {v], ..., v} } is a vertex cover fo&. Then it is straightforward to show that
C’ = {cy : v € V'} is a color separator fa#,. since each incoming path f@& in G. contains two colors corresponding
to one edgéu;, v;) in G.
For the other direction, assume tl@t= {c,, : ¢« = 1,...,t} is at-color separator fo€.. LetV’ = {v} : ¢,y € C'}.
By the fact that”’ is a color separator faf.., for each edgév;,v;) € Ein G, the path(A, e(,, .,), B) in G contains at
least one color frond”. Since this path contains only two colars andc,,,, we know that; or v; or both belong td”’. In
another word}/’ is at-size vertex cover fo&. This completes the proof of the Theorem. Q.E.D.
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