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Abstract

In this paper, we use the concept of colored edge graphs to model homogeneous faults in networks. We then use this
model to study the minimum connectivity (and design) requirements of networks for being robust against homogeneous
faults within certain thresholds. In particular, necessary and sufficient conditions for most interesting cases are obtained.
For example, we will study the following cases: (1) the number of colors (or the number of non-homogeneous network
device types) is one more than the homogeneous fault threshold; (2) there is only one homogeneous fault (i.e., only one
color could fail); and (3) the number of non-homogeneous network device types is less than five.

1 Background and colored edge graph

In network communications, the communication could fail ifsome nodes or some edges are broken. Though the failure of
a modem could be considered the failure of a node, we can modelthis scenario also as the failure of the communication
link (the edge) attached to this modem. Thus it is sufficient to consider edge failures in communication networks. It is also
important to note that several nodes (or edges) in a network could fail at the same time. For example, all brand X routers
in a network could fail at the same time due to a platform dependent computer worm (virus) attack. In order to design
survivable communication networks, it is essential to consider this kind of homogeneous faults for networks. Existing
works on network quality of services have not addressed thisissue in detail and there is no existing model to study network
reliability in this aspect. In this paper, we use the colorededge graphs which could be used to model homogeneous faults
in networks. The model is then used to optimize the design of survivable networks and to study the minimum connectivity
(and design) requirements of networks for being robust against homogeneous faults within certain thresholds.

Definition 1.1 A colored edge graph is a tupleG(V,E,C, f), with V the node set,E the edge set,C the color set, andf a
map fromE ontoC. The structure

ZC,t = {Z : Z ⊆ E and |f(Z)| ≤ t}.

is called at-color adversary structure. LetA,B ∈ V be distinct nodes ofG. A,B are called(t + 1)-color connectedfor
t ≥ 1 if for any color setCt ⊆ C of sizet, there is a pathp fromA to B in G such that the edges onp do not contain any
color in Ct. A colored edge graphG is (t + 1)-color connectedif and only if for any two nodesA andB in G, they are
(t+ 1)-color connected.

The interpretation of the above definition is as follows. In anetwork, if two edges have the same color, then they could
fail at the same time. This may happen when the two edges are designed with same technologies (e.g., with same operating
systems, with same application software, with same hardware, or with same hardware and software). If a colored edge
network is(t + 1)-color connected, then the network communication is robustagaint the failure of edges of anyt colors
(that is, the adversary may tear down anyt types of devices).

In practice, one communication link may be attached to different brands of network devices (e.g., routers, modems) on
both sides. For this case, the edge can have two different colors. If any of these colors is broken, the edge is broken. Thus
from a reliability viewpoint, if one designs networks with two colors on the same edge, the same reliability/security can be
obtained by having only one color on each edge. In the following discussion, we will only consider the case with one color
on each edge. Meanwhile, multiple edges between two nodes are not allowed either.

We are interested in the following practical questions. Fora given numbern of nodes inV (i.e., the number of network
nodes), a given numberm of the colors (e.g., the number of network device types), anda given numbert, how can we
design a(t + 1)-color connected colored edge graphsG(V,E) with minimum numberλ of edges? In another words, how
can we use minimum resources (e.g., communication links) todesign a network that will keep working even ift types of
devices in the network fail?
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For practical network designs, one needs first to have an estimate on the number of homogeneous faults. For example,
the numbert of brands of routers that could fail at the same time. Then it is sufficient to design a(t + 1)-color connected
network withm = t + 1 colors (e.g., witht + 1 different brands of routers). Necessary and sufficient conditions for this
kind of network design will be obtained in this paper.

Another important issue that should be taken into consideration in practical network designs is that the numberm of
colors (e.g., the number of brands for routers) is quite small. For example,m is normally less than five. Necessary and
sufficient conditions for network designs withm ≤ 5 and with optimized resources will be obtained in this paper.Note that
for cases with smallm, we may havem > t+ 1.

The outline of the paper is as follows. Section 3 describes the necessary and sufficient conditions for the case of
m = t + 1 without optimizing the number of edges in the networks. Section 4 gives a necessary condition for colored
edge networks in terms of optimized number of edges. Section5 shows that the necessary conditions in Section 4 are also
sufficient for the most important three cases: (1)m = t + 1; (2) t = 1; and (3)m ≤ 5. Section 6 shows that it isNP-hard
to determine whether a given colored edge graph is(t+ 1)-connected.

2 Related works

Though colored-edge graph is a new concept which we used to model network survivability issues, there are related research
topics in this field. For example, edge-disjoint (colorful)spanning trees have been extensively studied in the literature (see,
e.g., [2]). These results are mainly related to our discussion in the next section for the case ofm = t + 1. A colored edge
graphG is proper if whenever two edges share an end point they carry differentcolors. A spanning tree for a colored edge
graph is called colorful if no two of its edges have the same color. Two spanning trees of a graph are edge disjoint if they do
not share common edges. For a non-negative integers, let Ks denote the complete graph ons vertices. A classical result
of Euler states that the edges ofK2n can be partitioned inton isomorphic spanning trees (paths, for example) and each of
these spanning trees can easily be made colorful, but the resulting edge colored graph usually fails to be proper.

Though it is important to design colored edge graphs with required security parameters, for several scenarios it is also
important to calculate the robustness of a given colored edge graphs. Roskind and Tarjan [9] designed a greedy algorithm
to find (t + 1)-edge disjoint spanning trees in a given graph. This is related to the questions(t + 1)-color connectivity for
the case ofm = t+ 1. We are not aware of any approximate algorithms for deciding(t + 1)-color connectivity of a given
colored edge graph. Indeed, we will show that this problem isNP-hard.

3 Necessary and sufficient conditions form = t+ 1

In this section, we show necessary and sufficient conditionsfor some special cases.

Lemma 3.1 A colored edge graphsG(V,E,C, f) is (t + 1)-color connected if and only if, for alli1, i2, . . ., im−t ≤ m,
(V,Ei1 ∪Ei2 ∪ · · · ∪Eim−t

) is a connected graph, whereE1, E2, . . . , Em is a partition ofE under them different colors.

As we have mentioned in the previous section, the classical result by Euler states thatK2n can be partitioned inton
spanning trees. Thus, by Lemma 3.1, we have the following theorem.

Theorem 3.2 (Euler) Forn = 2m, there is a colorationG(V,E,C, f) ofKn such thatG is (m− 1)-color connected.

In the following, we extend Theorem 3.2 to the general case ofn ≥ 2m.

Lemma 3.3 For n ≥ 2m andm ≥ 2, there exists a graphG(V,E) with |V | = n, |E| = m(n − 1), andE = E1 ∪ E2 ∪
· · · ∪ Em such that the following conditions are satisfied:

1. G(V,Ei) is a connected graph for all0 < i ≤ m;

2. Ei ∩ Ej = ∅ for all i, j ≤ m.

Proof. We prove the Lemma by induction onn andm. Forn = 2 andm = 1, the Lemma holds obviously. Assume that
the Lemma holds forn0 = 2m0.

In the following, we show that the Lemma holds forn = n0 + 1,m = m0 and forn = n0 + 2,m = m0 + 1. Let
G(V0, E0) be the graph with|V0| = n0, |E0| = m0(n0 − 1), andE0 = E0

1 ∪ E0
2 ∪ · · · ∪ E0

m0
such that the conditions in

the Lemma are satisfied:
For the case ofn = n0 + 1 andm = m0, let V = V0 ∪ {u} whereu is a new node that is not inV0, and let

E1 = E0
1 ∪{(u, u1)}, E2 = E0

2 ∪{(u, u2)}, . . ., Em0
= E0

m0
∪{(u, um0

)} whereu1, u2, . . . , um0
are distinct nodes from
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V0. It is straightforward to show that|V | = n, |E| = m(n − 1), G(V,Ei) is a connected graph, andEi ∩ Ej = ∅ for all
i, j ≤ m. Thus the Lemma holds for this case.

For the case ofn = n0 + 2 andm = m0 + 1, let V = V0 ∪ {u, v} whereu, v are new nodes that are not inV0, and
defineE1, . . . , Em as follows.

1. SetEm = ∅ andU = ∅, whereU is a temporary variable.

2. DefineE1:

(a) Select an edge(v1, v2) ∈ E0
1 .

(b) LetE1 =
(

E0
1 \ {(v1, v2)}

)
⋃

{(v1, u), (u, v), (v, v2)}.

(c) LetEm = Em ∪ {(v, v1), (v1, v2), (v2, u)} andU = U ∪ {v1, v2}.

3. DefineEi for 2 ≤ i ≤ m0:

(a) Selectv2i−1, v2i /∈ U .

(b) LetEi = E0
i ∪ {(u, v2i−1), (v, v2i)}.

(c) LetEm = Em ∪ {(v, v2i−1), (u, v2i)} andU = U ∪ {v2i−1, v2i}.

It is straightforward to show that|V | = n, |Ei| = (n − 1) (thus |E| = m(n − 1)), G(V,Ei) is a connected graph, and
Ei ∩ Ej = ∅ for all i, j ≤ m. This completes the proof of the Lemma. Q.E.D.

Theorem 3.4 Givenn,m, t withm = t+1, there exists a(t+1)-color connected colored edge graphsG(V,E,C, f) with
|V | = n and|C| = m if and only ifn ≥ 2m.

Proof. By Lemma 3.1, a(t + 1)-color connected colored edge graphsG(V,E,C, f) with |V | = n and|C| = m = t + 1
contains at leastm(n − 1) edges. Meanwhile,G(V,E,C, f) contains at mostn(n − 1)/2 edges. Thus forn < 2m, we
haven(n − 1)/2 < m(n − 1). In nother words, forn < 2m, there is no(t + 1)-color connected colored edge graphs
G(V,E,C, f) with |V | = n and|C| = m = t+ 1. Now the theorem follows from Lemmas 3.1 and 3.3. Q.E.D

4 Necessary conditions for general cases

First we note that for a colored edge graphG to be(t+ 1)-color connected, each node must have a degree of at leastt+ 1.
Thus the total degree of ann-node graph should be at leastn(t+ 1). This implies the following lemma.

Lemma 4.1 For m ≥ t+ 1 > 1, and a(t+ 1)-color connected colored edge graphG(V,E,C, f) with |V | = n, |E| = λ,
and|C| = m, we have2λ ≥ (t+ 1)n.

In the following, we use cover free family concepts to study the necessary conditions for colored edge graphs connec-
tivity.

Definition 4.2 LetX be a finite set with|X | = λ andF be a set of mutually disjoint subsets ofX with |F| = m. Then
(X,F) is called a(λ,m)-partition of X if X =

⋃

P∈F
P . Let n, t be positive integers. An(λ,m)-partition (X,F) is

called a(t;n− 1)-cover free family (or(t;n− 1)-CFF(λ,m)) if, for anyt elementsB1, . . . , Bt ∈ F , we have that
∣

∣

∣

∣

∣

X \

(

t
⋃

i=1

Bi

)
∣

∣

∣

∣

∣

≥ n− 1

(

or

∣

∣

∣

∣

∣

t
⋂

i=1

(X \Bi)

∣

∣

∣

∣

∣

≥ n− 1

)

It should be noted that our above definition of cover-free family is different from the generalized cover-free family
definition for set systems in the literature (see, e.g., [6, 10]). In [10], a set system(X,F) is called a(w, t;n− 1)-cover free
family if for any w blocksA1, . . . , Aw ∈ F and anyt blocksB1, . . . , Bt ∈ F , one has

∣

∣

(

∩w
j=1Aj

)

\ (∪t
i=1Bi)

∣

∣ ≥ n− 1.
Specifically, there are two major differences between our(λ,m)-partition system and the set systems in the literature1.

1. For a set system(X,F), F may contain repeated elements.

2. For a set system(X,F), the elements inF are not necessarily mutually disjoint.

1The first author of this paper would like to thank Prof. Doug Stinson for pointing this out to the author.
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It is straightforward to show that a colored edge graphG is (t + 1)-color connected if and only if for any color set
Ct ⊆ C of size t, after the removal of edges inG with colors inCt, G remains connected. Assume thatG containsn
nodes. Then a necessary condition for connectivity is thatG contains at leastn− 1 edges. From this discussion, we get the
following lemma.

Lemma 4.3 For a colored edge graphG(V,E,C, f), with |V | = n, |E| = λ, |C| = m, a necessary condition for
G(V,E,C, f) to be(t+1)-color connected is that the(λ,m)-partition (X,F) is a (t;n− 1)-CFF(λ,m) withX = E and
F = {Ec : c ∈ C} whereEc = {e : f(e) = c, e ∈ E}.

In the following, we analyze lower bounds for the numberλ of edges for the existence of a(t;n− 1)-CFF(λ,m). For a
set partition(X,F) and a positive integert, let

µ(X,F ; t) = min

{∣

∣

∣

∣

∣

X \

(

t
⋃

i=1

Bi

)∣

∣

∣

∣

∣

: B1, . . . , Bt ∈ F

}

It is straightforward to see that a(λ,m)-partition(X,F) is a(t;n− 1)-CFF(λ,m) if and only if µ(X,F ; t) ≥ n− 1.
Given positive integersλ,m, t, let

µ(λ,m; t) = max {µ(X,F ; t) : (X,F) is a(λ,m)-partition}

From the above discussion and Lemma 4.1, we have the following theorem.

Theorem 4.4 Let λ,m, t be given positive integers.µ(λ,m; t) ≥ n − 1 and2λ ≥ (t + 1)n are necessary conditions for
the existence of a(t+ 1)-color connected colored edge graphG(V,E,C, f), with |V | = n, |E| = λ, |C| = m.

Theorem 4.5 Letλ,m, t be given positive integers. Then we have

µ(λ,m; t) =

{

(m− t) · ⌊ λ
m
⌋ if t ≥ λ− ⌊ λ

m
⌋ ·m

(m− t) · ⌊ λ
m
⌋+

(

λ− ⌊ λ
m
⌋ ·m− t

)

otherwise

Proof. For a given(λ,m)-partition(X,F), let B1, . . . , Bm be an enumeration of elements inF such that|Bi| ≤ |Bi+1|
for all i < m. It is straightforward to show thatµ(X,F ; t) =

∑m−t

i=1 |Bi|. Thusµ(λ,m; t) takes the maximum value
if
∑m−t

i=1 |Bi| is maximized. It is straightforward to show that this value is maximized when the(λ,m)-partition (X,F)
satisfies the following conditions:

1. |Bi| = ⌊ λ
m
⌋ for i ≤ m−

(

λ− ⌊ λ
m
⌋ ·m

)

, and

2. |Bi| = ⌊ λ
m
⌋+ 1 for m ≥ i > m−

(

λ− ⌊ λ
m
⌋ ·m

)

.

The theorem follows from the above discussion. Q.E.D.

Example 1 For n = 7, λ = 10,m = 5, andt = 2, we haveµ(10, 5; 2) = 6 = n− 1. However,2λ = 20 < (t+ 1)n = 21.
This shows that the condition2λ ≥ (t+ 1)n in Theorem 4.4 is not redundant.

Example 2 There are no(t+ 1)-color connected colored edge graphsG(V,E,C, f) for the following special cases:

1. m = 2, t = 1, n = 3.

2. m = 4, t = 2, n = 4.

3. m = 3, t = 2, n ≤ 5.

Proof. Before we consider the specific cases, we observe that, whenm andt are fixed, the functionµ is nondecreasing
whenλ increases.

1. In this case, the maximum value thatλ could take is3. Thusµ(3, 2; 1) = 1 < n − 1 = 2. That is, there is no
(1; 2)-CFF(3, 2), which implies the claim. Note that this result also follows from Theorem 3.4.

2. In this case, the maximum value thatλ could take is6. Thusµ(6, 4; 2) = 2 < n− 1 = 3.
3. We only show this for the casem = 3, t = 2, n = 5. In this case, the maximum value thatλ could take is10. Thus

µ(10, 3; 2) = 1 < n− 1 = 4. Note that this result also follows from Theorem 3.4. Q.E.D

The following theorem is a variant of Theorem 4.4.
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Theorem 4.6 For m− 1 > t > 0, a necessary condition for the existence of a(t+ 1)-color connected colored edge graph
G(V,E,C, f) with |V | = n, |E| = λ, and|C| = m is that2λ ≥ (t+ 1)n and the following conditions are satisfied:

• If n = (m− t)k for some integerk > 0, thenλ ≥ mk − 1.

• If n = (m− t)k + 1 for some integerk > 0, thenλ ≥ mk.

• If n = (m− t)k + 2 for some integerk > 0, thenλ ≥ mk + t+ 1.

• · · · · · ·

• If n = (m− t)k +m− t− 1 for some integerk > 0, thenλ ≥ mk +m− 2.

Proof. Form > t+ 1, by Theorem 4.5, we have

µ(λ,m; t) =















(m− t)k′ if λ = mk′ + i for 0 ≤ i ≤ t
(m− t)k′ + 1 if λ = mk′ + t+ 1
· · · · · ·
(m− t)k′ +m− t− 1 if λ = mk′ +m− 1

Thus the necessary conditionµ(λ,m; t) ≥ n− 1 in Theorem 4.4 can be interpreted as the following conditions:

k′ ≥























n−1
m−t

if λ = mk′ + i for 0 ≤ i ≤ t
n−2
m−t

if λ = mk′ + t+ 1

· · · · · ·
n−m+t
m−t

if λ = mk′ +m− 1

In other words, for a(t + 1)-color connected colored edge graphsG(V,E,C, f), the followingm − t conditions (the
disjunction not conjunction) are satisfied:

• |V | = n, |E| ≥ m
⌈

n−1
m−t

⌉

, and|C| = m.

• |V | = n, |E| ≥ m
⌈

n−2
m−t

⌉

+ t+ 1, and|C| = m.

• · · · · · ·

• |V | = n, |E| ≥ m
⌈

n−m+t
m−t

⌉

+m− 1, and|C| = m.

By distinguishing the cases forn = (m− t)k, n = (m− t)k+1, · · ·, andn = (m− t)k+m− t− 1, and by reorganizing
above lines, these necessary conditions can be interpretedas the followingm− t conditions:

• n = (m− t)k andλ ≥ mk− 1 for somek > 0. Note that this follows from the last line of the above conditions (one
can surely take other lines, but then the value ofλ would be larger). This comment applies to following cases also.

• n = (m− t)k + 1 andλ ≥ mk for somek > 0.

• n = (m− t)k + 2 andλ ≥ mk + t+ 1 for somek > 0.

• · · · · · ·

• n = (m− t)k +m− t− 1 andλ ≥ mk +m− 2 for somek > 0.

Q.E.D.

5 Necessary and sufficient conditions for practical cases (with small m and t)

Generally we are interested in the question whether the necessary condition in Theorems 4.4 and 4.6 are also sufficient. In
the following, we show that this is true for several important practical cases.

Theorem 5.1 The necessary condition in Theorem 4.4 is sufficient for the case ofm = t+ 1.
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Proof. Sinceλ−⌊ λ
m
⌋ ·m is the remainder ofλ divided bym, we trivially havet = m−1 ≥ λ−⌊ λ

m
⌋ ·m. Now assume that

m > n
2 . By Theorem 4.5, we haveµ(λ,m; t) = ⌊ λ

m
⌋ ≤ ⌊n(n−1)

2m ⌋ < n− 1. The rest follows from Theorem 3.4. Q.E.D.

Before we show that the necessary conditions in Theorems 4.4and 4.6 are sufficient for the case oft = 1, we first
present two lemmas whose proofs are straightforward.

Lemma 5.2 For n = m = λ ≥ 3 andt = 1, the followingm-node circle graph is(1 + 1)-color connected:

{(v1, v2), (v2, v3), . . . , (vm, v1)}

with f(vi, vi+1) = ci for i < m andf(vm, v1) = cm.

Lemma 5.3 For t = 1,m ≥ 3, andm < n ≤ 2m− 2, the graph in Figure 1 that is defined in the following is(1+1)-color
connected

{(v1, v2), (v2, v3), . . . , (vm, v1)} ∪ {(vm, vm+1), (vm+1, vm+2), . . . , (vn, v1)}

with
f(vi, vi+1) = ci for 1 ≤ i ≤ m− 1
f(vm, v1) = cm

f(vm+i−1, vm+i) = ci for 1 ≤ i ≤ n−m
f((vn, v1)) = cn−m+1

v

v1
v2

v3

v4

vm+1

m

Figure 1: Graph for Lemma 5.3

Theorem 5.4 The necessary conditions in Theorems 4.4 and 4.6 are sufficient for the case oft = 1.

Proof. For the case ofm = 2 andt = 1, it follows from Theorem 5.1. Now assume thatm > 2 andt = 1. In this special
case, the necessary conditions in Theorem 4.6 is as follows:

• n = (m− 1)k andλ ≥ mk − 1 for somek > 0.

• n = (m− 1)k + 1 andλ ≥ mk for somek > 0.

• n = (m− 1)k + 2 andλ ≥ mk + 2 for somek > 0.

• · · · · · ·

• n = (m− 1)k +m− 2 andλ ≥ mk +m− 2 for somek > 0.

In the following we first show that the condition “n = (m − 1)k + 1 andλ ≥ km” is sufficient. Let the graph in Figure 2
be defined as follows:

m−1

...  ... ... ...

v0
v1

vv
m

Figure 2: Graph for the casen = (m− 1)k + 1 andλ ≥ km
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V = {v0, v1 · · · , v(m−1)k},
E1 = {(v0, v(m−1)i+1) : 0 ≤ i ≤ k − 1}
Ej = {(v(m−1)i+j−1, v(m−1)i+j) : 0 ≤ i ≤ k − 1} for 2 ≤ j ≤ m− 1
Em = {(v(m−1)i, v0) : 1 ≤ i ≤ k}
E = E1 ∪ E2 ∪ · · · ∪ Em

For eache ∈ Ej with i ≤ m, let f(e) = cj . Then it is straightforward to check that the colored edge graphsG(V,E,C, f)
is (1 + 1)-color connected,|V | = (m− 1)k + 1, and|E| = mk.

Now we show that the condition “n = (m−1)k+j andλ ≥ km+j for 2 ≤ j ≤ m−1” is sufficient. LetG(V,E,C, f)
be the colored edge graph that we have just constructed with|V | = (m− 1)k + 1, and|E| = mk.

Let V ′ = V ∪ {v(m−1)k+1, . . . , v(m−1)k+j−1}. Define a new colored edge graphG(V ′, E′, C, f ′) (see Figure 3) by
attaching the following edges to them-node circle{(v0, v1), (v1, v2), . . . , (vm−1, v0)}:

{(vm−1, v(m−1)k+1), (v(m−1)k+1, v(m−1)k+2), . . . , (v(m−1)k+j−1, v0)}

The colors for the new edges are defined by lettingf ′(v(m−1)k+i, v(m−1)k+i+1) = ci+1 for 0 ≤ i ≤ j−2 andf ′(v(m−1)k+j−1, v0) =
cj . It is straightforward to check thatG(V ′, E′, C, f ′) is (1 + 1)-color connected,|V | = (m− 1)k+ j, and|E| = mk+ j.

Q.E.D.

(m−1)k+1

...  ... ... ...

v0
v1

v

v
m−1 v

m

Figure 3: Graph for casen = (m− 1)k + j andλ ≥ km+ j for 2 ≤ j ≤ m− 1

Corollary 5.5 For t = 1 andm, n, λ > 1, there exists an(1 + 1)-color connected colored edge graphG(V,E,C, f) with
|V | = n and|E| = λ if and only if

λ ≥ min

{

m

⌈

n− 1

m− 1

⌉

,m

⌈

n− 2

m− 1

⌉

+ 2, . . . ,m

⌈

n−m+ 1

m− 1

⌉

+m− 1

}

.

Proof. It follows from the proof of Theorem 5.4. Q.E.D

Theorem 5.6 The conditions in Theorems 4.4 and 4.6 are sufficient for the case ofm = 4, t = 2.

Proof. It is sufficient to show that both of the conditions “n = (m − t)k + 1 andλ ≥ km” and “n = (m − t)k + 2
andλ ≥ mk + t + 1” are sufficient (note thatm = 4 and t = 2). In the following we first show that the condition
“n = (m− t)k + 1 andλ ≥ km” is sufficient by induction onk.

For the case ofk = 2, we haven = 5, λ = 8,m = 4, andt = 2. Let the graphG1 in Figure 4 be defined as

G1 = {(v1, v2)1, (v2, v3)2, (v3, v4)1, (v4, v5)3, (v5, v1)2, (v1, v3)3, (v1, v4)4, (v2, v5)4}

where(v, v′)i means that the edge(v, v′) takes colorci. It is straightforward to check thatG1 is (2 + 1)-color connected.
For the case ofk = 3, we haven = 7, λ = 12,m = 4, andt = 2. Let the graphG2 in Figure 5 be defined as

{(v1, v2)1, (v2, v3)2, (v4, v5)3, (v5, v1)2, (v1, v3)3, (v1, v4)4,
(v2, v5)4, (v3, v6)1, (v6, v7)3, (v7, v4)1, (v4, v6)4, (v3, v7)2}

where(v, v′)i means that the edge(v, v′) takes colorci. It is straightforward to check thatG2 is (2 + 1)-color connected.
Now for k = 2r (r ≥ 2), we haven = (m− t)k + 1 = 4r + 1 andλ = km = 8r. If we glue thev1 node ofr copies

of G1, we get a(t + 1)-color connected colored graphG with n = 4r + 1 andλ = 8r. Thus the condition for the case of
k = 2r holds.

Fork = 2r+1 (r ≥ 2), we haven = (m− t)k+1 = 4r+3 andλ = km = 8r+4. If we glue glue thev1 node ofr−1
copies ofG1 and one copy ofG2, we get a(t+ 1)-color connected colored graphG with n = 4(r − 1) + 1 + 6 = 4r + 3
andλ = 8(r − 1) + 12 = 8r + 4. Thus the condition for the case ofk = 2r + 1 holds. This completes the induction.

For the condition “n = (m−t)k+2 andλ ≥ mk+t+1”, one can add one node to the graph for the case “n = (m−t)k+1
andλ ≥ km” with 3 edges (with distinct colors) to any three nodes. The resulting graph meets the requirements. Q.E.D.

Theorem 5.6 could be extended to the case ofm = 5 andt = 3.
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Figure 4: GraphG1 for the casen = 5,m = 4, t = 2
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Figure 5: GraphG2 for the casen = 7,m = 4, t = 2

Theorem 5.7 The conditions in Theorems 4.4 and 4.6 are sufficient for the case ofm = 5 andt = 3.

Proof. It is sufficient to show that both of the conditions “n = (m − t)k + 1 andλ ≥ km” and “n = (m − t)k + 2 and
λ ≥ mk + t + 1” are sufficient (note thatm − t = 2). In the following we first show that the condition “n = 2k + 1 and
λ ≥ km” is sufficient by induction onk andm.

Form = 5 andk = 2, we haven = 5, λ = 10. The graph in Figure 6 shows that the condition is sufficient also. For the

v5

v1

v3 v4

v2

Figure 6: GraphG5,1 for the casen = 5,m = 5, t = 3

case ofk = 3, we haven = 7, λ = 15. The graph in Figure 7 shows that the condition is sufficient also.
Fork = 2r (r ≥ 2), the condition becomesn = (m− t)k + 1 = 4r + 1 andλ = km = 10r. If we glue thev1 node of

r copies ofG5,1, we get a(t+ 1)-color connected colored graphG with n = 4r + 1 andλ = 10r. Thus the condition for
the case ofk = 2r holds.

For k = 2r + 1 (r ≥ 2), the condition becomesn = (m − t)k + 1 = 4r + 3 andλ = km = 10r + 5. If we glue
glue thev1 node ofr − 1 copies ofG5,1 and one copy ofG5,2, we get a(t + 1)-color connected colored graphG with
n = 4(r − 1) + 1 + 6 = 4r + 3 andλ = 10(r − 1) + 15 = 10r + 5. Thus the condition for the case ofk = 2r + 1 holds.
This completes the induction.

For the condition “n = (m − t)k + 2 andλ ≥ mk + t + 1”, we haven = 2k + 2 andλ ≥ 5k + 4. We can add one
node to the graph for the case “n = (m− t)k + 1 andλ ≥ km” with 4 edges (with distinct colors) to any four nodes. The
resulting graph meets the requirements. Q.E.D.

Open Questions:We showed in this section that the conditions in Theorems 4.4and 4.6 are sufficient for practical cases.
It would be interesting to show that these conditions are also sufficient for general cases. We leave this as an open question.
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Figure 7: GraphG5,2 for the casen = 7,m = 5, t = 3

6 Hardness results

We have given necessary and sufficient conditions for(t + 1)-color connected colored edge graphs. Sometimes, it is also
important to determine whether a given graph is(t+ 1)-color connected. Unfortunately, the following Theorem shows that
the problem ceConnect iscoNP-complete. The ceConnect problem is defined as follows.

INSTANCE: A colored edge graphG = G(V,E,C, f), two nodesA,B ∈ V , and a positive integert ≤ |C|.
QUESTION: AreA andB t-color connected?

Before we prove the hardness result, we first introduce the concept of color separator. For a colored edge graphG =
G(V,E,C, f), a color separator for two nodesA andB of the graphG is a color setC′ ⊆ C such that the removal of
all edges with colors inC′ from the graphG will disconnectA andB. It is straightforward to observe thatA andB are
(t+ 1)-color connected if and only there is not-size color separator forA andB.

Theorem 6.1 The problem ceConnect iscoNP-complete.

Proof. It is straightforward to show that the problem is incoNP. Thus it is sufficient to show that it isNP-hard. The
reduction is from the Vertex Cover problem. The VC problem isas follows (definition taken from [7]):

INSTANCE: A graphG = (V,E) and a positive integert ≤ |V |.
QUESTION: Is there a vertex cover of sizet or less forG, that is, a subsetV ′ ⊆ V such that|V ′| ≤ t and, for each edge
(u, v) ∈ E, at least one ofu andv belongs toV ′?

For a given instanceG = (V,E) of VC, we construct a colored edge graphGc = (Vc, Ec, f, C) as follows. First assume
that the vertex setV is ordered as inV = {v1, . . . , vn}. Let

Vc = {A,B}
⋃
{

e(vi,vj) : (vi, vj) ∈ E andi < j
}

Ec =
{

(A, e(vi,vj)), (e(vi,vj), B) : (vi, vj) ∈ E
}

C = {cv : v ∈ V }
f =

{

f(A, e(vi,vj)) = cvi , f(e(vi,vj), B) = cvj : (vi, vj) ∈ E, i < j
}

In the following, we show that there is a vertex cover of sizet in G if and only if there is at-color edge separator forGc.
Without loss of generality, assume thatV ′ = {v′1, . . . , v

′
k} is a vertex cover forG. Then it is straightforward to show that

C′ = {cv′

i
: v′i ∈ V ′} is a color separator forGc since each incoming path forB in Gc contains two colors corresponding

to one edge(vi, vj) in G.
For the other direction, assume thatC′ = {cv′

i
: i = 1, . . . , t} is at-color separator forGc. Let V ′ = {v′i : cv′

i
∈ C′}.

By the fact thatC′ is a color separator forGc, for each edge(vi, vj) ∈ E in G, the path(A, e(vi,vj), B) in Gc contains at
least one color fromC′. Since this path contains only two colorscvi andcvj , we know thatvi or vj or both belong toV ′. In
another word,V ′ is at-size vertex cover forG. This completes the proof of the Theorem. Q.E.D.
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