arXiv:1103.2275v1l [cs.DS] 11 Mar 2011

Channel Assignment via Fast Zeta Transform

Marek Cygan and Yukasz Kowalik
Institute of Informatics, University of Warsaw
{cygan,kowalik}@mimuw.edu.pl

Abstract

We show an O*((¢ + 1)™)-time algorithm for the channel assign-
ment problem, where ¢ is the maximum edge weight. This improves
on the previous O*((£ 4+ 2)™)-time algorithm by Kral [4], as well as
algorithms for important special cases, like L(2,1)-labelling. For the
latter problem, our algorithm works in O*(3™) time. The progress is
achieved by applying the fast zeta transform in combination with the
inclusion-exclusion principle.

1 Introduction

In the channel assignment problem, we are given a symmetric weight function
w : V2 — N (we assume that 0 € N). The elements of V will be called
vertices (as w induces a graph on the vertex set V' with edges corresponding
to positive values of w). We say that w is £~-bounded when for every z,y € V
we have w(z,y) < £. An assignment ¢ : V — {1,..., s} is called proper when
for each pair of vertices x,y we have |c(x) — c¢(y)| > w(z,y). The number s
is called the span of c. The goal is to find a proper assignment of minimum
span. Note that the special case when w is 1-bounded corresponds to the
classical graph coloring problem.

In this paper we deal with exact algorithms for the channel assign-
ment problem. As a generalization of graph coloring, the decision version
of channel assignment is NP-complete. It follows that the existence of a
polynomial-time algorithm is unlikely. As a consequence, researchers began
to study exponential-time algorithms for the channel assignment problem.
The asymptotic efficiency of these algorithms is measured in terms of n = |V/|
and ¢, we assume that £ is a constant. The first non-trivial algorithm was
proposed by McDiarmid [5] and had running time of O(n?(2¢+ 1)"). It was
then improved by Kral [4] to O(n(f + 2)").

Here we improve the running time further to O*((¢ + 1)". We also
show that the number of all proper assignments can be found in the same
time bound. Note that for £ = 1 the running time of our algorithm matches

By O*() we suppress polynomially bounded terms.

http://arxiv.org/abs/1103.2275v1

the time complexity of the currently fastest algorithm for graph coloring by
Bjorklund, Husfeldt and Koivisto [1].

Our improvement is achieved by applying the fast zeta transform in com-
bination with the inclusion-exclusion principle. The same ingredients were
used also in a set partition problem in [I], however in our algorithm the
fast zeta transform plays a different role. In particular, although channel
assignment resembles a kind of set partition it does not seem to be possible
to solve it by a direct application of the algorithm from [I].

Some special cases of the channel assignment problem received particular
attention. An important example is the L(p,q)-labeling of graphs, where
given an undirected graph G = (V, E) one has to find an assignment c :
V' — N such that if vertices u and v are adjacent then |c(u) — c¢(v)] > p
and if vertices u and v are at distance 2 then |c(u) — ¢(v)| > g. The goal
is to minimize max,cy c(v). Clearly, the algorithmic problem of finding
an L(p, q)-labeling reduces in polynomial time to the max{p, ¢}-bounded
channel assignment and we get an O*((max{p,q} + 1)")-time algorithm as
an immediate corollary from our result. In particular, it gives an O*(3")-
time algorithm for the most researched subcase of L(2,1)-labeling. This
improves over the algorithms by Havet et al. [2] running in time O(3.873™)
and a recent improvement of Junosza-Szaniawski and Rzazewski [3] running
in O(3.562™) time.

2 Deciding

In this section we consider the decision version of the problem, i.e. for a given
£-bounded weight function w and an integer s € N we check whether there
is a proper assignment of span at most s. Since the case £ = 1 can be solved
in O*((¢+ 1)) = O*(2"™) time as described in [1], here we assume ¢ > 2.

An assignment ¢ : V' — N of span s can be seen as a tuple (I, I, ...,),
where I; = ¢71(j) for every j =1,...,s. We will relax the notion of assign-
ment in that we will work with tuples of vertex sets (I1, Io, ..., I), where the
I;’s are not necessarily disjoint. We say that a tuple (11, I2,. .., I}) is proper,
when for every 4,5 € {1,...,k} if z € I; and y € I; then |i — j| > w(x,y).

In what follows, U denotes the set of all proper tuples (I3, ...,I;) such
that for each j = 1,...,5s — £+ 1, the sets I;,I;y1,...,1; 4,1 are pairwise
disjoint. A tuple with the r last elements being empty sets is denoted as
(Ii,...,Is—,0"). For a subset X C V, we say that a tuple (I1,...,1;) lies
in X when for every ¢ =1,...,7, we have I; C X.

For v € V, define U, = {(I1,...,Is) € U : v € J;_, I;}. Observe, that

Proposition 1. | ﬂ Uy| > 0 iff there is a proper assignment of span s.
veV

By the inclusion-exclusion principle, if we denote U, = U — U, and

Nveg Us = U, then

Ul = >)M Tl (1)

veV YCV veY

Our algorithm computes |,y Uy| using the above formula. The rest of
the section is devoted to computing | (1,cy Us| for a given set Y C V. If we
denote X =V =Y, then (,cy U, is just the set of tuples of U that lie in X

N Uo={(hL.....I,) €U : I,.... I, C X}. (2)

Our plan now is to compute the value of |(7,y U, | using dynamic pro-
gramming accelerated by the fast zeta transform. More precisely, for every
i1 =4{¢—1,...,sand for every sequence Jy, ..., Jy_1 of pairwise disjoint subsets
of X our algorithm computes the value of

i—(l—1)
EX(Jla'--anfl):‘{(Ila--'7Ii7(371)7‘]17-"7JZ*17®57Z)GU : U I]QX}’7

j=1
(3)
that is, the number of tuples in U that lie in X and end with Jy,...,Jy_1
followed by s — i empty sets. Then, clearly,

| ﬂ 7U| = Z Tg(‘]l"",‘]ﬁ—l)' (4)
veY J1sendi_1CX
i#j=J;NJ;=0
For every sequence of pairwise disjoint sets Ji,...,Jy—1 C X, we can
initialize the value of Tff 1(J1,...,Je—1) in polynomial time as follows:

Ty, Jimy) = [(J1, ..., Jy—1) is proper]. (5)

Then the algorithm finds the values of TjX for subsequent j = /£,...,s.
This is realized using the following formula:

TiX(Jl,...,Jg,l) =[(J1,...,Je—1) is proper]- Z ﬂ{l(Jo,Jl,...,Jg,Q),
JoCXnNproper(Ji,...,Jg—1)
(6)

where proper(Ji, ..., Jy_1) is the set of all vertices v € V\Uﬁ;i J; such that
for each j=1,...,4 -1 and z € J; we have j > w(v, z).

Using the formula (@) explicitly, one can compute all the values of TiX
from the values of T/X | in O*((£41)I¥1) time, since there are (¢4 1)/X| tuples
(Jo, ..., Je—1) of disjoint subsets of X. Now we describe how to speed it up
to O*(¢1X1).

%[a] is the Iverson’s notation, i.e. [a] = 1 when a holds and [a] = 0 otherwise.

Let S be a set and let f : 2° — Z be a function on the lattice of all
subsets of S. The zeta transform is an operator which transforms f to
another function (¢f) : 25 — Z and it is defined as follows:

CHQ) =D f(R).

RCQ

A nice feature of the zeta transform is that given f (i.e. when the value of
f(R) can be accessed in O(1) time for any R) there is an algorithm (called
fast zeta transform or Yates’ algorithm, see [II, [7]) which computes {f (i.e.
the values of (¢f)(Q) for all subsets Q C S) using only O(2/%!) arithmetic
operations (additions).

Let us come back to our algorithm. In the faster version, for each

i =4¥,...,s, we iterate over all sequences of disjoint subsets Ji,...,Jy_o C
-2
X. Then the values of T/X(Jy,...,Jy_1) for all the ol XI=205=1 Wil gets Jo_1
-2
that are disjoint with Ji,..., Jy_s are computed in O*(2|X‘7ZJ’=1 |JJ‘) time

(that is in polynomial time per set!). To this end, we use the function
-2
f: oX\Uj=1 i Z, where

f(S) =TX (S, J1,..., Ji_s).

—2
We compute the function (¢ f) with the fast zeta transform using O(2|X =2=1ls |)
additions. Now, observe that by (), for each J,_; C X disjoint with
J17 vy JZ*?;

TX(J1, . Je1) = (1, -+ -5 Je—1) is proper]-(Cf) (X Nproper(Jy, ..., Jo_1)).

It follows that for each i = ¢,. .., s the algorithm runs in time needed to
perform the following number of additions:

o Y 2XEEUh_or Y n=ouX). ()

J1yeeyJg2CX J1yeeJg1CX
j;ék:JjﬂJk:(ZJ j;ﬁk:>JjﬂJk=(7)

By () it follows that the whole decision algorithm runs in time needed
to perform O(n(¢ + 1)") additions. The numbers being added are bounded
by [MNyey U, < 2™ < 2"%, where the last inequality follows from the fact
that the minimum span is upper bounded by (n—1)¢+1 (see e.g. [5]). Hence
a single addition is performed in O(n?f) time.

Corollary 2. There is an algorithm which verifies whether the minimum
span of an £-bounded instance of the channel assignment problem is bounded
by s which uses O*((¢ 4+ 1)) time and O*(£™) space.

3 Counting

In this section we briefly describe how to modify the decision algorithm from
Section 2] in order to make it count the number of proper assignments of
span at most s. We follow the approach of Bjorklund et al. [I]. The trick is
to modify the definition of U. Namely, now every tuple (I1,..., Is) from U,
additionally satisfies the following condition:

> I =n. (8)
j=1

Observe, that then [, ¢y Uy| equals the number of proper assignments of
span at most s. Now, we add another dimension to the arrays TiX :

i—(6—1)
TR Je) = {ns - Doy, T Je, 0 €U 2 | L X
j=1

i—(6—1)

-1
and Y LI+ || =k}
i=1 i=1

The dynamic programming algorithm from Section [2] can be easily modified
to compute the values ofTi)gc(Jl, coydy_q)foralli=¢—1,...,s,k=0,...,n
and all sequences of £ — 1 I;airwise disjoint subsets of X. The details are left
to the reader.

Corollary 3. For any £-bounded instance of the channel assignment problem
the number of the proper assignments of span at most s can be computed in
O*((¢+ 1)™) time and O*(€™) space.

4 Finding

In order to find the assignment itself we can solve the extended version of
the channel assignment problem, where we are additionally given a set of
vertices Z C V together with a function ¢ : Z — {1,...,s}. Then we are to
check whether there exists a proper assignment ¢ : V' — {1,..., s} satisfying
clz = ¢. Tt is not hard to modify the presented algorithm to solve the
extended version of the problem in O*((¢ 4 1)"~12l) time. The details are
left to the reader.

Now using the extended version of the channel assignment problem we
can take any v € V \ Z and try each of the s < (n — 1)¢ + 1 possible
values of ¢(v) one by one, each time using the algorithm for the extended
channel assignment problem as a black box. When the value for v is fixed
in a similar manner we assign the value for the other vertices of V' \ Z.
Since Y% (£ + 1)" < (£ + 1)", the algorithm for finding an assignment
has a multiplicative overhead of O(nf) over the running time of the decision
version.

5 Open problems

In [6] Traxler has shown that for any constant ¢, the Constraint Satisfac-
tion Problem (CSP) has no O(c™)-time algorithm, assuming the Exponential
Time Hypothesis (ETH). More precisely, he shows that ETH implies that
CSP requires d*(™ time, where d is the domain size. On the other hand,
graph coloring, which is a variant of CSP with unbounded domain, admits a
O*(2™)-time algorithm. The channel assignment problem is a generalization
of graph coloring and a special case of CSP. In that context, the central
open problem in the complexity of the channel assignment problem is to find
a O*(c")-time algorithm for a constant ¢ independent of ¢ or to show that
such the algorithm does not exist, assuming ETH (or other well-established
complexity conjecture).

References

[1] A. Bjorklund, T. Husfeldt, and M. Koivisto. Set Partitioning via
Inclusion-Exclusion. STAM J. Comput., 39(2):546-563, 2009.

[2] F. Havet, M. Klazar, J. Kratochvil, D. Kratsch, and M. Liedloff. Exact
Algorithms for L(2, 1)-Labeling of Graphs. Algorithmica, 59(2):169-194,
2011.

[3] K. Junosza-Szaniawski and P. Rzazewski. On Improved Exact Algo-
rithms for L(2,1)-Labeling of Graphs. In Proc. IWOCA 2010, LNCS
6460, pages 34-37, 2010.

[4] D. Kral. An exact algorithm for the channel assignment problem. Discrete
Applied Mathematics, 145(2):326-331, 2005.

[5] C. J. H. McDiarmid. On the span in channel assignment problems:
bounds, computing and counting. Discrete Mathematics, 266(1-3):387—
397, 2003.

[6] P. Traxler. The Time Complexity of Constraint Satisfaction. In Proc.
IWPEC 2008, LNCS 5018, pages 190201, 2008.

[7] F. Yates. The Design and Analysis of Factorial Experiments. Imperial
Bureau of Soil Sciences, Harpenden, 1937.

	1 Introduction
	2 Deciding
	3 Counting
	4 Finding
	5 Open problems

