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Deterministic network exploration by a single agent 

with Byzantine tokens

Yoann Dieudonné a,b,1, Andrzej Pelc b,2

a MIS, Université de Picardie Jules Verne Amiens, France
b Département d'informatique, Université du Québec en Outaouais, Gatineau, Québec J8X 3X7, Canada

A mobile agent has to explore an unknown network with unlabeled nodes: it must visit all

nodes by walking along the links of the network, and eventually stop. If no upper bound

on the size of the network is known and nodes of the network cannot be marked, then

this exploration task cannot be accomplished for arbitrary networks by a deterministic

terminating algorithm. On the other hand, it is feasible, if there is one unmovable token

at the starting node of the agent. We investigate the exploration problem in arbitrary

networks in the presence of identical unmovable tokens, some of which are Byzantine.

A Byzantine token can be visible or invisible to the agent whenever the latter visits

the node where the token is located, and visibility is decided by the adversary at each

visit of the agent. If no upper bound on the number of tokens is known to the agent,

deterministic exploration of all networks is impossible, even if all tokens are fault free. It

is also impossible if all tokens are Byzantine, even if their number is known. Our main

result is a deterministic exploration algorithm with cost polynomial in the (unknown) size

of the network, which works in arbitrary networks, provided that the agent knows some

upper bound on the total number of tokens, and that at least one token is fault free.

1. Introduction

The background. A mobile agent has to explore an un-

known network with unlabeled nodes: it must visit all

nodes by walking along the links of the network, and even-

tually stop. This task is known in the literature as node

exploration with termination. It is fundamental for many

network problems. The agent may need to collect data lo-

cated at nodes of the network, or it may have to visit all

nodes in order to check if they are functional. The task of
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visiting all nodes and that of traversing all edges are equiv-

alent from the point of view of feasibility, and the latter

can be accomplished using the former: after the visit of

each node the agent may traverse all edges incident to

it, go to visit the next node prescribed by node explo-

ration, and so on. Thus any algorithm visiting all nodes

that uses a number of edge traversals polynomial in the

number of nodes can be transformed to a similar algorithm

traversing all edges. The task of traversing all edges has ap-

plications, e.g., in network maintenance. Due to the above

relation between the two tasks, we focus on the first. We

will use the term exploration instead of node exploration

with termination. The cost of an exploration algorithm for

a given network is the worst-case number of edge traver-

sals (called steps) until termination, taken over all starting

nodes of the agent.

The model and the problem. The network is modeled as

an undirected connected graph, referred to hereafter as

a graph. The number of nodes of the graph is called its
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size. We seek exploration algorithms that do not rely on

the knowledge of node labels, and can work in anonymous

graphs as well (cf. [5,22]). The importance of designing

such algorithms is motivated by the fact that, even when

nodes are equipped with distinct labels, the agent may be

unable to perceive them because of limited sensory capa-

bilities, or nodes may refuse to reveal their labels, e.g., due

to security or privacy reasons. On the other hand, we as-

sume that edges incident to a node v have distinct labels

in {0, . . . ,d − 1}, where d is the degree of v . Thus every

undirected edge {u, v} has two labels, which are called

its port numbers at u and at v . Port numbering is local,

i.e., there is no relation between port numbers at u and

at v . Note that in the absence of port numbers, edges in-

cident to a node would be indistinguishable for the agent,

and thus exploration would be often impossible, as the ad-

versary could prevent the agent from taking some edge

incident to the current node and thus block access to a

part of the graph.

The agent starts at some node of the graph, chosen

by the adversary. It does not know the topology of the

graph or any upper bound on its size. We assume that the

memory of the agent is unlimited: from the computational

point of view it is modeled as a Turing machine. The agent

leaves its starting node by a specified port. When the agent

enters a node, it learns its port of entry and the degree of

the node. Then, using its memory, it chooses the port by

which it leaves the node, and repeats this process until ter-

mination.

In the absence of any additional information, explo-

ration of an arbitrary network in this weak model is im-

possible. Indeed, it is impossible even in the class of ori-

ented rings (i.e., rings in which ports 0, 1 at all nodes

are situated clockwise). In any such ring, the memory of

an agent executing a particular deterministic algorithm is

the same after a given number of steps. Hence after some

number t of steps it has to stop in every ring. This implies

that exploration will not be accomplished in rings of size

larger than t + 1.

On the other hand, if the agent is equipped with a

unique unmovable token situated at its starting node,

which it can recognize at each visit, then exploration in ar-

bitrary graphs is possible at a cost polynomial in the size

of the graph [6]. In this paper we investigate the explo-

ration problem in arbitrary graphs in the presence of iden-

tical unmovable tokens, each placed at a different node.

Some of the tokens are Byzantine. Such a token can be vis-

ible or invisible to the agent whenever the latter visits the

node where the token is located, and visibility is decided

by the adversary at each visit of the agent. However, the

adversary cannot change the location of the token. When

the agent enters a node, it can recognize if the node con-

tains a currently visible token, apart from learning the de-

gree of the node and the port of entry. The presence of

many identical tokens, even fault free, makes the task of

the agent more difficult, as the agent may be unable to

decide if it has previously seen a currently visited token.

Actions of the adversary in the case of Byzantine tokens

make the work of the agent even harder, due to the un-

predictability of the visibility of previously seen tokens.

The scenario of many tokens has numerous applica-

tions. An agent can be a person walking in an unknown

town with similarly looking streets (edges) and crossings

(nodes). Some of the crossings can be distinguished from

others by the presence of traffic lights (tokens). In a differ-

ent application, a mobile robot exploring a labyrinth may

see identical marks made at some of the corridor cross-

ings, or a lamp can be located at each crossing but only

some of the lamps may be on. Another scenario with mul-

tiple tokens occurs when many agents are present in the

network, each equipped with an identical unmovable to-

ken located at its starting node, cf. [16], but agents are

non-cooperative and each of them has to explore the net-

work independently. Faulty behavior of the tokens may be

due to someone maliciously erasing some of the marks in

the labyrinth at unpredictable times, or to lamps switching

on and off because of malfunctioning.

If no upper bound on the number of tokens is known to

the agent, deterministic exploration of all networks is im-

possible, even if all tokens are fault free. Indeed, all nodes

could be equipped with tokens, which is equivalent to no

tokens at all. Observe that, e.g., knowing that some frac-

tion α < 1 of nodes contain tokens is of no help in solv-

ing the exploration problem. Consider all oriented rings of

sizes ck, where c is a constant integer and k = 1,2, . . . ,

in which nodes containing tokens are evenly spaced, ev-

ery c nodes. As in the case without tokens, in any such

ring, the memory of an agent executing a particular de-

terministic algorithm is the same after a given number of

steps. Hence exploration will fail in sufficiently large rings.

On the other hand, if all tokens were Byzantine, then ex-

ploration of all networks would also be impossible (even

if the number of tokens is known), as the adversary may

decide to make all tokens invisible at all times, which is

equivalent to no tokens at all. For this reason we make the

following two assumptions: the agent knows some upper

bound k on the total number of tokens, and at least one

token is fault free, i.e., always visible. All other tokens may

be Byzantine.

Our results. We present a deterministic exploration algo-

rithm with cost polynomial in the (unknown) size of the

graph, which works in arbitrary graphs, provided that the

agent knows some upper bound on the total number of to-

kens and that at least one token is fault free. Moreover, the

time of all computations of the agent is also polynomial in

the size of the graph.

Related work. Algorithms for graph exploration by mobile

agents (often called robots) have been intensely studied

in recent literature. A lot of research is concerned with

the case of a single robot exploring a graph with labeled

nodes. In [1,4,5,10,14] the robot explores strongly con-

nected directed graphs and it can move only in the di-

rection from head to tail of an edge, not vice versa. In

particular, [10] investigates the minimum time of explo-

ration of directed graphs, and [1,14] give improved algo-

rithms for this problem in terms of the deficiency of the

graph (i.e., the minimum number of edges to be added

to make the graph Eulerian). Many papers, e.g., [11–13,2]

study the scenario where the explored graph is undirected
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and the robot can traverse edges in both directions. In [11]

the authors investigate the problem of how the availabil-

ity of a map influences the efficiency of exploration. In

some papers, additional restrictions on the moves of the

robot are imposed. It is assumed that the robot has either

a restricted tank [3], forcing it to periodically return to the

base for refueling, or that it is tethered, i.e., attached to the

base by a rope or cable of restricted length [13].

Exploration of anonymous graphs presents different dif-

ficulties. In this case it is impossible to explore arbitrary

graphs by a single robot, if no marking of nodes is al-

lowed. Hence the scenario adopted in [4,5] allows the use

of pebbles which the robot can drop on nodes to recog-

nize already visited ones, and then remove them and drop

in other places. The authors concentrate attention on the

minimum number of pebbles allowing efficient exploration

and mapping of arbitrary directed n-node graphs. In [5] the

authors compare the exploration power of one robot with

a constant number of pebbles to that of two cooperating

robots, and give an efficient randomized exploration algo-

rithm for the latter scenario. In [4] it is shown that one

pebble is enough, if the robot knows an upper bound on

the size of the graph, and Θ(log logn) pebbles are nec-

essary and sufficient otherwise. Exploration with one un-

movable token marking the starting node of a single robot

has been studied in [6].

In all the above papers, except [5] which deals with

randomized algorithms, exploration is performed by a sin-

gle robot. Deterministic exploration by many robots of-

ten assumed that moves of the robots are centrally co-

ordinated. In [18], approximation algorithms are given for

the collective exploration problem in arbitrary graphs. On

the other hand, in [17] the authors study the problem

of distributed collective exploration of trees of unknown

topology. However, the robots performing exploration start

in the same node and can directly communicate with

each other. Exploration of arbitrary anonymous graphs by

robots communicating through whiteboards has been stud-

ied in [8]. Other tasks involving many robots circulating in

graphs or in terrains include rendezvous [16] and pattern

formation [21].

Faulty unmovable tokens were considered in the con-

text of the task of gathering robots at one node. In [7,15]

the authors considered gathering in rings, and in [9] gath-

ering was studied in arbitrary graphs, under the assump-

tion that an unmovable token is located in the starting

node of each agent. Tokens could disappear during the ex-

ecution of the algorithm, but (as opposed to the Byzantine

behavior considered in this paper), they could not reappear

again.

2. Preliminaries

Let v be a node of graph G . By succ(v, i) we denote

the neighbor of v linked to it by the edge with port num-

ber i at v . We will use the notion of a Universal Exploration

Sequence (UXS) defined in [19]. Let (a1,a2, . . . ,ar) be a se-

quence of integers. An application of this sequence to the

graph G at node u is the sequence of nodes (u0, . . . ,ur+1)

obtained as follows: u0 = u, u1 = succ(u0,0); for any 1 �

i � r, ui+1 = succ(ui, (p + ai) mod d(ui)), where p is the

port number at ui corresponding to the edge {ui,ui−1}.

A sequence (a1,a2, . . . ,ar) whose application to a graph G

at every node u contains all nodes of this graph is called

a UXS for this graph. A UXS for the class Gn of graphs of

size at most n is a UXS for all graphs in this class.

The following important result, based on a reduction

from Kouckỳ [19], follows from [20].

Proposition 2.1. There exists a polynomial P , such that, for any

positive integer n, there exists a UXS R(n) = (a1,a2, . . . ,aP (n))

for the class Gn of all graphs of size at most n. This UXS can be

computed in time polynomial in n.

3. The algorithm and its analysis

We assume that the total number of tokens in the

graph is at most k and that at least one token is fault free.

The following notion will be crucial for our considerations.

Let n be a positive integer. An application of R(2n) to a

graph G at some node u is called clean, if all nodes in this

application are of degree at most n − 1.

Algorithm Exploration-with-Byzantine-Tokens. The algo-

rithm proceeds in phases i = 1,2, . . . . At the beginning of

phase 1 the agent is at its starting node. In any phase i,

the agent first applies R(2i ∗ P (i) ∗ (k + 1)) at the node in

which it started this phase. Let (u0, . . . ,ur+1) be this appli-

cation. Call it the main application of this phase. If it is not

clean, or if no token is seen, the agent aborts phase i and

starts phase i + 1. Otherwise, the agent backtracks to u0 ,

and applies R(i) at each of the nodes u j , interrupting a

given application at u j when it sees a token, every time

recording the code of the path from u j to this token. This

code is defined as the sequence of ports encountered while

walking along the path. (If, for some j, the token is at u j ,

then this code is an empty sequence.) After seeing a token,

the agent backtracks to u j , goes to u j+1 and starts an ap-

plication of R(i) at this node. If either in the application

of R(i) at some node u j no token is seen, or the agent has

recorded more than i ∗ P (i) different codes in phase i, then

the agent aborts phase i and starts phase i + 1. Otherwise

it stops upon completion of phase i.

The rest of the paper is devoted to the proof that Algo-

rithm Exploration-with-Many-Tokens is correct and works

at polynomial cost. We will use the following lemma.

Lemma 3.1. Let n�m be positive integers, and let G be a graph

of size m. Let S be the sequence of nodes in G that is the appli-

cation of R(2n) to some node of G. If this application is clean,

then S contains at least n different nodes.

Proof. Let S = (u0, . . . ,ur+1). Suppose for contradiction

that there are fewer than n different nodes in S , and let X

be the set of these nodes. Consider any node x ∈ X . A port

j at node x is called occupied, if for some index t , we have

x = ut and either succ(ut , j) = ut−1 or succ(ut , j) = ut+1 .

Otherwise it is called free. Let d be the maximum num-

ber of free ports in any node of X . Construct the following

graph H . The set of nodes of H is X ∪ {y1, . . . , yd}, where

all ys are distinct and do not belong to X . The set of

edges of the graph H consists of all edges {ut ,ut+1} from

G augmented by the following set of edges. Consider all

nodes x ∈ X in the order of their first appearance in the
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sequence S . Let c1, . . . , cp be the free ports at x, listed in

increasing order. We add edges {x, y1}, . . . , {x, yp} with the

following ports: the port at x corresponding to the edge

{x, yq} is cq , and the port at yq corresponding to the edge

{x, yq} is the smallest port not yet used at this node. This

completes the construction of graph H .

Since the application of R(2n) is clean, we have d < n.

Since the size of X is smaller than n, the graph H has

fewer than 2n nodes. Since the size of X is smaller than m

(in view of n�m), at least one port at some node of X is

free, and consequently d� 1. It follows that some nodes ys
were added. Nodes ys are not terms of the application of

R(2n) to the graph G at node u0 , which is exactly the se-

quence S . In view of Proposition 2.1, this is a contradiction

with the fact that H has fewer than 2n nodes. ✷

We are now ready to prove our main result.

Theorem 3.1. Algorithm Exploration-with-Byzantine-Tokens

terminates in every graph G after a number of steps polyno-

mial in the size of G. Upon its termination, all nodes of G are

visited by the agent.

Proof. Let m be the size of the graph G . First observe that

the algorithm terminates at the latest after completion of

phase m. Indeed, in this phase every application of R(2m ∗

P (m)∗(k+1)) must be clean and some token must be seen

in this application, because at least one token is fault free.

Moreover, the number of possible codes recorded by the

agent cannot exceed m ∗ P (m) because the sequence R(m)

is applied at most m nodes and the first visible token may

be at each of at most P (m) nodes of an application.

Let us estimate the number of steps executed by the

agent in phase i. The agent walks at most twice along the

main application S of R(2i ∗ P (i) ∗ (k + 1)), and at most

twice along the application of R(i) at each node of S . This

gives a total of at most 2L(i) + 2L(i) ∗ P (i) steps, where

L = P (2i∗ P (i)∗(k+1)) is the length of R(2i∗ P (i)∗(k+1)).

Hence the total number of steps made by the agent in the

first m phases is polynomial in m.

It remains to show that if the agent stops upon com-

pletion of some phase i � m, then all nodes are visited.

Consider this phase i. By the algorithm, the main applica-

tion of R(2i∗ P (i)∗(k+1)) made by the agent in this phase

must be clean, some token must be seen in each applica-

tion of R(i) made in this phase, and the number of codes

recorded by the agent cannot exceed i ∗ P (i). Suppose that

m � i ∗ P (i) ∗ (k + 1). By Lemma 3.1, the set of nodes vis-

ited during the main application of R(2i ∗ P (i) ∗ (k + 1))

in phase i is at least i ∗ P (i) ∗ (k + 1). On the other hand,

by the algorithm, the agent has recorded at most i ∗ P (i)

different codes. Hence, for at least k+ 1 distinct nodes vis-

ited during the main application of R(2i ∗ P (i) ∗ (k + 1)),

the code recorded by the agent is the same. This code can-

not be empty, as this would imply that there are at least

k+ 1 tokens in the graph. Hence it is non-empty, and con-

sequently there are at least two different nodes u′ and u′′ ,

for which the codes of the paths from each of these nodes

to the same token are identical. This implies that there is a

node w in the graph, for which edges to two of its neigh-

bors correspond to the same port number at w , which is

a contradiction. This implies that m < i ∗ P (i) ∗ (k+ 1), and

consequently all nodes of G are visited during any applica-

tion of R(2i ∗ P (i) ∗ (k + 1)), in view of Proposition 2.1. It

follows that upon completion of phase i all nodes of G are

visited. ✷

In view of Proposition 2.1, constructing the sequence

R(n) from [20] takes time polynomial in n. Also all other

computations of the agent, such as recognizing that the

application of a UXS is clean and recording and counting

codes, take total time polynomial in the size of the graph.

Hence not only the cost of the algorithm, i.e., the number

of steps of the agent, but also the time of computations

performed by the agent is polynomial in the size of the

graph.
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