Channel Assignment via Fast Zeta Transform

Marek Cygan and Łukasz Kowalik Institute of Informatics, University of Warsaw
\{cygan,kowalik\}@mimuw.edu.pl

Abstract

We show an $O^{*}\left((\ell+1)^{n}\right)$-time algorithm for the channel assignment problem, where ℓ is the maximum edge weight. This improves on the previous $O^{*}\left((\ell+2)^{n}\right)$-time algorithm by Kral [4, as well as algorithms for important special cases, like $L(2,1)$-labelling. For the latter problem, our algorithm works in $O^{*}\left(3^{n}\right)$ time. The progress is achieved by applying the fast zeta transform in combination with the inclusion-exclusion principle.

1 Introduction

In the channel assignment problem, we are given a symmetric weight function $w: V^{2} \rightarrow \mathbb{N}$ (we assume that $0 \in \mathbb{N}$). The elements of V will be called vertices (as w induces a graph on the vertex set V with edges corresponding to positive values of $w)$. We say that w is ℓ-bounded when for every $x, y \in V$ we have $w(x, y) \leq \ell$. An assignment $c: V \rightarrow\{1, \ldots, s\}$ is called proper when for each pair of vertices x, y we have $|c(x)-c(y)| \geq w(x, y)$. The number s is called the span of c. The goal is to find a proper assignment of minimum span. Note that the special case when w is 1-bounded corresponds to the classical graph coloring problem.

In this paper we deal with exact algorithms for the channel assignment problem. As a generalization of graph coloring, the decision version of channel assignment is NP-complete. It follows that the existence of a polynomial-time algorithm is unlikely. As a consequence, researchers began to study exponential-time algorithms for the channel assignment problem. The asymptotic efficiency of these algorithms is measured in terms of $n=|V|$ and ℓ, we assume that ℓ is a constant. The first non-trivial algorithm was proposed by McDiarmid 5 and had running time of $O\left(n^{2}(2 \ell+1)^{n}\right)$. It was then improved by Kral [4] to $O\left(n(\ell+2)^{n}\right)$.

Here we improve the running time further to $O^{*}\left((\ell+1)^{n}\right)^{1}$. We also show that the number of all proper assignments can be found in the same time bound. Note that for $\ell=1$ the running time of our algorithm matches

[^0]the time complexity of the currently fastest algorithm for graph coloring by Björklund, Husfeldt and Koivisto [1].

Our improvement is achieved by applying the fast zeta transform in combination with the inclusion-exclusion principle. The same ingredients were used also in a set partition problem in [1], however in our algorithm the fast zeta transform plays a different role. In particular, although channel assignment resembles a kind of set partition it does not seem to be possible to solve it by a direct application of the algorithm from [1].

Some special cases of the channel assignment problem received particular attention. An important example is the $L(p, q)$-labeling of graphs, where given an undirected graph $G=(V, E)$ one has to find an assignment c : $V \rightarrow \mathbb{N}$ such that if vertices u and v are adjacent then $|c(u)-c(v)| \geq p$ and if vertices u and v are at distance 2 then $|c(u)-c(v)| \geq q$. The goal is to minimize $\max _{v \in V} c(v)$. Clearly, the algorithmic problem of finding an $L(p, q)$-labeling reduces in polynomial time to the $\max \{p, q\}$-bounded channel assignment and we get an $O^{*}\left((\max \{p, q\}+1)^{n}\right)$-time algorithm as an immediate corollary from our result. In particular, it gives an $O^{*}\left(3^{n}\right)$ time algorithm for the most researched subcase of $L(2,1)$-labeling. This improves over the algorithms by Havet et al. [2] running in time $O\left(3.873^{n}\right)$ and a recent improvement of Junosza-Szaniawski and Rzążewski [3] running in $O\left(3.562^{n}\right)$ time.

2 Deciding

In this section we consider the decision version of the problem, i.e. for a given ℓ-bounded weight function w and an integer $s \in \mathbb{N}$ we check whether there is a proper assignment of span at most s. Since the case $\ell=1$ can be solved in $O^{*}\left((\ell+1)^{n}\right)=O^{*}\left(2^{n}\right)$ time as described in [1], here we assume $\ell \geq 2$.

An assignment $c: V \rightarrow \mathbb{N}$ of span s can be seen as a tuple $\left(I_{1}, I_{2}, \ldots, I_{s}\right)$, where $I_{j}=c^{-1}(j)$ for every $j=1, \ldots, s$. We will relax the notion of assignment in that we will work with tuples of vertex sets $\left(I_{1}, I_{2}, \ldots, I_{k}\right)$, where the I_{j} 's are not necessarily disjoint. We say that a tuple $\left(I_{1}, I_{2}, \ldots, I_{k}\right)$ is proper, when for every $i, j \in\{1, \ldots, k\}$ if $x \in I_{i}$ and $y \in I_{j}$ then $|i-j| \geq w(x, y)$.

In what follows, U denotes the set of all proper tuples $\left(I_{1}, \ldots, I_{s}\right)$ such that for each $j=1, \ldots, s-\ell+1$, the sets $I_{j}, I_{j+1}, \ldots, I_{j+\ell-1}$ are pairwise disjoint. A tuple with the r last elements being empty sets is denoted as $\left(I_{1}, \ldots, I_{s-r}, \emptyset^{r}\right)$. For a subset $X \subseteq V$, we say that a tuple $\left(I_{1}, \ldots, I_{j}\right)$ lies in X when for every $i=1, \ldots, j$, we have $I_{i} \subseteq X$.

For $v \in V$, define $U_{v}=\left\{\left(I_{1}, \ldots, I_{s}\right) \in U: v \in \bigcup_{j=1}^{s} I_{j}\right\}$. Observe, that
Proposition 1. $\left|\bigcap_{v \in V} U_{v}\right|>0$ iff there is a proper assignment of span s.
By the inclusion-exclusion principle, if we denote $\overline{U_{v}}=U-U_{v}$ and
$\bigcap_{v \in \emptyset} \overline{U_{v}}=U$, then

$$
\begin{equation*}
\left|\bigcap_{v \in V} U_{v}\right|=\sum_{Y \subseteq V}(-1)^{|Y|}\left|\bigcap_{v \in Y} \overline{U_{v}}\right| . \tag{1}
\end{equation*}
$$

Our algorithm computes $\left|\bigcap_{v \in V} U_{v}\right|$ using the above formula. The rest of the section is devoted to computing $\left|\bigcap_{v \in Y} \overline{U_{v}}\right|$ for a given set $Y \subseteq V$. If we denote $X=V-Y$, then $\bigcap_{v \in Y} \overline{U_{v}}$ is just the set of tuples of U that lie in X :

$$
\begin{equation*}
\bigcap_{v \in Y} \overline{U_{v}}=\left\{\left(I_{1}, \ldots, I_{s}\right) \in U: I_{1}, \ldots, I_{s} \subseteq X\right\} . \tag{2}
\end{equation*}
$$

Our plan now is to compute the value of $\left|\bigcap_{v \in Y} \overline{U_{v}}\right|$ using dynamic programming accelerated by the fast zeta transform. More precisely, for every $i=\ell-1, \ldots, s$ and for every sequence $J_{1}, \ldots, J_{\ell-1}$ of pairwise disjoint subsets of X our algorithm computes the value of
$T_{i}^{X}\left(J_{1}, \ldots, J_{\ell-1}\right)=\left|\left\{\left(I_{1}, \ldots, I_{i-(\ell-1)}, J_{1}, \ldots, J_{\ell-1}, \emptyset^{s-i}\right) \in U: \bigcup_{j=1}^{i-(\ell-1)} I_{j} \subseteq X\right\}\right|$,
that is, the number of tuples in U that lie in X and end with $J_{1}, \ldots, J_{\ell-1}$ followed by $s-i$ empty sets. Then, clearly,

$$
\begin{equation*}
\left|\bigcap_{v \in Y} \overline{U_{v}}\right|=\sum_{\substack{J_{1}, \ldots, J_{--1} \subseteq X \\ i \neq j=J_{i} \cap J_{j}=\emptyset}} T_{s}^{X}\left(J_{1}, \ldots, J_{\ell-1}\right) . \tag{4}
\end{equation*}
$$

For every sequence of pairwise disjoint sets $J_{1}, \ldots, J_{\ell-1} \subseteq X$, we can initialize the value of $T_{\ell-1}^{X}\left(J_{1}, \ldots, J_{\ell-1}\right)$ in polynomial time as follows):

$$
\begin{equation*}
T_{\ell-1}^{X}\left(J_{1}, \ldots, J_{\ell-1}\right)=\left[\left(J_{1}, \ldots, J_{\ell-1}\right) \text { is proper }\right] . \tag{5}
\end{equation*}
$$

Then the algorithm finds the values of T_{j}^{X} for subsequent $j=\ell, \ldots, s$. This is realized using the following formula:

$$
\begin{equation*}
T_{i}^{X}\left(J_{1}, \ldots, J_{\ell-1}\right)=\left[\left(J_{1}, \ldots, J_{\ell-1}\right) \text { is proper }\right] . \sum_{J_{0} \subseteq X \cap \operatorname{proper}\left(J_{1}, \ldots, J_{\ell-1}\right)} T_{i-1}^{X}\left(J_{0}, J_{1}, \ldots, J_{\ell-2}\right), \tag{6}
\end{equation*}
$$

where $\operatorname{proper}\left(J_{1}, \ldots, J_{\ell-1}\right)$ is the set of all vertices $v \in V \backslash \bigcup_{j=1}^{\ell-1} J_{j}$ such that for each $j=1, \ldots, \ell-1$ and $x \in J_{j}$ we have $j \geq w(v, x)$.

Using the formula (6) explicitly, one can compute all the values of T_{i}^{X} from the values of T_{i-1}^{X} in $O^{*}\left((\ell+1)^{|X|}\right)$ time, since there are $(\ell+1)^{|X|}$ tuples $\left(J_{0}, \ldots, J_{\ell-1}\right)$ of disjoint subsets of X. Now we describe how to speed it up to $O^{*}\left(\ell^{|X|}\right)$.

[^1]Let S be a set and let $f: 2^{S} \rightarrow \mathbb{Z}$ be a function on the lattice of all subsets of S. The zeta transform is an operator which transforms f to another function $(\zeta f): 2^{S} \rightarrow \mathbb{Z}$ and it is defined as follows:

$$
(\zeta f)(Q)=\sum_{R \subseteq Q} f(R)
$$

A nice feature of the zeta transform is that given f (i.e. when the value of $f(R)$ can be accessed in $O(1)$ time for any R) there is an algorithm (called fast zeta transform or Yates' algorithm, see [1, 7]) which computes ζf (i.e. the values of $(\zeta f)(Q)$ for all subsets $Q \subseteq S)$ using only $O\left(2^{|S|}\right)$ arithmetic operations (additions).

Let us come back to our algorithm. In the faster version, for each $i=\ell, \ldots, s$, we iterate over all sequences of disjoint subsets $J_{1}, \ldots, J_{\ell-2} \subseteq$ X. Then the values of $T_{i}^{X}\left(J_{1}, \ldots, J_{\ell-1}\right)$ for all the $2^{|X|-\sum_{j=1}^{\ell-2}\left|J_{j}\right|}$ sets $J_{\ell-1}$ that are disjoint with $J_{1}, \ldots, J_{\ell-2}$ are computed in $O^{*}\left(2^{|X|-\sum_{j=1}^{\ell-2}\left|J_{j}\right|}\right)$ time (that is in polynomial time per set!). To this end, we use the function $f: 2^{X \backslash \bigcup_{j=1}^{\ell-2} J_{j}} \rightarrow \mathbb{Z}$, where

$$
f(S)=T_{i-1}^{X}\left(S, J_{1}, \ldots, J_{\ell-2}\right)
$$

We compute the function (ζf) with the fast zeta transform using $O\left(2^{|X|-\sum_{j=1}^{\ell-2}\left|J_{j}\right|}\right)$ additions. Now, observe that by (6), for each $J_{\ell-1} \subseteq X$ disjoint with $J_{1}, \ldots, J_{\ell-2}$,
$T_{i}^{X}\left(J_{1}, \ldots, J_{\ell-1}\right)=\left[\left(J_{1}, \ldots, J_{\ell-1}\right)\right.$ is proper $] \cdot(\zeta f)\left(X \cap \operatorname{proper}\left(J_{1}, \ldots, J_{\ell-1}\right)\right)$.
It follows that for each $i=\ell, \ldots, s$ the algorithm runs in time needed to perform the following number of additions:

$$
\begin{equation*}
O\left(\sum_{\substack{J_{1}, \ldots, J_{\ell-2} \subseteq X \\ j \neq k \Rightarrow J_{j} \cap J_{k}=\emptyset}} 2^{|X|-\sum_{j=1}^{\ell-2}\left|J_{j}\right|}\right)=O\left(\sum_{\substack{J_{1}, \ldots, J_{\ell-1} \subseteq X \\ j \neq k \Rightarrow J_{j} \cap J_{k}=\emptyset}} 1\right)=O\left(\ell^{|X|}\right) . \tag{7}
\end{equation*}
$$

By (1) it follows that the whole decision algorithm runs in time needed to perform $O\left(n(\ell+1)^{n}\right)$ additions. The numbers being added are bounded by $\left|\bigcap_{v \in Y} \overline{U_{v}}\right| \leq 2^{n s} \leq 2^{n^{2} \ell}$, where the last inequality follows from the fact that the minimum span is upper bounded by $(n-1) \ell+1$ (see e.g. [5]). Hence a single addition is performed in $O\left(n^{2} \ell\right)$ time.

Corollary 2. There is an algorithm which verifies whether the minimum span of an ℓ-bounded instance of the channel assignment problem is bounded by s which uses $O^{*}\left((\ell+1)^{n}\right)$ time and $O^{*}\left(\ell^{n}\right)$ space.

3 Counting

In this section we briefly describe how to modify the decision algorithm from Section 2 in order to make it count the number of proper assignments of span at most s. We follow the approach of Björklund et al. [1]. The trick is to modify the definition of U. Namely, now every tuple $\left(I_{1}, \ldots, I_{s}\right)$ from U_{v} additionally satisfies the following condition:

$$
\begin{equation*}
\sum_{j=1}^{s}\left|I_{j}\right|=n \tag{8}
\end{equation*}
$$

Observe, that then $\left|\bigcap_{v \in V} U_{v}\right|$ equals the number of proper assignments of span at most s. Now, we add another dimension to the arrays T_{i}^{X} :

$$
\begin{array}{r}
T_{i, k}^{X}\left(J_{1}, \ldots, J_{\ell-1}\right)=\mid\left\{\left(I_{1}, \ldots, I_{i-(\ell-1)}, J_{1}, \ldots, J_{\ell-1}, \emptyset^{s-i}\right) \in U: \bigcup_{j=1}^{i-(\ell-1)} I_{j} \subseteq X\right. \\
\text { and } \left.\sum_{j=1}^{i-(\ell-1)}\left|I_{j}\right|+\sum_{j=1}^{\ell-1}\left|J_{j}\right|=k\right\} \mid .
\end{array}
$$

The dynamic programming algorithm from Section 2 can be easily modified to compute the values of $T_{i, k}^{X}\left(J_{1}, \ldots, J_{\ell-1}\right)$ for all $i=\ell-1, \ldots, s, k=0, \ldots, n$ and all sequences of $\ell-1$ pairwise disjoint subsets of X. The details are left to the reader.
Corollary 3. For any ℓ-bounded instance of the channel assignment problem the number of the proper assignments of span at most s can be computed in $O^{*}\left((\ell+1)^{n}\right)$ time and $O^{*}\left(\ell^{n}\right)$ space.

4 Finding

In order to find the assignment itself we can solve the extended version of the channel assignment problem, where we are additionally given a set of vertices $Z \subseteq V$ together with a function $c^{\prime}: Z \rightarrow\{1, \ldots, s\}$. Then we are to check whether there exists a proper assignment $c: V \rightarrow\{1, \ldots, s\}$ satisfying $\left.c\right|_{Z}=c^{\prime}$. It is not hard to modify the presented algorithm to solve the extended version of the problem in $O^{*}\left((\ell+1)^{n-|Z|}\right)$ time. The details are left to the reader.

Now using the extended version of the channel assignment problem we can take any $v \in V \backslash Z$ and try each of the $s \leq(n-1) \ell+1$ possible values of $c(v)$ one by one, each time using the algorithm for the extended channel assignment problem as a black box. When the value for v is fixed in a similar manner we assign the value for the other vertices of $V \backslash Z$. Since $\sum_{i=1}^{n}(\ell+1)^{n-i}<(\ell+1)^{n}$, the algorithm for finding an assignment has a multiplicative overhead of $O(n \ell)$ over the running time of the decision version.

5 Open problems

In [6] Traxler has shown that for any constant c, the Constraint Satisfaction Problem (CSP) has no $O\left(c^{n}\right)$-time algorithm, assuming the Exponential Time Hypothesis (ETH). More precisely, he shows that ETH implies that CSP requires $d^{\Omega(n)}$ time, where d is the domain size. On the other hand, graph coloring, which is a variant of CSP with unbounded domain, admits a $O^{*}\left(2^{n}\right)$-time algorithm. The channel assignment problem is a generalization of graph coloring and a special case of CSP. In that context, the central open problem in the complexity of the channel assignment problem is to find a $O^{*}\left(c^{n}\right)$-time algorithm for a constant c independent of ℓ or to show that such the algorithm does not exist, assuming ETH (or other well-established complexity conjecture).

References

[1] A. Björklund, T. Husfeldt, and M. Koivisto. Set Partitioning via Inclusion-Exclusion. SIAM J. Comput., 39(2):546-563, 2009.
[2] F. Havet, M. Klazar, J. Kratochvíl, D. Kratsch, and M. Liedloff. Exact Algorithms for L(2, 1)-Labeling of Graphs. Algorithmica, 59(2):169-194, 2011.
[3] K. Junosza-Szaniawski and P. Rzążewski. On Improved Exact Algorithms for $\mathrm{L}(2,1)$-Labeling of Graphs. In Proc. IWOCA 2010, LNCS 6460, pages 34-37, 2010.
[4] D. Král. An exact algorithm for the channel assignment problem. Discrete Applied Mathematics, 145(2):326-331, 2005.
[5] C. J. H. McDiarmid. On the span in channel assignment problems: bounds, computing and counting. Discrete Mathematics, 266(1-3):387397, 2003.
[6] P. Traxler. The Time Complexity of Constraint Satisfaction. In Proc. IWPEC 2008, LNCS 5018, pages 190-201, 2008.
[7] F. Yates. The Design and Analysis of Factorial Experiments. Imperial Bureau of Soil Sciences, Harpenden, 1937.

[^0]: ${ }^{1}$ By $O^{*}()$ we suppress polynomially bounded terms.

[^1]: ${ }^{2}[\alpha]$ is the Iverson's notation, i.e. $[\alpha]=1$ when α holds and $[\alpha]=0$ otherwise.

