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Abstract

The average complexity analysis for a formalism pertaining pairs of compatible sequences is presented.
The analysis is done in two levels, so that an accurate estimate is achieved. The way of separating the
candidate pairs into suitable classes of ternary sequences is interesting, allowing the use of fundamental
tools of symbolic computation, such as holonomic functions and asymptotic analysis to derive an average
complexity of O(ny/nlogn) for sequences of length n.
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1. Introduction

In this paper, we detail an average complexity analysis for a formalism that exhibits the cross-
fertilization of combinatorics with theoretical computer science, in the study of sequences with constant
(non) periodic autocorrelation function.

In what follows we present the asymptotic analysis for the average case complexity of deciding if two
sequences have PAF/NPAF (see Definition 1) equal to a constant «. We employ a fine grained analysis
initially and then we provide the asymptotics for a pair of sequences of length n. In the course of the
analysis we extensively use tools from Computer Algebra and especially tools for dealing with holonomic
functions and their asymptotics since such functions occur in the summations needed for the analysis.

In Section 2 we provide the necessary definitions and previous work. In Section 3 we describe the
algorithms and the essential part of the theory behind them. In Section 4 we detail the asymptotic
analysis for the average case complexity of the algorithms. In Section 5 we conclude by giving some hints
on the practical complexity and arguing on the efficiency of the algorithms examined.

2. Preliminaries

This section gives a collection of notions that are used throughout the paper.

Definition 1. For a sequence A = [a1,aq, ..., ay] of length n the periodic autocorrelation function (PAF')
and the non-periodic autocorrelation function (NPAF), denoted by Pa(s) and Na(s), are defined as

PA(S):ZaiaLHS,.9=0,1,...,n—17 and NA(S):Za/iai+s,820,17...,n_1,
i=1 i=1

respectively, where in PAF we consider (i+s) modulo n, see also [11, 13].

Definition 2. Two sequences, A = [a1,...,a,] and B = [by,...,b,], of length n are said to have PAF
(respectively NPAF) equal to o, if Pa(s)+Pp(s) = « (respectively Na(s)+Np(s) =) fors=1,...,n—1.
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Following [5] the sequences A and B will be called compatible, if « is a constant. Note that such pairs
of sequences are said to have constant (non) periodic autocorrelation function even though it is the sum
of their autocorrelations that is a constant.

We are interested in bundling together the indices of entries with the same sign. This motivates the
following definitions:

Definition 3. The positive and negative support of a sequence A = [ay, ..., ay], denoted by POS(A) and
NEG(A), respectively, are defined as

POS(A)={i:a; >0, i=1,...,n} and NEGA)={j:a; <0, j=1,...,n},
while its weight w(A) is defined as w(A) = |[POS(A)| + |[INEG(A)|.

Definition 4. We define the occurrences counting function [S]. for a multiset S and an element from
the domain of elements of S as [Sle =|[z €S : z=¢.

For example, let S be the multiset S = [1,1,2,2,2,4]. Then [S]; = 2,[S]2 = 3,[S]s =0 and [S]s = 1.

Lemma 1. Let A, B be multisets and by AW B denote the union of A and B, preserving all multiplicities.
Then [AW B, = [Ale + [Ble-

For prior usage of multisets in the study of sequences with constant (non) periodic autocorrelation function
we refer to [7, 15, 20], while for related operations on them see [12].

3. A Combinatorial Algorithm for Compatible Sequences

In this section, we present an algorithm that based on their support decides if two sequences are
compatible. The use of the support of sequences first appeared in [5] and [6], and recently for such
computations in [7] and [15].

3.1. Sets of Differences
In order to state the algorithm, we need to define multisets of differences on their support.

Definition 5. We define the following multisets:
e Signed differences in the positive support of A: D} =[x —y : z,y € POS(A),z > y].
o Signed differences in the negative support of A: Dy =[x —y : z,y € NEG(A),z > y].

e Cross differences between the positive and negative support of A: Ca = Df W DY,
where DL =[x —y : x € POS(A),y € NEG(A),x > y] and D} =[x —y : = € NEG(A),y €
POS(A),z > yl.

Remark 1. Depending on whether we are interested in PAF or NPAF:
e in the definition of the sets above, for PAF we use (x —y) (mod n) instead of (x — y)
o the notation AF,(s) denotes either PAF4(s) or NPAF4(s)

Notation 1. We denote by AF4 p(s) the sum AF4(s) + AFp(s). If the sequences A and B are clear
from the context, we denote AF4 p(s) by AF(s).

The motivation behind the multisets in Definition 5 is counting the contribution of each sequence in
AFA}B (S)

Lemma 2. Let A, B be two sequences of length n, weight w and entries from {—1,0,1}. Let D be
Dl WD, wDLwDg and C be Co W Cp. Fors € {1,2,...n— 1}, the following are equivalent:



(i) AF4 (s) =«

(i) [D]s — [C]s = o
PrROOF. Fix s € {1,2,...n — 1}. We prove the lemma for NPAF. The PAF case is similar. We have
that AF4 g(s) = AFa(s) + AFg(s). Thus we need to compute AFc(s) for C' = A, B. We have that
AFc(s) = |Pc| — |N¢|, where Po = [(¢i,cits) @ ciciys =1, i =1,2...,n— s, ¢; € C] and N¢g =
[(ciycivs) @ ceivs=—1,1=1,2...,n—s, ¢; € C|.

We should consider only elements of the support, since all products involving a zero element contribute
zero to the sum. The pairs of elements of the support contributing a “41” are the ones where both
elements have the same sign, i.e., elements of Po. By the definition of DJr (respectively D), for every
occurrence of s in D+ (rebpectlvely o), there is a pair (¢;, ¢i45) for some ¢ such that ¢; and ¢;4, have
both positive (respectlvely negative) sign, thus belonging to Po. The other direction, i.e., for each pair
(¢iy Cits) € Po there is an occurrence of s in Dg or D, follows directly by the definition of Dg and D.
Thus the cardinality of Pc is equal to the number of occurrences of s in DJCr and Dg.

Similarly, the pairs of elements of the support contributing a “—1” are the ones where elements have
opposite signs. By the definition of C¢, for every occurrence of s in C¢, there is a pair (¢;, ¢;45) for some
i such that ¢; and ¢;4, have opposite signs, thus belonging to Nc. The other direction, i.e., for each
pair (¢;, ¢i+s) € N¢ there is an occurrence of s in C¢ follows directly by the definition of C. Thus the
cardinality of N¢ is equal to the number of occurrences of s in C¢.

Summarizing for A and B we have

AF4 p(s) = AFa(s)+ AFgp(s)
= |Pa| —[Nal| + |Pp| — |Np|
= (|PA|+\PB|)—(|NA|+|NBD

= ([D4]s + [D3]s + [DE]s + [Dgls) — ([Cals + [CBls)
= [D+UD WDLWDgls — [CalCpls
= [D]s = [Cls

Thus
AF s p(s) =a < [D]s — [C]s = «
O

Depending on the value of a and the choice of AF(s) we can now verify the AF property for a number
of combinatorial objects. For example, a ternary complementary pair (TCP) made up of two sequences A
and B is defined as TCP(n,w) := {(4,B) : A,B € {-1,0,1}", w(A)+w(B) =w, NPAF4 p(s) =0, s =
1,...,n—1} (see [3]). Then we can simply check for NPAF4 p(s) = 0 < [D]s = [C],. Note that in this
case the derived multisets must be equal. We give another example based on generalized Legendre pairs
(GL-pairs) of length ¢ defined as GL(f) := {(A,B) : A, B € {-1,1}*, w(A) + w(B) = 2(, PAF4 p(s) =
-2, s =1,...,n — 1} (see [5]). Similarly we check for PAF4 p(s) = —2 < [C]s — [D]s = 2. In the
sequel, GL-pairs and TCPs are used to produce Hadamard and weighing matrices (see Theorem 3 of [5]
and Theorem 5 of [14]). Design Theory is rich of sequences with similar properties [11, 13, 14], with
numerous applications in signal processing [8, 9] and Cryptography [18].

3.2. Description of the Algorithm
From Lemma 2 we can deduce an algorithm for the verification of the following property,
“The sequences A and B of length n have constant (non) periodic autocorrelation equal to a.”
The main steps of the algorithm are:
e Compute the support
e Compute the multisets of signed differences and cross signed differences
e Verify that [D]; — [C]s = o for s € {1,2,...,n— 1}

These steps extend the results of [15] in the case of a # 0, and those of [7] for two ternary sequences with
zero AF. We give a high level description of algorithm 1, below.



Algorithm 1 AF Computation Algorithm

procedure AFVERIFICATION(A, B, «)
Require: A, B are {0, £1} sequences of length n and « € {0,1,...,2n}
n «— |A4|
Compute POS(A), NEG(A), POS(B), NEG(B) as in Definition 3
Compute DY, D;,Ca, D}, D5, Cp as in Definition 5
Compute D = DX WD, &JDE WDg and C =Cya W Cp
for s=1,2,....n—1do
if [D]s — [C]s # a then return False
end if
end for
return True
end procedure

4. Average Case Complexity Analysis

In this section we examine the average case complexity of Algorithm 1. Average-case analysis is a
hard task to accomplish because there are a lot of details involved. First the different groups into which
all possible input can be grouped need to be determined. The second step is to determine for each of the
groups the probability for a random input to come from this group, under the assumption that every input
is equally likely. The third step is to determine for each of the groups the complexity of the algorithm
for input coming from this group. Finally, the average case complexity is given by the following formula:

AC(n) = iPiTi (1)

where n is the size of the input, m is the number of groups, P; is the probability assigned to the i*®
group, and T is the complexity of the algorithms for input from the i*" group. We note that m, P;, T}
(may) depend on n.

In what follows, we consider as input a pair of sequences. The total length is 2n, w; is the weight of
the first sequence, wy is the weight of the second sequence and w = wy + ws.

Remark 2. The following analysis is in the arithmetic model, i.e., all arithmetic operations are exact
and contribute the same to the complexity of the algorithm.

As a side note we should mention that, concerning bit-size complexity, the bit-size of any quantity
appearing in the algorithm is bounded by log(n).

The following sets, along with the respective cardinalities are needed:
e Let S(n) = {(4, B) € ({0,£1}")?}, then
S(n)] = 32", (2)
since there are 3 choices for each position in two sequences of length n.

e Let Sy,(n) ={(A,B) € S(n) : w(A)+ w(B) =w}, then

st =2+ (%), 3)

w

since we choose w positions in two sequences of length n and we have 2 choices for each position.



o Let Syywp(n) ={(4,B) € S(n) : w(A) =wr,w(B) =ws}, then

ER O S [ e @

since there are 2 choices (positive or negative) for each non zero entry, (J}l) choices for the non zero
entries in the first sequence and (U’;) choices for the non zero entries in the second sequence.

4.1. Complexity

We now examine the complexity of the algorithm for an input from S% f’w ,(n). The algorithm consists
of three steps as explained previously.

e Step 1: Compute the support
This step requires 4n operations in order to scan the sequences and populate the sets POS(A),POS(B),
NEG(A) and NEG(B).

e Step 2: Compute the signed difference sets
This step requires at most 3 operations for each element added in any of the multisets D and C,
where D = D:{ WD, Dg W Dy and C = C4 & Cp. To obtain the number operations we count
how many elements each of the sets involved has:

— D% = “L for a = |[POS(A)]
|D;|:Mfora=|NEG( )|
— |Df| = 22N for b = |POS(B)|
1D5| = 250 for b = [NEG(B))|
— |Ca| =aa fora—|POS( ), @ =|NEG(A)]
|Cg| =0bb for b=|POS(B)|, b= |NEG(B)|
Thus, |D| = 1(a(a — 1)+ a(@—1) + b(b — 1) + b(b — 1)) and |C| = aa + bb.

2

Using @ = w; — a and b = wy — b yields that the complexity of this step is %(wl — w1 + w3 — wa).

e Verification of AF = «

1. Dlog D + C'log C steps to sort the two multisets D and C.
2. max{D, C'} steps are needed to decide if [D]; — [C]s; = a for all s € D U C, scanning through
the sorted multisets.

The scanning is dominated by the sorting, thus this step contributes aalog(aa) 4 bblog(bb) to the
complexity. In order to simplify the computations we will bound this quantity by something not
depending on a and b.

For this particular case it is easy to compute such a bound (by computing the maximum of a
quadratic equation). Nevertheless, we use Cylindrical Algebraic Decomposition (cf. [2, 19]), which
is a standard and powerful tool for this task (substituting @ by w; — a and b by ws — b):

= Resolve[ForAll[{a},0 < a < w1, a(w1 — a) < M], {w1, M}, Reals]

w2
ouiil= w1 >0 && M > 71

Thus we can bound a(w; — a) < wT? and b(wg — b) < ng and as a consequence the costs for the
verification of AF' = « can be bounded by

w w? w2 % w3 2 2 2 2

Il gT + —1 og —= < 5 log wy + 7logw2 < %(wl + w3) log(wy + we) < %(wl + wj) logn.



Adding the complexities of each step yields the upper bound
1
5 (8n7w1 + w? 7w2+w§+wflogn+w§logn).

Since we are only interested in a big-Oh estimate of the complexity, we can safely ignore constant factors
and simplify further by dropping the terms that are subtracted and bounding w? by w? logn from above
for i = 1,2. Thus we conclude that for input from Sy, ., (n) the complexity of the algorithm is of order

O (n+logn (wi + w3)). (5)

4.2. Probabilities
For the average case analysis we need the probability for a pair of sequences of length n to have

weights wy and ws:
S’wl w2 n 2w1+w2 (1?1) ('JJIQ)
Pt ) = Sl = — ®

and the probability for a pair of sequences of length n to have total weight w:

_ 1Sum] _ 2°(3)

w

Polwm) = Tl = g

(7)

4.8. Average Complexity
We will repeat the process of finding the average complexity two times, at different level of detail.
At the first level we examine the complexity considering input from S,,(n) and obtain the average
case complexity Ca(w,n) separating the possible S,,(n) into groups according to wi, wa (i-e., Sy, w, (1))
Since we average over the possible weights for a given length, we consider n to be fixed and we can ignore
the linear term n and the logn factor of the second term in (5). In the final step we will reintroduce
these terms to obtain the average case complexity. Let

C’l(wl,wg) = wf + wg (8)
then according to (1):
Co(w,n) = Z Py (w1, we,n)Ch (w1, ws) = Z Py (i,w—i,n)C1 (5, w — 1) 9)
w1 +wo=w =0

At the second level we average over the weight, and we compute the average case complexity for input
from S(n). According to (1) again, we have:

2n
Cs(n) = Z Py(w,n)Ca(w,n) (10)
w=0
Then the average complexity is
AC(n) = O(n + C3(n)log(n)) (11)

4.4. Computations
In this section, we carry out the computations for the aforementioned analysis, using MATHEMATICA.
From (8) and (9), we have

W gitwi () (
Ca(w,n) = Z 3(2;) () (% + (w —9)?)

=0

EO)

_2Y wh—w—nw) 2n
-3 2n —1 '




Combining (10) and (12) yields

2n 2n

Cs(n) = Z Py(w,n)Ca(w,n) = Z 27(,) 2° w(n — w + nw) <2n)

2n  22n _
b = 3 3 2n—1 w

—4n 1 e 2w 2n ?
0

w=

The expression for the average complexity C3(n) is a very well behaved object. It satisfies a linear
recurrence in n with polynomial coefficients and as such it fits into the so-called holonomic framework [22,
1, 16]. Within the last decades several symbolic algorithms have been designed and implemented that are
capable of automatically finding (and thus proving!) recurrence relations for this type of input [17]. We
are interested in the asymptotic behavior of the average complexity and to obtain this information we
first compute a recurrence relation for the sum in (4.4). From this recurrence relation then the asymptotic
behavior can easily be determined using standard techniques, see e.g. [4, 21]. For the computation of
the recurrence relations we employ the MATHEMATICA package HolonomicFunctions' implemented by
Christoph Koutschan [16]. The package is loaded in the MATHEMATICA kernel via

2= << HolonomicFunctions.m
HolonomicFunctions package by Christoph Koutschan, RISC-Linz, Version 0.13 (13.05.2009) —
Type ?HolonomicFunctions for help

To obtain a recurrence for the terms in (4.4) we first compute the annihilator with respect to shifts
in n, where the shift operator is denoted by S,,.

m@l= ann = [Annihilator[3~4" 2 Sum[22* Binomial[2n, w]?w(n — w + nw), {w, 0, 2n}], {S[n]}]]

n—1
oupl= {81n(n + 1)%(2n + 3)(4n + 1) (40n? + 20n — 39) S2 + (n + 1)%(n + 2)(2n — 1)(4n + 5) (40n? + 100n + 21)
—2n(n + 2)(4n + 3) (3280n* + 9840n° + 2722n2 — 69870 — 1781) Sy }

The final step consists in determining the asymptotic behavior of the recurrence. For this purpose we
make use of a MATHEMATICA-implementation of the methods described in [21] by Manuel Kauers [10] in
the package Asymptotics'. The input is merely the recurrence relation satisfied by the given sequence,
ie.,

4~ Asymptotics[81n(n + 1)%(2n + 3)(4n + 1) (40n? + 20n — 39) f[n + 2]
—2n(n + 2)(4n + 3) (3280n* + 9840n3 + 2722n% — 6987n — 1781) fn + 1]
+ (n+1)?(n+ 2)(2n — 1)(4n + 5) (40n? + 100n + 21) f[n], fn]]

3/2
Out[4]= - R n3/2
81m

The output describes the asymptotic behavior of the given sequence, i.e., in our case it is n%/2 (cl + 023’4”).
Going back to (11) summarizing we have that the average complexity of the algorithm is:

AC(n) = O(n + n? log(n)) = O(ny/nlogn) (13)

It is possible to determine an approximation to the constant ¢; of the dominant term n3/2 in the asymp-
totic behavior. Following the procedure outlined in [10] we can apply again the Asymptotics package to
determine further terms in the expansion of C3(n) and by considering the ratio of this expansion and
n3/2 thus obtain an approximation of ¢;. The value

c1 ~ 2.6586807763582740409472512250117177741963241841836

Lavailable at http://www.risc.jku.at/research/combinat/software/



is the approximation if we consider up to 50 digits in an expansion of order 15. For identifying which real
number this approximation corresponds to we employ the online-available inverse symbolic calculator 2,
which gives striking evidence that ¢; = /7.

Figure 4.4 shows the graph of ¢;ny/nlogn and the graph of the real performance of a (naive) imple-
mentation on random data. The x-axis is the length n and the y-axis is the time. For each n we used 50
random pairs of sequences of length n.

2.5’ """ 1 T T T T T T 1

ny/(n)log(n)

Experimental data

Figure 1: Comparison of average case complexity against real performance.

The experimental data confirms our analysis.

5. Conclusion

We presented a detailed analysis for the average case complexity of an algorithm deciding if two
sequences are compatible based on their support. In the course of the analysis we have used different
tools from computer algebra and computed the average case asymptotic complexity to be O(n+/nlogn).
This estimate proves that in practice the algorithm under consideration performs better than what the
worst case complexity (O(n?logn), see [15]) suggests.
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