
ar
X

iv
:1

10
4.

22
62

v3
 [

cs
.L

O
]

 9
 F

eb
 2

01
2

Finite Satisfiability for Guarded Fixpoint Logic

Vince Bárány and Miko laj Bojańczyk

{vbarany,bojan}@mimuw.edu.pl
Faculty of Mathematics, Informatics and Mechanics

University of Warsaw, Banacha 2, 02-097 Warsaw, Poland ∗

9 February 2012

Abstract

The finite satisfiability problem for guarded fixpoint logic is decid-
able and complete for 2ExpTime (resp. ExpTime for formulas of bounded
width).
Keywords guarded fragment, guarded fixpoint logic, finite satisfiability

1 Introduction

The guarded fragment (GF) is a robustly decidable syntactic fragment of first-
order logic possessing many favourable model theoretic traits, such as the finite
model property [5]. The guarded fragment has received much attention since its
conception thirteen years ago [1] and has since seen a number of variants and
extensions adopted in diverse fields of computer science. One of the most pow-
erful extensions to date, guarded fixpoint logic (µGF) was introduced by Grädel
and Walukiewicz in [6], who showed that the satisfiability problem of guarded
fixpoint logic is computationally no more complex than for the guarded frag-
ment: 2ExpTime-complete in general and ExpTime-complete for formulas of
bounded width. Guarded fixpoint logic extends the modal µ-calculus with back-
ward modalities, hence it does not have the finite model property. Therefore,
there is a finite satisfiability decision problem: to determine whether a formula
has a finite model. Grädel and Walukiewicz left the decidability of this problem
open. Here we claim this inheritance.

Main Theorem 1. It is decidable whether or not a given guarded fixpoint

sentence is finitely satisfiable. The problem is 2ExpTime-complete in general,

and ExpTime-complete for formulas of bounded width.

As noted above the stated hardness results already hold for the guarded
fragment [5]. The proof of the upper bounds combines three ingredients:

∗Authors were supported by ERC Starting Grant “Sosna”.

1

http://arxiv.org/abs/1104.2262v3

i. the tight connection between µGF and alternating automata [6];

ii. decidability of emptiness of alternating automata over finite graphs [3];

iii. a recent development in the finite model theory of guarded logics [2].

In what follows, no intricate knowledge of either [3] or [2] is required, the results
of these papers are used as black boxes: i. & ii. provide the algorithm and the
construction of iii. proves its correctness. The stated time complexity results
from combining those of i. (Theorem 3 below) and ii. (Theorem 2).

Outline of the paper Guarded fixpoint logic and related notions are intro-
duced in Section 2. In Section 3 we define alternating automata on undirected
graphs, and state the result of [3]. Section 4 establishes the connection be-
tween guarded fixpoint logic and alternating automata along the lines of [6]. In
Section 5, we present the algorithm and prove its correctness using [2].

2 Guarded Fixpoint Logic

The guarded fragment of first-order logic comprises only formulas with a re-
stricted pattern of “guarded quantification” and otherwise inherits the seman-
tics of first-order logic. Guarded quantification takes the form

∃ȳ (R(x̄ȳ) ∧ ϕ(x̄ȳ)) or, dually, ∀ȳ (R(x̄ȳ) → ϕ(x̄ȳ))

where R(x̄ȳ) is a positive literal acting as a guard by effectively restricting the
variables x̄ to range only over those tuples occurring in the appropriate positions
in the atomic relation R. Here it is meant that x̄ȳ include all free variables of
ϕ in no particular order. A guarded set of elements of a relational structure
A is a set whose members occur among the components of a single relational
atomR(ā) of A. Guarded quantification can be understood as a generalisation of
polyadic modalities of modal logic. Indeed, the guarded fragment was conceived
precisely with this analogy in mind [1], therefore it is no coincidence that the
model theory of the guarded fragment bears such a strong resemblance to that
of modal logic [7].

Guarded fixpoint logic is obtained by extending the guarded fragment of
first-order logic with least and greatest fixpoint constructs. Its syntax can be
defined by the following scheme

ϕ ::= R(x̄) | ϕ ∧ ϕ′ | ¬ϕ | ∃ȳ (R(x̄ȳ) ∧ ϕ′′(x̄ȳ)) |

Z(z̄) | [LFPZ, z̄ . ϕ′′′(Z, z̄)](x̄) | [GFPZ, z̄ . ϕ′′′(Z, z̄)](x̄)

where R is an arbitrary atomic relation symbol, Z is a second-order fixpoint
variable, where all free first-order variables of ϕ′′(x̄ȳ) and ϕ′′′(Z, z̄) are among
those indicated, and ϕ′′′(Z, z̄) is required to be positive in Z. The semantics
is standard: the least (or greatest) fixpoint of a formula ϕ′′′(Z, z̄) on a given
structure is the wrt. set inclusion least (resp. greatest) relation S satisfying
S(ā) ↔ ϕ′′′(S, ā) for all ā on the structure. Crucially, fixpoint variables and

2

fixpoint formulas are not allowed to stand as guard in a guarded quantification,
only atomic relation symbols may act as guards. Furthermore, within sentences
it can be assumed wlog. that in the matrix ϕ′′′(Z, z̄) of a fixpoint formula the
tuple of free variables z̄ is explicitly guarded [6].

Guarded fixpoint logic naturally extends the modal µ-calculus with backward
modalities. As such it can axiomatise (the necessarily infinite) well-founded
directed acyclic graphs having no sink nodes, e.g. as follows.

∃xy E(x, y) ∧ ∀xy

(

E(x, y) → [LFPZ, z . ∀vE(v, z) → Z(v)](x) ∧ ∃wE(y, w)

)

Guarded bisimulation Guarded logics possess a very appealing model the-
ory in which guarded bisimulation plays a similarly central role as does bisimu-
lation for modal logics. A guarded bisimulation [1, 7] between two structures A0

and A1 of the same relational signature is a family Z of partial isomorphisms
α : A0 → A1 with Ai ⊆ Ai, satisfying the following back-and-forth conditions.
(i) For every α : A0 → A1 in Z and every guarded subset B0 of A0 there is a par-
tial isomorphism γ : C0 → C1 in Z with B0 ⊆ C0 and α|A0∩C0

= γ|A0∩C0
. (ii)

For every α : A0 → A1 in Z and every guarded subset B1 of A1 there is a partial
isomorphism γ : C0 → C1 in Z with B1 ⊆ C1 and α−1|A1∩C1

= γ−1|A1∩C1
. We

write A0, ā ∼g A1, b̄ to signify that there is a guarded bisimulation Z between
A0 and A1 with (ā 7→ b̄) ∈ Z and say that ā of A0 and b̄ of A1 are guarded

bisimilar.
Guarded bisimilarity is an equivalence relation on the set of guarded tuples

of any relational structure, and guarded fixpoint formulas are invariant under
guarded bisimulation [7]: if A, ā ∼g B, b̄ then for every guarded fixpoint formula
ϕ it holds that A |= ϕ(ā) iff B |= ϕ(b̄). The guarded fragment has been
characterised as the guarded-bisimulation-invariant fragment of first-order logic,
most recently even in the context of finite structures [8]. Similarly, guarded
fixpoint logic is characterised as the guarded-bisimulation-invariant fragment of
guarded second-order logic [7].

3 Alternating two-way automata

In this section, we introduce alternating automata on undirected graphs. A
similar model, namely alternating two-way automata on infinite trees, was used
by Grädel and Walukiewicz [6] in their decision procedure for satisfiability of
guarded fixpoint logic. They reduced satisfiabilty to the emptiness problem for
alternating two-way automata on infinite trees. The latter problem was shown
to be decidable by Vardi [9].

In [9, 3, 4] a two-way automaton navigating an infinite tree has the choice of
moving its head either to the parent or to a child node, or staying in its current
location. In this paper, instead of automata on directed trees, we consider
automata on undirected graphs. In an undirected graph, the automaton can
only choose to stay in place or to move to a neighboring vertex. This is in the

3

spirit of [6], where automata on directed trees were employed, which did not
actually distinguish between parent and child nodes.

An alternating automaton on undirected graphs is defined by: an input al-
phabet Σ, a set of states Q, a partition Q = Q∀ ∪ Q∃, an initial state qI , a
ranking function Ω : Q → N for the parity acceptance condition, and a transi-
tion relation

δ ⊆ Q× Σ× {stay,move} ×Q .

An input to the automaton is an undirected graph whose nodes are labelled by
Σ, and a designated node v0 of the graph. The automaton accepts an input
graph G from an initial node v0 if player ∃ wins the parity game defined below.

The arena of the parity game consists of pairs of the form (v, q), where v
is a node of G, and q is a state of the automaton. The initial position in the
arena is (v0, qI). The rank of a position (v, q), as used by the parity condition,
is Ω(q). Let u be a node of the input graph, and let a ∈ Σ be its label. In the
arena of the game, there is an edge from (u, q) to (w, p) if:

• there is a transition (q, a, stay, p) and u = w; or

• there is a transition (q, a,move, p) and {u,w} ∈ E(G).

Some alternating automata on undirected graphs accept only infinite graphs.
(Given a 3-coloring of a graph by {0, 1, 2}, edges can be directed so that ‘target
color’ − ‘source color’ ≡ 1 mod 3. An automaton can verify 3-coloring and well-
foundedness of the induced digraph and check for an infinite forward path.)
Therefore, it makes sense to ask: does a given automaton accept some finite
graph? This problem was shown decidable in [3, 4].

Theorem 2 ([3, 4]). Given a alternating automaton on undirected graphs it is

decidable in exponential time in the number of states of the automaton, whether

or not it accepts some finite graph.

Formally, [3, 4] considered two-way automata on directed graphs with the
automaton having transitions corresponding to: staying in the same node, mov-
ing forward along an edge, and moving backward along an edge. Clearly, the
two-way model is more general than the one for undirected graphs.

Undirected bisimulation We write nodes(G) for the nodes of a graph G.
Consider two undirected graphs G0 and G1, with node labels. An undirected
bisimulation is a set

Z ⊆ nodes(G0)× nodes(G1)

with the following properties. If (v0, v1) belongs to Z, then the node labels of
v0 and v1 are the same. Also, for any i ∈ {0, 1} and node wi connected to vi
by an edge, there exits a node w1−i connected to v1−i by an edge and such
that (w0, w1) ∈ Z. We say that node v0 of a graph G0 is bisimilar to node
v1 in a graph G1 if there is an undirected bisimulation that contains the pair
(v0, v1). In this case, for every alternating automaton on undirected graphs, the
automaton accepts G0 from v0 if and only if it accepts G1 from v1.

4

Undirected unraveling Consider an undirected graph G and v a node of G.
The undirected unraveling of G from v is the graph T , whose nodes are paths
in G that begin in v, and edges are placed between a path and the same path
without the last node. The undirected unraveling is a tree. We write

π : nodes(T) → nodes(G)

for the function that maps a path to its terminal node. If G has node labels,
then one labels the nodes of T according to their images under π. Then, the
graph of π is an undirected bisimulation between T and G.

4 Tabloids

Below we work with undirected graphs representing templates of relational
structures. We call them tabloids alluding to their semblance to the tableaux
of [6]. Tabloids are also reminiscent of the ‘guarded bisimulation invariants’
of [2]. Intuitively, vertices of a tabloid represent templates for guarded sub-
structures and edges signify their overlap. The precise manner of overlap is
implicitly coded by repeated use of constant names appearing in vertex labels.
By contrast, [2, 7] code overlaps explicitly as edge labels.

Tabloid Fix a relational signature Σ and a set K of constant names. A tabloid

over signature Σ and constants K is an undirected graph, where every node v
is equipped with two labels: a set Kv ⊆ K, called the constants of v, and an
atomic Σ-type τv overKv, called the type of v. If nodes v and w are connected by
an edge in the graph, then the types τv and τw should agree over the constants
from Kv ∩Kw.

A structure from a tree tabloid Consider a tabloid T whose underlying
graph is a tree. We define a Σ-structure A(T) as follows. The universe of A(T)
is built using pairs (v, c), where v is a vertex of T and c is a constant of v. The
universe consists not of these pairs, but of their equivalence classes under the
following equivalence relation: (v, c) and (v′, c′) are equivalent if c = c′ and c
occurs in the label of every node on the undirected path connecting v and v′ in
T . The path is unique, because the underlying graph is a tree. We write [v, c]
for an equivalence class of such a pair. A tuple ([v1, c1], . . . , [vn, cn]) satisfies a
relation R ∈ Σ in A(T) if there is some node v such that

[v, c1] = [v1, c1], . . . , [v, cn] = [vn, cn] (1)

and R(c1, . . . , cn) is implied by τv. Because T is a tree, this definition does not
depend on the choice of v, since the set of nodes v satisfying (1) is connected.
It is, however, unclear how to extend this construction to cyclic tabloids.

5

Labelling with a formula Consider a tree tabloid T over constants K and
signature Σ. Let ϕ be a formula over Σ. Consider a node v of T with constants
Kv, a subformula ψ of ϕ, and a function η that maps free variables of ψ to
constants in Kv. For v and η, define a valuation [η]v, which maps free variables
of ψ to elements of the structure A(T), by setting [η]v(x) = [v, η(x)] .

The ϕ-type of the node v is the set of pairs (ψ, η) such that ψ is a subformula
of ϕ or a literal in the signature of ϕ, and such that ψ is valid in A(T) under
the valuation [η]v. Thus each ϕ-type determines a unique atomic type. The set
of ϕ-types is finite and depends on K and ϕ alone, call this set Γϕ,K . Given
a tree tabloid T and ϕ, we define Tϕ to be the tree with the same nodes and
edges as T , but where every node is labelled by its ϕ-type.

Recall that the width of a formula is the maximal number of free variables
in any of its subformulas. The following was established in [6].

Theorem 3 ([6]). Let ϕ be a guarded fixpoint sentence of width n and let K
be a set of 2n constants. One can compute an alternating automaton Aϕ on

Γϕ,K-labelled undirected graphs, such that Aϕ accepts a tree Υ if and only if

Υ is of the form Tϕ for a tree tabloid T such that A(T) |= ϕ .

The number of states of Aϕ, and the time to compute it, are O(|ϕ| · exp(n)) .

5 Algorithm for finite satisfiability

We now propose the algorithm for finite satisfiability of guarded fixpoint logic.
Given a formula ϕ, we compute the automaton Aϕ using Theorem 3. Then,
we test if the automaton Aϕ accepts some finite graph, using Theorem 2. The
combined running time clearly meets the claim of Theorem 1. This section is
devoted to proving the correctness of this procedure.

Proposition 4. A formula ϕ of guarded fixpoint logic has a finite model if, and

only if, the associated automaton Aϕ accepts a finite graph.

5.1 From a finite accepted graph to a finite model

First we prove that if the automaton Aϕ accepts a finite graph Gϕ, then ϕ is
satisfied in some finite structure. By Theorem 3, the undirected unravelling
of Gϕ, equally accepted by Aϕ, takes the form Tϕ for a tree tabloid T such
that A(T) |= ϕ. In fact, T is the undirected unravelling of the finite tabloid G
obtained from Gϕ by restricting its labels to atomic types.

Lemma 5. Let G be a finite tabloid and T its undirected unraveling. Then ∼g

has finite index on the set of guarded tuples of A(T).

Proof. All guarded subsets of A(T) are of the form {[v, c1], . . . , [v, cr]} where
c1, . . . , cr ∈ K are constant names appearing in the label of v ∈ nodes(T). Let
π : nodes(T) → nodes(G) be the natural projection from T onto G. Then
(T, v) ∼= (T,w) whenever π(v) = π(w), so it suffices to show the following.

6

Claim 6. A(T), ([v, c1], . . . , [v, cr]) ∼g A(T), ([w, c1], . . . , [w, cr])
for every v and w such that (T, v) ∼= (T,w) and {c1, . . . , cr} = Kv = Kw.

Let for each v and w as in the claim αv,w be the partial function mapping
[v, c] 7→ [w, c] for all c ∈ Kv. By definition of A(T) we have that each αv,w is a
partial isomorphism among guarded subsets of A(T). We will show that

Z = {αv,w | (T, v) ∼= (T,w) }

is a guarded bisimulation. Take any αv,w ∈ Z and guarded subset B of A(T).
Then B = {[u, d1], . . . , [u, ds]} for some u ∈ nodes(T) and constant names
D = {d1, . . . , ds} ⊆ Ku. Because (T, v) ∼= (T,w) there is a y ∈ nodes(T)
such that (T, v, u) ∼= (T,w, y). In particular, B ⊆ dom(αu,y), and the paths
connecting v with u and w with y are isomorphic. We thus have for every i ≤ r
and j ≤ s that [v, ci] = [u, dj] iff ci = dj and ci ∈ Kz for every node z on
the path connecting v and u (equivalently, on the path connecting w and y) iff
[w, ci] = [y, dj] . Therefore, αu,y and αv,w agree on dom(αu,y)∩dom(αv,w), and
α−1
u,y and α−1

v,w agree on rng(αu,y) ∩ rng(αv,w). This shows that Z satisfies the
‘forth property’ and, by symmery, also the ‘back property’, as needed.

Note that, in stark contrast to bisimulation on graphs, there is no appar-
ent way of defining a quotient A(T)/∼g. Nevertheless, we can obtain a finite
structure guarded bisimilar to A(T) using the following result.

Theorem 7 ([2, Theorem 6], cf. also [8]). Every relational structure on which

∼g has finite index is guarded bisimilar to a finite structure.

5.2 From a finite model to a finite accepted graph

Next we prove that if ϕ has a finite model then Aϕ of Theorem 3 accepts some
finite graph. Recall that all graphs accepted by Aϕ are labelled by ϕ-types from
Γϕ,K , where K is a set of 2n constants, with n the width of ϕ. So let A be a
finite model of ϕ. Wlog. all guarded subsets of A are of size at most n (as ϕ is
oblivious to relational atoms with more than n distinct components, these can
be safely removed from A).

We define a finite tabloid G as follows. Vertices of G are injections χ : A→
K, where A is a guarded subset of A. For each vertex χ its set of constants is
Kχ = rng(χ), and its type τχ is the image of the atomic type of A in A under χ.
Two vertices χ and χ′ are adjacent in G just if χ ∪ χ′ is an injective function.
This ensures that adjacent nodes are labelled with consistent types, i.e. that G
is indeed a tabloid.

Let T be the undirected unraveling of G, and π : nodes(T) → nodes(G) the
natural projection. Then (T, v) ∼= (T,w) whenever π(v) = π(w). From Claim 6
and the guarded bisimulation invariance of µGF it follows that v and w have
the same label in Tϕ whenever π(v) = π(w). Hence, it make sense to define
Gϕ as having the same underlying graph as G with each χ ∈ nodes(G) labelled
exactly as any and all nodes in π−1(χ). Then Tϕ is isomorphic to the undirected

7

unravelling of Gϕ. By Theorem 3, Aϕ accepts Gϕ iff it accepts Tϕ iff A(T) |= ϕ.
Thus, to conclude, it suffices to prove the following.

Claim 8. A ∼g A(T)

Proof. For each v ∈ nodes(T), π(v) is an injection χv : Av → Kv from a
guarded subset Av of A to the set Kv of constant names in the label of v. Let
γv : Kv → A(T) map each c ∈ Kv to [v, c]. Then γv ◦χv is a partial isomorphism
between guarded subsets of A and A(T). We claim that {γv ◦χv | v ∈ nodes(T)}
is a guarded bisimulation between A and A(T).
‘Forth’: Consider γv ◦ χv : Av → {[v, c] | c ∈ Kv} and B a guarded subset of
A. Then, since |B ∪ A| ≤ |K| = 2n, there is a vertex χ : B → K such that
χv|Av∩B = χ|Av∩B and χ(Av)∩χ

′(B) = χ(Av∩B). It follows that χ is adjacent
to χv in G, hence w = v ·χ is adjacent to v in T , π(w) = χw = χ, and that thus
γw ◦ χw fulfills the requirements of the ‘forth property’.
‘Back’: Consider now γv ◦ χv : Av → {[v, c] | c ∈ Kv} and a guarded subset
B = {[w, d] | d ∈ D} of A(T). Let C = D ∩ Kv. The intersection of B
and {[v, c] | c ∈ Kv} consists of those [v, c] such that c ∈ C appears in the
label of every node along the path ρ connecting v to w in T . Let u and y be
adjacent nodes of ρ. Then π(u) = χu and π(y) = χy are adjacent in G and
thus χ−1

u |C = χ−1
y |C. By induction we get that χ−1

v |C = χ−1
w |C. It follows that

γw ◦ χw satisfies the requirements of the ‘back property’.

This completes the proof of Proposition 4, thereby also our Main Theorem 1.

References

[1] H. Andréka, J. van Benthem and I. Németi. Modal languages and bounded
fragments of predicate logic. J. Philosophical Logic, 27:217–274, 1998.

[2] V. Bárány, G. Gottlob and M. Otto. Querying the guarded fragment. In
Proc. LICS’10, pp. 1-10, IEEE Computer Society, 2010.

[3] M. Bojańczyk. Two-Way Alternating Automata and Finite Models. In
Proc. ICALP’02, LNCS 2380: 833-844, Springer, 2002.

[4] M. Bojańczyk. Decidable Properties of Tree Languages. PhD Thesis, Uni-
versity of Warsaw, 2004.

[5] E. Grädel. On the restraining power of guards. Journal of Symbolic Logic,
64(4):1719–1742, 1999.

[6] E. Grädel and I. Walukiewicz. Guarded fixed point logic. In Proc. LICS’99,
pp. 45–54, 1999.

[7] E. Grädel and C. Hirsch and and M. Otto. Back and Forth Between
Guarded and Modal Logics. ACM Trans. Comp. Log., 3(3):418–463, 2002.

8

[8] M. Otto. Highly acyclic groups, hypergraph covers and the guarded frag-
ment. In Proc. LICS’10, pp. 11-20, IEEE Computer Society, 2010.

[9] M. Vardi. Reasoning about the past with two-way automata. In Proc.

ICALP’98, LNCS 1443: 628-641, 1998.

9

	1 Introduction
	2 Guarded Fixpoint Logic
	3 Alternating two-way automata
	4 Tabloids
	5 Algorithm for finite satisfiability
	5.1 From a finite accepted graph to a finite model
	5.2 From a finite model to a finite accepted graph

