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Abstract

We propose a technique for reducing communication overheads when
sending data across a network. Our technique, called hash challenges,
leverages existing deduplication solutions based on compare-by-hash by
being able to determine redundant data chunks by exchanging substan-
tially less meta-data. Hash challenges can be used directly on any exist-
ing compare-by-hash protocol, with no relevant additional computational
complexity. Using real data from reference workloads, we show that hash
challenges can save as much as 64% meta-data exchanged across the net-
work, relatively to plain compare-by-hash. This implies reductions of up
to 7% in overall transferred volume, and performance gains of up to 16%
with typical asymmetrical broadband connections.

1 Introduction

Many interesting and useful applications require transferring large volumes of
data across a network, from network file and backup systems, content deliv-
ery networks and software distribution mirroring systems, to recently popular
cloud-based file hosting and sharing systems [7]. While broadband, both wired
and mobile, is rapidly becoming ubiquitous in developed countries [2], it is not
a panacea. Firstly, upload bandwidth remains a scarce resource for the average
broadband consumer, for commercial and technical reasons that are unlikely
to change in the near future [2]. Yet, in many examples mentioned above,
clients tend to upload more than they download; e.g., in backup and file host-
ing/sharing systems. Furthermore, many ISPs charge a per-byte price, whereas
network usage incurs energy costs to battery-constrained mobile clients. Finally,
broadband penetration is still far from significant in the developing world [8].
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Fortunately, as many studies show (e.g., [15, 14]), the data exchanged be-
tween hosts in most of these systems exhibits high levels of redundancy. Hence,
much of the traffic that the above mentioned applications exchange can be elim-
inated. To illustrate, consider the situation where some node (the sender) is
about to send file S to another node (the receiver). Assume that the receiver
already stores a set of files, R. Let us call each contiguous data block in R
and S a chunk. Very frequently, S will share many chunks with other files (or
versions of files) that the receiver already holds (in R). If the sender is able to
infer which chunks in S are redundant across R, then it can avoid transferring
them, as the receiver can directly obtain them within the local contents in R.

This problem is often called distributed data deduplication (hereafter simply
called deduplication). Much recent work has proposed different deduplication
techniques [14], the most prominent being the compare-by-hash method (CBH)
[18, 15]. In CBH, the sender starts by dividing each file to be sent into a sequence
of contiguous chunks, ¢y, ¢, .., ¢,, and by computing the corresponding hashes,
using some hash function with a negligible collision probability (e.g. SHA-1
[16]). The sender then transmits the hash list to the receiver. The receiver
maintains a lookup structure on the hash of each block in R, usually called a
chunk hash database. Upon receiving the hash list from the sender, the receiver
searches for each hash in its local chunk hash database. Whenever a match
is found, the receiver retrieves the contents from the local chunk (assuming
the local chunk to be identical to the original chunk at .S, given the negligible
collision probability). The receiver then tells the sender which chunks in S are
still missing, so that the sender can transfer such chunks only.

The power of CBH lies in its ability to detect any cross-file and cross-version
redundancy, while requiring no long-term shared state between sender and re-
ceiver. However, CBH’s effectiveness depends on using chunks that are small
enough to exploit most fine-grained redundancy that S shares with R. Unfor-
tunately, precision in CBH has a high price in terms of latency and network
overhead of the hash exchange phase. As one attempts to leverage precision by
reducing chunk sizes, the meta-data overhead will easily outgrow the savings in
the second protocol round [11]. Not surprisingly, most deployed CBH systems
are forced to run at a relatively coarse precision (e.g., 2 Kbytes expected chunk
size in LBFS [15]), thus neglecting substantial redundancy.

This paper proposes a lighter alternative to CBH, called Hash Challenges
(HCs). HCs stretch CBH’s limits by dramatically reducing the underlying meta-
data overhead, while detecting redundant chunks as effectively as the latter (i.e.,
for identical chunk sizes, HCs detect the same redundancy as CBH). Intuitively,
such savings arise from the ability of HCs to filter out most non redundant
chunks by exchanging very short hash fragments, instead of their complete
hashes. HCs can directly replace the CBH steps in any existing protocol based
on CBH, including the more intricate CBH variations that have been proposed
recently (e.g. [11, 10, 3, 6]). Moreover, HCs introduce neither any relevant
computation overhead nor network round-trips relatively to CBH.

We support the above claims with a theoretical analysis and an experimental
evaluation of the HCs protocol. Running a full-fledged implementation of HCs
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Figure 1: Hash Challenges protocol (HCs).

with standard workloads from reference work in data deduplication, we show
that HCs can save as much as 64% meta-data exchanged across the network,
relatively to CBH. Such reductions mean gains in overall transferred volume of
up to 7%, with no relevant performance degradation.

Most importantly, the benefits of HCs are amplified in scenarios where
data to deduplicate is to be sent over a low bandwidth link. In a 1Mbps up-
link/100Mbps downlink scenario, HCs are up to 16% faster than CBH.

The remainder of the paper is organized as follows. Section 2 describes
and analyzes HCs. Section 3 provides experimental results that confirm the
advantages of HCs over CBH. Finally, Section 4 discusses related work and
Section 5 draws concluding remarks.

2 Hash Challenges

HCs ensure the same as CBH: to allow the sender node to know whether the
receiver already holds a given chunk, ¢, in its local repository, R. Figure 1
depicts HCs. Like CBH, HCs work in three phases, which we explain next.
Hereafter, we assume FIFO message ordering.

Phase i. The sender starts by dividing the contents to send (S) into a se-
quence of (contiguous) chunks. We can use any standard approach for defining
chunk boundaries, either fixed- or variable-sized [14]. For each chunk c to trans-
fer, the sender computes ¢’s hash, h(c), using some cryptographic hash function,
e.g. SHA-1 [16]. Hereafter, let N denote the hash length in bytes (e.g. N =20
for SHA-1).

Chunk division results in a list of metadata entries that characterize each
chunk in S, including the chunk’s hash value, length and the address of its
contents. The sender will maintain this list until phase 4ii.

While CBH would send the N-byte chunk hashes of every chunk in S to
the receiver, our protocol will only send k-byte prefixes of each such hash. We
call each prefix in the sequence sent to the receiver a hash challenge. The key
insight behind HCs is that, even if the sender delivers such incomplete pieces



of meta-data to the receiver, the sender will still be able to infer whether each
chunk c¢ in S is redundant across R or not. We explain how next.

Phase ii. The receiver maintains a local chunk hash database, which stores
chunk metadata for each chunk the receiver stores in R. For any given hash
challenge, the local chunk hash database is able to lookup the chunks whose
first k£ hash bytes match the given hash challenge. We designate such chunks
as the candidates for the given hash challenge. Furthermore, we designate the
remaining N — k bytes of the chunk’s hash as that candidate’s hash response
(to the HC).

For each received hash challenge he(c;), the receiver inspects its local chunk
hash database for one or more candidates that match he(c;). For each candidate
that the receiver finds for he(c;), the receiver adds it to a candidate list and sends
the candidate’s hash response, labeled by the ¢ index. The candidate list is held
by the receiver until phase ii:.

It is straightforward to extend the hash table-based chunk hash databases of
most conventional CBH systems in order to support the above candidate lookup
operation. A particularly efficient solution is to use a hash table with as many
buckets as possible HCs (i.e. 2¥*8). Each bucket i contains a list of metadata
entries for the chunks whose k-byte hash prefix equals i. Hence, finding the
candidates for some hash challenge hc(c;) is as simple as directly returning all
the entries in the bucket whose index is he(ce;).

Phase iii. Upon reception of each candidate’s hash response for some hash
challenge hc(c;), the sender obtains the real hash value of chunk ¢; and com-
pares both. If an effective match is found, then the receiver is actually holding
the same chunk (assuming no hash collisions occur). In this case, the sender
replies with the offset (within S) to where the receiver must copy the redundant
contents of the candidate chunk that the receiver holds.

If, otherwise, the hash response does not match the actual chunk hash, the
current candidate is false. Hence, the sender replies with a reserved offset value
(no match), telling the receiver to ignore the current candidate.

Finally, the sender transfers the chunks it did not find redundant. The
receiver fills the non-redundant gaps with such contents, thereby completing S.

2.1 Analysis

It is easy to see that, in the absence of false candidates, HCs exchange less hash
value metadata than CBH for the non-redundant chunks. By only sending &
bytes across the network and receiving an empty answer, the sender is imme-
diately sure that the receiver does not hold c¢. Furthermore, in the case that
the receiver does hold chunk ¢ and no other chunk shares ¢’s k-byte hash prefix,
HCs exchange the same number of hash bytes as CBH: N bytes (k plus N — k,
in HCs). Of course, since HCs save metadata, their overall impact will only be
noticeable when metadata volume is non-negligible; as we show briefly, this is
true for chunk sizes below 8 Kbytes.

It is worth noting that, by varying the size of hash challenges (from k = N
to 0) we can actually define a spectrum of protocols. At the k = N extreme we



get CBH. As we drop k, we achieve higher efficiency due to the above mentioned
metadata savings with non-redundant chunks. However, decreasing k£ will in-
evitably increase the likelihood of false candidates and consequently introduce
network overhead.

We need to precisely predict the aggregate volume that HCs exchange in
order to better understand this trade-off. We prove in A that the expected
number of bytes transferred is bounded from above by:

S

151 X k+ #cand X [(N — k) + int] +
CS

phase i phase ii

5]

int X #cand + [1 — Preq(S, R,cs)] X — X cs
cs

phase iii

where |S| and |R| denote the size (in bytes) of S and R, resp.; int denotes the
size of an integer (used to express chunk indexes and offsets); Pr.q(S, R,cs)
denotes the probability that each chunk in S is redundant across R, assuming
an average chunk size of cs; and #cand denotes the number of candidates found
at the receiver on phase 4i. The latter is given by: #cand = [Preq(S, R, cs) +
LI k1><8] x 151,

cs 2 cs

The above expression leads us to some fundamental conclusions about HCs.
Firstly, starting at £k = IV and gradually decreasing k, metadata savings due to
HCs grow much faster than the false candidate rate increases, until a critical
threshold is reached. This is evident in Figure 2, which depicts the metadata
volume that HCs actually save (by exchanging less hash bytes) and introduce
(when false candidates occur).! For different combinations of two key variables,
the size of R and the redundancy probability, the effective outcome of HCs is
given by the vertical distance between both lines in Figure 2. The higher the
gain line is relatively to the loss line, the less the system will actually transfer
across the network. For any scenario, such a positive difference tends to grow
as one drops k. However, when one reaches the critical threshold (for instance,
k = 3 for R with 100K chunks), such gains are almost instantaneously lost with
an explosive increase of false candidates.

Hence, the success of deploying HCs depends on a careful choice of parameter
k; more precisely, on choosing the lowest k with a negligible false candidate rate.
As Figure 2 shows, that choice depends only on the size of R. Any system
based on HCs should thus either adapt k as R changes, or simply limit R to a
maximum acceptable size and set k accordingly.

As Figure 2 illustrates, smaller sizes of R maximize the effective gains that
HCs can attain. This suggests that HCs are especially suited to workloads with
smaller sizes of R. Nevertheless, the gains of HCs drop slowly as one considers
much larger sizes of R (e.g. up to 100TB with 1KB chunks, £ can be as low as
6 without incurring frequent false candidates).

IThe plotted values are estimates obtained from the components of the aggregate volume
expression of HCs (see A for details).
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Figure 2: Metadata saved and added by HCs for different sizes of R and redun-
dancy probabilities.

In scenarios where the receiver stores a large repository, one option for us-
ing a low k is to partition that repository into smaller sub-domains, each one
corresponding to a different R. This technique is not new. For instance, it is
extensively used in Web content deduplication, where it is well studied that, for
many Web workloads, by restricting redundancy detection to smaller content
partitions (e.g. a single directory instead of the full repository at the server),
similar redundancy levels are achieved [4].

Another crucial conclusion is that HCs always reduce metadata volume on
the sender-to-receiver link, while any additional traffic due to false candidates
exclusively affects the receiver-to-sender link. This is particularly advantageous
in asymmetric network where the bandwidth from the sender to the receiver
is lower than in the opposite direction. For instance, most internet broadband
users face this situation when uploading new contents to a file sharing service.
Besides reducing the overall volume, HCs also shift part of such volume to the
higher bandwidth stream.

We empirically confirm these predictions next.

3 Evaluation

This section evaluates HCs, with the goal of answering two main questions: in
practice, (1) how much network volume do HCs save?; and (2) how do HCs im-
pact performance? To answer both questions, we built two file transfer systems:
one that implements the CBH protocol used by LBF'S [15], and an extension of



the previous system that runs the HCs protocol. Both systems use Rabin finger-
prints to delimit chunks using content-based boundaries, 20-byte SHA-1 hash
values to identify chunks (N = 20), and maintain a 128M-bucket in-memory
chunk hash table at the receiver site. The expected chunk size, hereafter de-
noted ecs, is a tunable parameter, and can be set from 128B up to 8KB. As
in LBFS [15], we imposed size limits to prevent pathological cases; namely, a
chunk cannot be smaller than ecs/4 and no larger than ecs x 2.

The sender and receiver processes each ran in an Intel Core 2 Quad CPU
machines with 8GB RAM, connected by a 100Mbps Ethernet network. All
values presented next are an average of the results obtained on five runs of each
experiment, preceded by one cold start run.

As for workloads, we consider three real workloads: emacs, gcc and linuz-src.
These workloads have been used to evaluate other state-of-the-art deduplication
protocols (e.g. [11, 3]). In each workload, R consists of a snapshot of a given
set of files, whereas S corresponds to a subsequent snapshot of the same files.
Initially, the receiver stores R. Each experiment consists of the sender sending
S to the receiver. In emacs, the snapshots correspond to the source code trees
of versions 20.1 and 20.7 (respectively) of the popular editor; in gee, to versions
3.3.1 and 3.4.1 (respectively) of the compiler’s source code tree; finally, linuz-src
denotes versions 2.4.22 and 2.4.26 (respectively) of the Linux kernel sources.

The following table summarizes each workload’s characteristics that directly
affect the behavior of HCs, as analyzed in Section 2.1.

Preq(S, R, ecs)
IR| S| | 128 | 512 | 2K | 8K
emacs 43MB 52MB [ 57% | 46% | 33% | 22%

kernel | 149MB | 154MB | 90% | 87% | 80% | 72%
gcc 135MB | 164MB | 61% | 47% | 33% | 18%

Taking into account the above values and the lines plotted in Figure 2, we
chose to use the reference value of k = 3.5 bytes, which yielded negligible false
candidate ratios. More precisely, only 0.17% false candidates were found with
large chunks (ecs = 8K B), which increased to a ratio of less 0.74% with small
chunks (ecs = 128B), for all workloads.

We start by studying the impact of HCs in transferred volume. Our results
show that HCs are able to exchange substantially less bytes across the network
than CBH. Figure 3 illustrates such savings for the linuz-src workload. As
expected, the positive impact of HCs increases as we divide data into smaller
chunks, therefore increasing the meta-data overhead associated with exchanging
chunk hashes. HCs are able to significantly reduce meta-data volume by up
to 33% in linuz-src, relatively to CBH. In the case of emacs and gcc, which
have lower redundancy levels than linuz-src, meta-data savings rise to 62% and
64%, respectively. This confirms our predictions that HCs are more effective as
redundancy decreases.

Most importantly, the savings on meta-data volume result in a tangible
impact on the overall volume that HCs transfer (meta-data plus non-redundant
data). In the case of linuz-sre, this amounts to an overall gain of 5.7% when
compared to CBH, for ecs = 2K B (the choice of ecs that minimizes the volume
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Figure 3: Volume transferred at each phase of HC and CBH for different ex-
pected chunk sizes (ecs) in the linuz-src workload.

that CBH transfers). In emacs and gce, we observe comparable overall volume
gains (5.8% and 5.2%, respectively), again considering the ecs values in which
CBH transfers less bytes.

It is worth noting that, in some cases, the meta-data savings of HCs can
actually be traded for even greater data savings. For instance, considering the
linuz-src workload, by switching from an ecs of 2KB to 1KB, HCs are able to
raise the overall volume gain to 6.6%, relatively to the best CBH option (2KB).

Furthermore, if we restrict our focus to sender-to-receiver communication,
the savings of HCs rise to 21.2%, 11.2% and 9.7% in linuz-src, emacs and gcc,
respectively. Again, this is consistent with our predictions.

We now turn our attention to the performance of HCs and CBH for each
workload, which Figure 4 presents. We start by studying the left-hand graph,
corresponding to the baseline scenario where the sender and the receiver are
connected by a symmetrical 100Mbps link. If one considers the ecs values
for which both solutions achieve best results in this scenario, we observe that
the performance of HCs and CBH remains relatively close. For example, for
ecs = 2K B, HCs are 2.5% slower in linuz-sre, 1.5% faster in emacs and 1.7%
faster in gec, when compared to CBH. This suggests that HCs, when compared
to CBH, introduce no relevant local processing overhead.

When we shift to a scenario where the uplink has limited bandwidth, HCs
start exhibiting substantial performance gains. The right-hand graph in Fig-
ure 4 compares HC and CBH performance when we applied a 1Mbps filter
to the sender-to-receiver link. This recreates common broadband home Inter-
net connections, with increasingly high downlink bandwidth and limited uplink
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bandwidth [2].

HCs attain considerable performance gains in this scenario. More precisely,
HCs are 15.9% faster than CBH with linuz-src, 9.0% with emacs and 8.3% with
gee (if we consider the the best ecs choice for each solution in each workload).
This is a natural consequence of the substantial gains in sender-to-receiver com-
munication that HCs are able to attain.

4 Related Work

Several research and industrial systems (e.g. [18, 15, 5, 17, 1]) employ CBH-
based distributed deduplication. They either divide values into fixed-sized [18]
or variable-sized chunks [15]. More recently, more intricate variants of CBH
have been proposed that enhance precision and efficiency by relying on multi-
resolution chunking schemes [11]. Examples include TAPER [11], Hierarchical
Substring Caching [10], fingerdiff [3], JumboStore [6] and Wanax [9]. Although
we describe HCs in the context of single-resolution, variable-sized CBH, our
algorithm can be directly applied to improve all the above solutions.

If one regards R and S as chunk sets, CBH and HCs can be seen as prob-
abilistic solutions to a problem that communication complexity literature calls
set intersection [13]. The probabilistic communication complexity of set inter-
section is known to be ©(n), where n is the length of the sets being compared



[12]. HCs have equivalent communication complexity as long as one chooses a
value of k for which the probability of false candidates is negligible.

5 Conclusions

The compare-by-hash (CBH) approach for distributed data deduplication has
inherent precision and efficiency limits imposed by its meta-data overhead. We
propose Hash Challenges (HCs), a novel technique that leverages existing CBH-
based solutions by exchanging substantially less meta-data to ensure the same
goal as CBH. We support our claims with a formal comparison of the network ef-
ficiency of our approach and CBH. Using real data from reference deduplication
workloads, we show that hash challenges can save as much as 64% meta-data
exchanged across the network, relatively to plain compare-by-hash. This implies
reductions of up to 7% in overall transferred volume, resulting in performance
gains of up to 16% in typical broadband connections.
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A  Proof

We now prove the expression in Section 2.1 for the aggregate volume exchanged
by HCs. Phase i: Phase ¢ will transfer k bytes per each one of the |S|/cs
chunks. Phase ii: For each chunk ¢ in S, the receiver can find candidates for
two reasons: the receiver already stores c¢ in R; or ¢ is a false candidate. The
first case depends on probability P.q(S, R, cs). Regarding the second case, let
us first consider one chunk only, ¢, to send across the network. Assume, for
simplicity, that the stored chunks at the receiver have the same average size as
the chunks to send (cs). Hence, we know that the receiver stores approximately?
% chunks in R. For each such chunk ¢, the probability that it shares its k-byte
hash prefix with ¢ is ﬁ Thus, the number of collisions with ¢ is given by the
mean of a binomial distribution with as many samples as chunks in R, each with
the previous probability of success (i.e. collision), hence £ x L. Since, for
each chunk in S, any candidate (either true or false) results in sending a hash
response of N — k bytes plus its index back to the sender, we obtain the second
term. Phase iii: The sender starts by transferring an offset value per candidate
it received, including false candidates (i.e., C'). The sender then transfers the
chunks that it did not find redundant. By definition of P,.4, this comprises
[1 = Pred(S, R, cs)] x % chunks, each with an average size of cs.

2We make two conservative approximations here: that, for any c1,c2 in R, ¢1 # c2 and

c1 #ec.
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