
ar
X

iv
:1

10
3.

22
75

v1
 [

cs
.D

S]
 1

1
M

ar
 2

01
1

Channel Assignment via Fast Zeta Transform

Marek Cygan and Łukasz Kowalik

Institute of Informatics, University of Warsaw

{cygan,kowalik}@mimuw.edu.pl

Abstract

We show an O∗((ℓ + 1)n)-time algorithm for the channel assign-
ment problem, where ℓ is the maximum edge weight. This improves
on the previous O∗((ℓ + 2)n)-time algorithm by Kral [4], as well as
algorithms for important special cases, like L(2, 1)-labelling. For the
latter problem, our algorithm works in O∗(3n) time. The progress is
achieved by applying the fast zeta transform in combination with the
inclusion-exclusion principle.

1 Introduction

In the channel assignment problem, we are given a symmetric weight function
w : V 2 → N (we assume that 0 ∈ N). The elements of V will be called
vertices (as w induces a graph on the vertex set V with edges corresponding
to positive values of w). We say that w is ℓ-bounded when for every x, y ∈ V

we have w(x, y) ≤ ℓ. An assignment c : V → {1, . . . , s} is called proper when
for each pair of vertices x, y we have |c(x) − c(y)| ≥ w(x, y). The number s

is called the span of c. The goal is to find a proper assignment of minimum
span. Note that the special case when w is 1-bounded corresponds to the
classical graph coloring problem.

In this paper we deal with exact algorithms for the channel assign-
ment problem. As a generalization of graph coloring, the decision version
of channel assignment is NP-complete. It follows that the existence of a
polynomial-time algorithm is unlikely. As a consequence, researchers began
to study exponential-time algorithms for the channel assignment problem.
The asymptotic efficiency of these algorithms is measured in terms of n = |V |
and ℓ, we assume that ℓ is a constant. The first non-trivial algorithm was
proposed by McDiarmid [5] and had running time of O(n2(2ℓ+1)n). It was
then improved by Kral [4] to O(n(ℓ+ 2)n).

Here we improve the running time further to O∗((ℓ + 1)n)1. We also
show that the number of all proper assignments can be found in the same
time bound. Note that for ℓ = 1 the running time of our algorithm matches

1By O
∗() we suppress polynomially bounded terms.

1

http://arxiv.org/abs/1103.2275v1

the time complexity of the currently fastest algorithm for graph coloring by
Björklund, Husfeldt and Koivisto [1].

Our improvement is achieved by applying the fast zeta transform in com-
bination with the inclusion-exclusion principle. The same ingredients were
used also in a set partition problem in [1], however in our algorithm the
fast zeta transform plays a different role. In particular, although channel
assignment resembles a kind of set partition it does not seem to be possible
to solve it by a direct application of the algorithm from [1].

Some special cases of the channel assignment problem received particular
attention. An important example is the L(p, q)-labeling of graphs, where
given an undirected graph G = (V,E) one has to find an assignment c :
V → N such that if vertices u and v are adjacent then |c(u) − c(v)| ≥ p

and if vertices u and v are at distance 2 then |c(u) − c(v)| ≥ q. The goal
is to minimize maxv∈V c(v). Clearly, the algorithmic problem of finding
an L(p, q)-labeling reduces in polynomial time to the max{p, q}-bounded
channel assignment and we get an O∗((max{p, q} + 1)n)-time algorithm as
an immediate corollary from our result. In particular, it gives an O∗(3n)-
time algorithm for the most researched subcase of L(2, 1)-labeling. This
improves over the algorithms by Havet et al. [2] running in time O(3.873n)
and a recent improvement of Junosza-Szaniawski and Rzążewski [3] running
in O(3.562n) time.

2 Deciding

In this section we consider the decision version of the problem, i.e. for a given
ℓ-bounded weight function w and an integer s ∈ N we check whether there
is a proper assignment of span at most s. Since the case ℓ = 1 can be solved
in O∗((ℓ+ 1)n) = O∗(2n) time as described in [1], here we assume ℓ ≥ 2.

An assignment c : V → N of span s can be seen as a tuple (I1, I2, . . . , Is),
where Ij = c−1(j) for every j = 1, . . . , s. We will relax the notion of assign-
ment in that we will work with tuples of vertex sets (I1, I2, . . . , Ik), where the
Ij’s are not necessarily disjoint. We say that a tuple (I1, I2, . . . , Ik) is proper,
when for every i, j ∈ {1, . . . , k} if x ∈ Ii and y ∈ Ij then |i− j| ≥ w(x, y).

In what follows, U denotes the set of all proper tuples (I1, . . . , Is) such
that for each j = 1, . . . , s − ℓ + 1, the sets Ij, Ij+1, . . . , Ij+ℓ−1 are pairwise
disjoint. A tuple with the r last elements being empty sets is denoted as
(I1, . . . , Is−r, ∅

r). For a subset X ⊆ V , we say that a tuple (I1, . . . , Ij) lies

in X when for every i = 1, . . . , j, we have Ii ⊆ X.
For v ∈ V , define Uv = {(I1, . . . , Is) ∈ U : v ∈

⋃s
j=1 Ij}. Observe, that

Proposition 1. |
⋂

v∈V

Uv| > 0 iff there is a proper assignment of span s.

By the inclusion-exclusion principle, if we denote Uv = U − Uv and

2

⋂
v∈∅ Uv = U , then

|
⋂

v∈V

Uv| =
∑

Y⊆V

(−1)|Y ||
⋂

v∈Y

Uv|. (1)

Our algorithm computes |
⋂

v∈V Uv| using the above formula. The rest of
the section is devoted to computing |

⋂
v∈Y Uv| for a given set Y ⊆ V . If we

denote X = V −Y , then
⋂

v∈Y Uv is just the set of tuples of U that lie in X:

⋂

v∈Y

Uv = {(I1, . . . , Is) ∈ U : I1, . . . , Is ⊆ X}. (2)

Our plan now is to compute the value of |
⋂

v∈Y Uv| using dynamic pro-
gramming accelerated by the fast zeta transform. More precisely, for every
i = ℓ−1, . . . , s and for every sequence J1, . . . , Jℓ−1 of pairwise disjoint subsets
of X our algorithm computes the value of

TX
i (J1, . . . , Jℓ−1) = |{(I1, . . . , Ii−(ℓ−1), J1, . . . , Jℓ−1, ∅

s−i) ∈ U :

i−(ℓ−1)⋃

j=1

Ij ⊆ X}|,

(3)
that is, the number of tuples in U that lie in X and end with J1, . . . , Jℓ−1

followed by s− i empty sets. Then, clearly,

|
⋂

v∈Y

Uv| =
∑

J1,...,Jℓ−1⊆X

i 6=j⇒Ji∩Jj=∅

TX
s (J1, . . . , Jℓ−1). (4)

For every sequence of pairwise disjoint sets J1, . . . , Jℓ−1 ⊆ X, we can
initialize the value of TX

ℓ−1(J1, . . . , Jℓ−1) in polynomial time as follows2:

TX
ℓ−1(J1, . . . , Jℓ−1) = [(J1, . . . , Jℓ−1) is proper]. (5)

Then the algorithm finds the values of TX
j for subsequent j = ℓ, . . . , s.

This is realized using the following formula:

TX
i (J1, . . . , Jℓ−1) = [(J1, . . . , Jℓ−1) is proper]·

∑

J0⊆X∩proper(J1,...,Jℓ−1)

TX
i−1(J0, J1, . . . , Jℓ−2),

(6)
where proper(J1, . . . , Jℓ−1) is the set of all vertices v ∈ V \

⋃ℓ−1
j=1 Jj such that

for each j = 1, . . . , ℓ− 1 and x ∈ Jj we have j ≥ w(v, x).
Using the formula (6) explicitly, one can compute all the values of TX

i

from the values of TX
i−1 in O∗((ℓ+1)|X|) time, since there are (ℓ+1)|X| tuples

(J0, . . . , Jℓ−1) of disjoint subsets of X. Now we describe how to speed it up
to O∗(ℓ|X|).

2[α] is the Iverson’s notation, i.e. [α] = 1 when α holds and [α] = 0 otherwise.

3

Let S be a set and let f : 2S → Z be a function on the lattice of all
subsets of S. The zeta transform is an operator which transforms f to
another function (ζf) : 2S → Z and it is defined as follows:

(ζf)(Q) =
∑

R⊆Q

f(R).

A nice feature of the zeta transform is that given f (i.e. when the value of
f(R) can be accessed in O(1) time for any R) there is an algorithm (called
fast zeta transform or Yates’ algorithm, see [1, 7]) which computes ζf (i.e.
the values of (ζf)(Q) for all subsets Q ⊆ S) using only O(2|S|) arithmetic
operations (additions).

Let us come back to our algorithm. In the faster version, for each
i = ℓ, . . . , s, we iterate over all sequences of disjoint subsets J1, . . . , Jℓ−2 ⊆

X. Then the values of TX
i (J1, . . . , Jℓ−1) for all the 2|X|−

∑ℓ−2

j=1
|Jj| sets Jℓ−1

that are disjoint with J1, . . . , Jℓ−2 are computed in O∗(2|X|−
∑ℓ−2

j=1
|Jj |) time

(that is in polynomial time per set!). To this end, we use the function

f : 2X\
⋃ℓ−2

j=1
Jj → Z, where

f(S) = TX
i−1(S, J1, . . . , Jℓ−2).

We compute the function (ζf)with the fast zeta transform using O(2|X|−
∑ℓ−2

j=1
|Jj|)

additions. Now, observe that by (6), for each Jℓ−1 ⊆ X disjoint with
J1, . . . , Jℓ−2,

TX
i (J1, . . . , Jℓ−1) = [(J1, . . . , Jℓ−1) is proper]·(ζf)(X∩proper(J1, . . . , Jℓ−1)).

It follows that for each i = ℓ, . . . , s the algorithm runs in time needed to
perform the following number of additions:

O(
∑

J1,...,Jℓ−2⊆X

j 6=k⇒Jj∩Jk=∅

2|X|−
∑ℓ−2

j=1
|Jj |) = O(

∑

J1,...,Jℓ−1⊆X

j 6=k⇒Jj∩Jk=∅

1) = O(ℓ|X|). (7)

By (1) it follows that the whole decision algorithm runs in time needed
to perform O(n(ℓ+ 1)n) additions. The numbers being added are bounded
by |

⋂
v∈Y Uv| ≤ 2ns ≤ 2n

2ℓ, where the last inequality follows from the fact
that the minimum span is upper bounded by (n−1)ℓ+1 (see e.g. [5]). Hence
a single addition is performed in O(n2ℓ) time.

Corollary 2. There is an algorithm which verifies whether the minimum

span of an ℓ-bounded instance of the channel assignment problem is bounded

by s which uses O∗((ℓ+ 1)n) time and O∗(ℓn) space.

4

3 Counting

In this section we briefly describe how to modify the decision algorithm from
Section 2 in order to make it count the number of proper assignments of
span at most s. We follow the approach of Björklund et al. [1]. The trick is
to modify the definition of U . Namely, now every tuple (I1, . . . , Is) from Uv

additionally satisfies the following condition:
s∑

j=1

|Ij | = n. (8)

Observe, that then |
⋂

v∈V Uv| equals the number of proper assignments of
span at most s. Now, we add another dimension to the arrays TX

i :

TX
i,k(J1, . . . , Jℓ−1) = |{(I1, . . . , Ii−(ℓ−1), J1, . . . , Jℓ−1, ∅

s−i) ∈ U :

i−(ℓ−1)⋃

j=1

Ij ⊆ X

and

i−(ℓ−1)∑

j=1

|Ij|+
ℓ−1∑

j=1

|Jj | = k}|.

The dynamic programming algorithm from Section 2 can be easily modified
to compute the values of TX

i,k(J1, . . . , Jℓ−1) for all i = ℓ−1, . . . , s, k = 0, . . . , n
and all sequences of ℓ− 1 pairwise disjoint subsets of X. The details are left
to the reader.

Corollary 3. For any ℓ-bounded instance of the channel assignment problem

the number of the proper assignments of span at most s can be computed in

O∗((ℓ+ 1)n) time and O∗(ℓn) space.

4 Finding

In order to find the assignment itself we can solve the extended version of
the channel assignment problem, where we are additionally given a set of
vertices Z ⊆ V together with a function c′ : Z → {1, . . . , s}. Then we are to
check whether there exists a proper assignment c : V → {1, . . . , s} satisfying
c|Z = c′. It is not hard to modify the presented algorithm to solve the
extended version of the problem in O∗((ℓ + 1)n−|Z|) time. The details are
left to the reader.

Now using the extended version of the channel assignment problem we
can take any v ∈ V \ Z and try each of the s ≤ (n − 1)ℓ + 1 possible
values of c(v) one by one, each time using the algorithm for the extended
channel assignment problem as a black box. When the value for v is fixed
in a similar manner we assign the value for the other vertices of V \ Z.
Since

∑n
i=1(ℓ + 1)n−i < (ℓ + 1)n, the algorithm for finding an assignment

has a multiplicative overhead of O(nℓ) over the running time of the decision
version.

5

5 Open problems

In [6] Traxler has shown that for any constant c, the Constraint Satisfac-
tion Problem (CSP) has no O(cn)-time algorithm, assuming the Exponential
Time Hypothesis (ETH). More precisely, he shows that ETH implies that
CSP requires dΩ(n) time, where d is the domain size. On the other hand,
graph coloring, which is a variant of CSP with unbounded domain, admits a
O∗(2n)-time algorithm. The channel assignment problem is a generalization
of graph coloring and a special case of CSP. In that context, the central
open problem in the complexity of the channel assignment problem is to find
a O∗(cn)-time algorithm for a constant c independent of ℓ or to show that
such the algorithm does not exist, assuming ETH (or other well-established
complexity conjecture).

References

[1] A. Björklund, T. Husfeldt, and M. Koivisto. Set Partitioning via
Inclusion-Exclusion. SIAM J. Comput., 39(2):546–563, 2009.

[2] F. Havet, M. Klazar, J. Kratochvíl, D. Kratsch, and M. Liedloff. Exact
Algorithms for L(2, 1)-Labeling of Graphs. Algorithmica, 59(2):169–194,
2011.

[3] K. Junosza-Szaniawski and P. Rzążewski. On Improved Exact Algo-
rithms for L(2,1)-Labeling of Graphs. In Proc. IWOCA 2010, LNCS
6460, pages 34–37, 2010.

[4] D. Král. An exact algorithm for the channel assignment problem. Discrete

Applied Mathematics, 145(2):326–331, 2005.

[5] C. J. H. McDiarmid. On the span in channel assignment problems:
bounds, computing and counting. Discrete Mathematics, 266(1-3):387–
397, 2003.

[6] P. Traxler. The Time Complexity of Constraint Satisfaction. In Proc.

IWPEC 2008, LNCS 5018, pages 190–201, 2008.

[7] F. Yates. The Design and Analysis of Factorial Experiments. Imperial

Bureau of Soil Sciences, Harpenden, 1937.

6

	1 Introduction
	2 Deciding
	3 Counting
	4 Finding
	5 Open problems

