Channel Assignment via Fast Zeta Transform

Marek Cygan and Łukasz Kowalik Institute of Informatics, University of Warsaw {cygan,kowalik}@mimuw.edu.pl

Abstract

We show an $O^*((\ell + 1)^n)$ -time algorithm for the channel assignment problem, where ℓ is the maximum edge weight. This improves on the previous $O^*((\ell + 2)^n)$ -time algorithm by Kral [4], as well as algorithms for important special cases, like L(2, 1)-labelling. For the latter problem, our algorithm works in $O^*(3^n)$ time. The progress is achieved by applying the fast zeta transform in combination with the inclusion-exclusion principle.

1 Introduction

In the channel assignment problem, we are given a symmetric weight function $w: V^2 \to \mathbb{N}$ (we assume that $0 \in \mathbb{N}$). The elements of V will be called vertices (as w induces a graph on the vertex set V with edges corresponding to positive values of w). We say that w is ℓ -bounded when for every $x, y \in V$ we have $w(x, y) \leq \ell$. An assignment $c: V \to \{1, \ldots, s\}$ is called *proper* when for each pair of vertices x, y we have $|c(x) - c(y)| \geq w(x, y)$. The number s is called the *span* of c. The goal is to find a proper assignment of minimum span. Note that the special case when w is 1-bounded corresponds to the classical graph coloring problem.

In this paper we deal with exact algorithms for the channel assignment problem. As a generalization of graph coloring, the decision version of channel assignment is NP-complete. It follows that the existence of a polynomial-time algorithm is unlikely. As a consequence, researchers began to study exponential-time algorithms for the channel assignment problem. The asymptotic efficiency of these algorithms is measured in terms of n = |V|and ℓ , we assume that ℓ is a constant. The first non-trivial algorithm was proposed by McDiarmid [5] and had running time of $O(n^2(2\ell+1)^n)$. It was then improved by Kral [4] to $O(n(\ell+2)^n)$.

Here we improve the running time further to $O^*((\ell + 1)^n)^1$. We also show that the number of all proper assignments can be found in the same time bound. Note that for $\ell = 1$ the running time of our algorithm matches

¹By $O^*()$ we suppress polynomially bounded terms.

the time complexity of the currently fastest algorithm for graph coloring by Björklund, Husfeldt and Koivisto [1].

Our improvement is achieved by applying the fast zeta transform in combination with the inclusion-exclusion principle. The same ingredients were used also in a set partition problem in [1], however in our algorithm the fast zeta transform plays a different role. In particular, although channel assignment resembles a kind of set partition it does not seem to be possible to solve it by a direct application of the algorithm from [1].

Some special cases of the channel assignment problem received particular attention. An important example is the L(p,q)-labeling of graphs, where given an undirected graph G = (V, E) one has to find an assignment c: $V \to \mathbb{N}$ such that if vertices u and v are adjacent then $|c(u) - c(v)| \ge p$ and if vertices u and v are at distance 2 then $|c(u) - c(v)| \ge q$. The goal is to minimize $\max_{v \in V} c(v)$. Clearly, the algorithmic problem of finding an L(p,q)-labeling reduces in polynomial time to the $\max\{p,q\}$ -bounded channel assignment and we get an $O^*((\max\{p,q\}+1)^n)$ -time algorithm as an immediate corollary from our result. In particular, it gives an $O^*(3^n)$ time algorithm for the most researched subcase of L(2,1)-labeling. This improves over the algorithms by Havet et al. [2] running in time $O(3.873^n)$ and a recent improvement of Junosza-Szaniawski and Rzążewski [3] running in $O(3.562^n)$ time.

2 Deciding

In this section we consider the decision version of the problem, i.e. for a given ℓ -bounded weight function w and an integer $s \in \mathbb{N}$ we check whether there is a proper assignment of span at most s. Since the case $\ell = 1$ can be solved in $O^*((\ell + 1)^n) = O^*(2^n)$ time as described in [1], here we assume $\ell \geq 2$.

An assignment $c: V \to \mathbb{N}$ of span s can be seen as a tuple (I_1, I_2, \ldots, I_s) , where $I_j = c^{-1}(j)$ for every $j = 1, \ldots, s$. We will relax the notion of assignment in that we will work with tuples of vertex sets (I_1, I_2, \ldots, I_k) , where the I_j 's are not necessarily disjoint. We say that a tuple (I_1, I_2, \ldots, I_k) is proper, when for every $i, j \in \{1, \ldots, k\}$ if $x \in I_i$ and $y \in I_j$ then $|i - j| \ge w(x, y)$.

In what follows, U denotes the set of all proper tuples (I_1, \ldots, I_s) such that for each $j = 1, \ldots, s - \ell + 1$, the sets $I_j, I_{j+1}, \ldots, I_{j+\ell-1}$ are pairwise disjoint. A tuple with the r last elements being empty sets is denoted as $(I_1, \ldots, I_{s-r}, \emptyset^r)$. For a subset $X \subseteq V$, we say that a tuple (I_1, \ldots, I_j) lies in X when for every $i = 1, \ldots, j$, we have $I_i \subseteq X$.

For $v \in V$, define $U_v = \{(I_1, \ldots, I_s) \in U : v \in \bigcup_{j=1}^s I_j\}$. Observe, that

Proposition 1. $|\bigcap_{v \in V} U_v| > 0$ iff there is a proper assignment of span s.

By the inclusion-exclusion principle, if we denote $\overline{U_v} = U - U_v$ and

 $\bigcap_{v \in \emptyset} \overline{U_v} = U$, then

$$|\bigcap_{v\in V} U_v| = \sum_{Y\subseteq V} (-1)^{|Y|} |\bigcap_{v\in Y} \overline{U_v}|.$$
 (1)

Our algorithm computes $|\bigcap_{v \in V} U_v|$ using the above formula. The rest of the section is devoted to computing $|\bigcap_{v \in Y} \overline{U_v}|$ for a given set $Y \subseteq V$. If we denote X = V - Y, then $\bigcap_{v \in Y} \overline{U_v}$ is just the set of tuples of U that lie in X:

$$\bigcap_{v \in Y} \overline{U_v} = \{ (I_1, \dots, I_s) \in U : I_1, \dots, I_s \subseteq X \}.$$

$$(2)$$

Our plan now is to compute the value of $|\bigcap_{v \in Y} \overline{U_v}|$ using dynamic programming accelerated by the fast zeta transform. More precisely, for every $i = \ell - 1, \ldots, s$ and for every sequence $J_1, \ldots, J_{\ell-1}$ of pairwise disjoint subsets of X our algorithm computes the value of

$$T_i^X(J_1, \dots, J_{\ell-1}) = |\{(I_1, \dots, I_{i-(\ell-1)}, J_1, \dots, J_{\ell-1}, \emptyset^{s-i}) \in U : \bigcup_{j=1}^{i-(\ell-1)} I_j \subseteq X\}|$$
(3)

that is, the number of tuples in U that lie in X and end with $J_1, \ldots, J_{\ell-1}$ followed by s - i empty sets. Then, clearly,

$$|\bigcap_{v\in Y} \overline{U_v}| = \sum_{\substack{J_1,\dots,J_{\ell-1}\subseteq X\\i\neq j\Rightarrow J_i\cap J_j=\emptyset}} T_s^X(J_1,\dots,J_{\ell-1}).$$
(4)

For every sequence of pairwise disjoint sets $J_1, \ldots, J_{\ell-1} \subseteq X$, we can initialize the value of $T_{\ell-1}^X(J_1, \ldots, J_{\ell-1})$ in polynomial time as follows²:

$$T_{\ell-1}^X(J_1,\ldots,J_{\ell-1}) = [(J_1,\ldots,J_{\ell-1}) \text{ is proper}].$$
 (5)

Then the algorithm finds the values of T_j^X for subsequent $j = \ell, \ldots, s$. This is realized using the following formula:

$$T_i^X(J_1, \dots, J_{\ell-1}) = [(J_1, \dots, J_{\ell-1}) \text{ is proper}] \cdot \sum_{J_0 \subseteq X \cap \text{proper}(J_1, \dots, J_{\ell-1})} T_{i-1}^X(J_0, J_1, \dots, J_{\ell-2})$$
(6)

where proper $(J_1, \ldots, J_{\ell-1})$ is the set of all vertices $v \in V \setminus \bigcup_{j=1}^{\ell-1} J_j$ such that for each $j = 1, \ldots, \ell - 1$ and $x \in J_j$ we have $j \ge w(v, x)$.

Using the formula (6) explicitly, one can compute all the values of T_i^X from the values of T_{i-1}^X in $O^*((\ell+1)^{|X|})$ time, since there are $(\ell+1)^{|X|}$ tuples $(J_0, \ldots, J_{\ell-1})$ of disjoint subsets of X. Now we describe how to speed it up to $O^*(\ell^{|X|})$.

²[α] is the Iverson's notation, i.e. [α] = 1 when α holds and [α] = 0 otherwise.

Let S be a set and let $f : 2^S \to \mathbb{Z}$ be a function on the lattice of all subsets of S. The zeta transform is an operator which transforms f to another function $(\zeta f) : 2^S \to \mathbb{Z}$ and it is defined as follows:

$$(\zeta f)(Q) = \sum_{R \subseteq Q} f(R).$$

A nice feature of the zeta transform is that given f (i.e. when the value of f(R) can be accessed in O(1) time for any R) there is an algorithm (called fast zeta transform or Yates' algorithm, see [1, 7]) which computes ζf (i.e. the values of $(\zeta f)(Q)$ for all subsets $Q \subseteq S$) using only $O(2^{|S|})$ arithmetic operations (additions).

Let us come back to our algorithm. In the faster version, for each $i = \ell, \ldots, s$, we iterate over all sequences of disjoint subsets $J_1, \ldots, J_{\ell-2} \subseteq X$. Then the values of $T_i^X(J_1, \ldots, J_{\ell-1})$ for all the $2^{|X| - \sum_{j=1}^{\ell-2} |J_j|}$ sets $J_{\ell-1}$ that are disjoint with $J_1, \ldots, J_{\ell-2}$ are computed in $O^*(2^{|X| - \sum_{j=1}^{\ell-2} |J_j|})$ time (that is in polynomial time per set!). To this end, we use the function $f: 2^{X \setminus \bigcup_{j=1}^{\ell-2} J_j} \to \mathbb{Z}$, where

$$f(S) = T_{i-1}^X(S, J_1, \dots, J_{\ell-2}).$$

We compute the function (ζf) with the fast zeta transform using $O(2^{|X| - \sum_{j=1}^{\ell-2} |J_j|})$ additions. Now, observe that by (6), for each $J_{\ell-1} \subseteq X$ disjoint with $J_1, \ldots, J_{\ell-2}$,

$$T_i^X(J_1,\ldots,J_{\ell-1}) = [(J_1,\ldots,J_{\ell-1}) \text{ is proper}] \cdot (\zeta f)(X \cap \operatorname{proper}(J_1,\ldots,J_{\ell-1})).$$

It follows that for each $i = \ell, \ldots, s$ the algorithm runs in time needed to perform the following number of additions:

$$O(\sum_{\substack{J_1,...,J_{\ell-2} \subseteq X\\ j \neq k \Rightarrow J_j \cap J_k = \emptyset}} 2^{|X| - \sum_{j=1}^{\ell-2} |J_j|}) = O(\sum_{\substack{J_1,...,J_{\ell-1} \subseteq X\\ j \neq k \Rightarrow J_j \cap J_k = \emptyset}} 1) = O(\ell^{|X|}).$$
(7)

By (1) it follows that the whole decision algorithm runs in time needed to perform $O(n(\ell+1)^n)$ additions. The numbers being added are bounded by $|\bigcap_{v \in Y} \overline{U_v}| \leq 2^{ns} \leq 2^{n^2\ell}$, where the last inequality follows from the fact that the minimum span is upper bounded by $(n-1)\ell+1$ (see e.g. [5]). Hence a single addition is performed in $O(n^2\ell)$ time.

Corollary 2. There is an algorithm which verifies whether the minimum span of an ℓ -bounded instance of the channel assignment problem is bounded by s which uses $O^*((\ell + 1)^n)$ time and $O^*(\ell^n)$ space.

3 Counting

In this section we briefly describe how to modify the decision algorithm from Section 2 in order to make it *count* the number of proper assignments of span at most s. We follow the approach of Björklund et al. [1]. The trick is to modify the definition of U. Namely, now every tuple (I_1, \ldots, I_s) from U_v additionally satisfies the following condition:

$$\sum_{j=1}^{s} |I_j| = n.$$
 (8)

Observe, that then $|\bigcap_{v \in V} U_v|$ equals the number of proper assignments of span at most s. Now, we add another dimension to the arrays T_i^X :

$$T_{i,k}^{X}(J_{1},\ldots,J_{\ell-1}) = |\{(I_{1},\ldots,I_{i-(\ell-1)},J_{1},\ldots,J_{\ell-1},\emptyset^{s-i}) \in U : \bigcup_{j=1}^{i-(\ell-1)} I_{j} \subseteq X$$

and
$$\sum_{j=1}^{i-(\ell-1)} |I_{j}| + \sum_{j=1}^{\ell-1} |J_{j}| = k\}|.$$

The dynamic programming algorithm from Section 2 can be easily modified to compute the values of $T_{i,k}^X(J_1, \ldots, J_{\ell-1})$ for all $i = \ell - 1, \ldots, s, k = 0, \ldots, n$ and all sequences of $\ell - 1$ pairwise disjoint subsets of X. The details are left to the reader.

Corollary 3. For any ℓ -bounded instance of the channel assignment problem the number of the proper assignments of span at most s can be computed in $O^*((\ell+1)^n)$ time and $O^*(\ell^n)$ space.

4 Finding

In order to find the assignment itself we can solve the extended version of the channel assignment problem, where we are additionally given a set of vertices $Z \subseteq V$ together with a function $c': Z \to \{1, \ldots, s\}$. Then we are to check whether there exists a proper assignment $c: V \to \{1, \ldots, s\}$ satisfying $c|_Z = c'$. It is not hard to modify the presented algorithm to solve the extended version of the problem in $O^*((\ell+1)^{n-|Z|})$ time. The details are left to the reader.

Now using the extended version of the channel assignment problem we can take any $v \in V \setminus Z$ and try each of the $s \leq (n-1)\ell + 1$ possible values of c(v) one by one, each time using the algorithm for the extended channel assignment problem as a black box. When the value for v is fixed in a similar manner we assign the value for the other vertices of $V \setminus Z$. Since $\sum_{i=1}^{n} (\ell + 1)^{n-i} < (\ell + 1)^n$, the algorithm for finding an assignment has a multiplicative overhead of $O(n\ell)$ over the running time of the decision version.

5 Open problems

In [6] Traxler has shown that for any constant c, the Constraint Satisfaction Problem (CSP) has no $O(c^n)$ -time algorithm, assuming the Exponential Time Hypothesis (ETH). More precisely, he shows that ETH implies that CSP requires $d^{\Omega(n)}$ time, where d is the domain size. On the other hand, graph coloring, which is a variant of CSP with unbounded domain, admits a $O^*(2^n)$ -time algorithm. The channel assignment problem is a generalization of graph coloring and a special case of CSP. In that context, the central open problem in the complexity of the channel assignment problem is to find a $O^*(c^n)$ -time algorithm for a constant c independent of ℓ or to show that such the algorithm does not exist, assuming ETH (or other well-established complexity conjecture).

References

- A. Björklund, T. Husfeldt, and M. Koivisto. Set Partitioning via Inclusion-Exclusion. SIAM J. Comput., 39(2):546–563, 2009.
- [2] F. Havet, M. Klazar, J. Kratochvíl, D. Kratsch, and M. Liedloff. Exact Algorithms for L(2, 1)-Labeling of Graphs. *Algorithmica*, 59(2):169–194, 2011.
- [3] K. Junosza-Szaniawski and P. Rzążewski. On Improved Exact Algorithms for L(2,1)-Labeling of Graphs. In Proc. IWOCA 2010, LNCS 6460, pages 34–37, 2010.
- [4] D. Král. An exact algorithm for the channel assignment problem. Discrete Applied Mathematics, 145(2):326–331, 2005.
- [5] C. J. H. McDiarmid. On the span in channel assignment problems: bounds, computing and counting. *Discrete Mathematics*, 266(1-3):387– 397, 2003.
- [6] P. Traxler. The Time Complexity of Constraint Satisfaction. In Proc. IWPEC 2008, LNCS 5018, pages 190–201, 2008.
- [7] F. Yates. The Design and Analysis of Factorial Experiments. Imperial Bureau of Soil Sciences, Harpenden, 1937.