

Instructions for use

Title Counterexamples to the long-standing conjecture on the complexity of BDD binary operations

Author(s) Yoshinaka, Ryo; Kawahara, Jun; Denzumi, Shuhei; Arimura, Hiroki; Minato, Shin-ichi

Citation Information Processing Letters, 112(16), 636-640
https://doi.org/10.1016/j.ipl.2012.05.007

Issue Date 2012-08-31

Doc URL http://hdl.handle.net/2115/50105

Type article (author version)

File Information IPL112-16_636-640.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

Counterexamples to the Long-standing Conjecture on the
Complexity of BDD Binary Operations

Ryo Yoshinakaa,∗, Jun Kawaharaa, Shuhei Denzumib, Hiroki Arimurab, Shin-ichi
Minatob,a

aERATO MINATO Discrete Structure Manipulation System Project, Japan Science and Technology Agency,
Sapporo 060-0814, Japan

bGraduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan

Abstract

In this article, we disprove the long-standing conjecture, proposed by R. E. Bryant in
1986, that his binary decision diagram (BDD) algorithm computes any binary oper-
ation on two Boolean functions in linear time in the input-output sizes. We present
Boolean functions for which the time required by Bryant’s algorithm is a quadratic of
the input-output sizes for all nontrivial binary operations, such as ∧,∨, and ⊕. For the
operations ∧ and ∨, we show an even stronger counterexample where the output BDD
size is constant, but the computation time is still a quadratic of the input BDD size. In
addition, we present experimental results to support our theoretical observations.

Keywords: analysis of algorithms, binary decision diagram, data structures.

1. Introduction

Binary decision diagram (BDD) serves to represent arbitrary Boolean functions
as a compact data structure and to efficiently perform various Boolean operations on
those functions. Since every Boolean function has a unique BDD representation, we
denote the BDD representing Boolean function f by B(f). Bryant proposed an elegant
algorithm that performs any Boolean operation on two functions by using BDDs [1].
Bryant’s algorithm computes B(f � g) in O(|B(f)||B(g)|) time for any binary Boolean
operation � and Boolean functions f and g, where |B(h)| denotes the size of the BDD
B(h). Moreover, Bryant presented a family of function pairs f∗ and g∗ for which it
takes Θ(|B(f∗)||B(g∗)|) time to compute B(f∗ ∨ g∗). Furthermore, Bryant conjectured
that his algorithm would run in O(|B(f)| + |B(g)|+ |B(f � g)|) time. The conjecture has
remained open for a quarter of a century. In this article we present a family of Boolean
function pairs for which Bryant’s algorithm runs in Θ(|B(f)||B(g)|) time and |B(f � g)|
is proportional to |B(f)| + |B(g)|. Therefore Bryant’s conjecture does not hold for his
algorithm and all the other existing algorithms based on it.

∗Corresponding author: ry@i.kyoto-u.ac.jp, Tel.: +81-75-753-5638, Fax.: +81-75-753-5628. Relo-
cated to Kyoto University after this work was completed.

Preprint submitted to Elsevier December 20, 2011

2. Preliminaries

2.1. Binary Decision Diagram
A BDD for representing a Boolean function f (x1, . . . , xn) can be viewed as a labeled

directed acyclic graph. We write xi < x j if i < j. This graph has two special nodes 0
and 1 that have no outgoing edges, called terminal nodes. Any other node p is assigned
the triple [xi, p0, p1]; namely, p 7→ [xi, p0, p1], where xi is a variable (1 ≤ i ≤ n) and
p0 and p1 are nodes. The assignment p 7→ [xi, p0, p1] means that p is labeled with the
variable xi and has two outgoing edges to p0 and p1. We name the edge from p to p0
as the 0-edge of p and that to p1 as the 1-edge. To make the structure compact and to
ensure its uniqueness, the following conditions must be satisfied:

• p 7→ [xi, p0, p1], p0 7→ [x j, q0, q1], and p1 7→ [xk, r0, r1] implies xi < x j and
xi < xk,

• p 7→ [xi, p0, p1] and q 7→ [xi, p0, p1] implies p = q,

• p 7→ [xi, p0, p1] implies p0 , p1.

The first and third clauses can be checked locally, whereas this is not the case for the
second clause. To ensure that the second clause is satisfied, we maintain a hash table
called uniquetable that provides the unique node p such that p 7→ [xi, p0, p1] (if this
exists) for the key 〈xi, p0, p1〉.

For the sake of a uniform description of instructions of our algorithms, we conve-
niently assume that 0 7→ [xn+1, 0, 0] and 1 7→ [xn+1, 1, 1], where the associated BDD
involves n variables x1, . . . , xn. We inductively interpret each node p of a BDD as a
Boolean function φp as follows:

• if p = 0, φp is the contradiction: φp = 0,

• if p = 1, φp is the tautology: φp = 1,

• if p is not a terminal node and p 7→ [xi, q, r], φp is the function of xi, . . . , xn such
that1















φp(0, xi+1, . . . , xn) = φq(x j, . . . , xn) where x j is the label of q ;
φp(1, xi+1, . . . , xn) = φr(xk, . . . , xn) where xk is the label of r .

Note that the relation between the assigned functions of a node and its children is also
known as Shannon’s expansion [4].

We often identify a node p and the BDD consisting of all and only nodes reach-
able from p as long as no confusion occurs.2 For more details about BDDs, see, for
example, [1] or [2].

Theorem 1 (Theorem 1 in [1]). For any Boolean function f , there exists a unique BDD
representing f up to isomorphism.

1According to conventional interpretation, the sequence xi, xi+1, . . . , xn is regarded as the empty sequence
if the initial index i is larger than the final index n. In such cases, φp() with an empty argument represents a
constant function.

2We admit 0 and 1 as special BDDs with only one terminal node.

2

We denote the unique BDD for f by B(f) and the number of nodes of B(f) by
|B(f)|.

Now, for two functions f of x1, . . . , xn and g of xk+1, . . . , xn with k ∈ {0, . . . , n}, g is
said to be a (k-level) subfunction of f if there are c1, . . . , ck ∈ {0, 1} such that

g(xk+1, . . . , xn) = f (c1, . . . , ck, xk+1, . . . , xn) .

Theorem 2 ([2]). The number of nodes of B(f) is less than or equal to the number of
subfunctions of f .

Lemma 3. There exist 22m
functions of m variables.

2.2. Algorithm for Binary Operations
For a Boolean binary operation � : {0, 1}2 → {0, 1}, we also use the operator � on

Boolean function pairs; namely, we define f � g by (f � g)(x1, . . . , xn) = f (x1, . . . , xn) �
g(x1, . . . , xn). A highly important benefit of using BDDs is their efficient implementa-
tion; a binary Boolean operation � can be performed without decompressing the BDDs.
Specifically, for any two Boolean functions f and g and any binary operation �, B(f �g)
can be computed from B(f) and B(g) in O(|B(f)||B(g)|) time [1]. Algorithm 1 (Apply)
takes a binary operation � and two BDD nodes p and q, and, by recursively calling
itself, computes a node r such that φr = φp �φq. Algorithm 2 (Getnode) is a subroutine
called from Algorithm 1.

We assume that � is what we term properly binary; explicitly, neither

• a � 0 = a � 1 for any a ∈ {0, 1} nor

• 0 � a = 1 � a for any a ∈ {0, 1}

holds. Even if � is properly binary, the value of φp � φq is often easily computed in
terms of BDD nodes. For example, if � = ∧, we have that φp ∧ 0 = 0 and φp ∧ 1 = φp.
For inputs 〈∧, p, 0〉 and 〈∧, p, 1〉, the algorithm should immediately return the nodes 0
and p, respectively, without decomposing the function φp. When we can determine r
such that φr = φp � φq without decomposition of the functions, we say that the value
of Apply(�, p, q) is trivial. This covers the case where both p and q are terminal nodes.
Note that if � is properly binary and neither p nor q is a terminal node, then the value
of Apply(�, p, q) is not trivial.

To avoid computing the value for the same pair of arguments twice or more, once
the value Apply(�, p, q) has been computed, we store this value with the key 〈p, q〉 to a
cache, denoted by cache in Algorithm 1.

3. Construction

3.1. Construction by Multiplexers
Fix a positive integer n and let m =

⌈

log n
⌉

. We assume 2n+m variables x1, y1, x2, y2,

. . . , xn, yn, z1, . . . , zm in this order. We then define two functions fn and gn of these vari-
ables by

fn(x1, y1, . . . , xn, yn, z1, . . . , zm) = xβ(z1,...,zm) ,

gn(x1, y1, . . . , xn, yn, z1, . . . , zm) = yβ(z1,...,zm) ,

3

Algorithm 1 Apply [1]
Input: �: binary Boolean operation, p, q: BDD nodes
Result: BDD node for p � q

1: if the value of Apply(�, p, q) is trivial then
2: let r be such that φr = φp � φq;
3: return r;
4: else if there is a node r with the key 〈p, q〉 in cache then
5: return r;
6: else
7: let x, p0, p1, y, q0, q1 be such that p 7→ [x, p0, p1] and q 7→ [y, q0, q1];
8: if x = y then
9: let r be Getnode(x,Apply(�, p0, q0),Apply(�, p1, q1));

10: else if x < y then
11: let r be Getnode(x,Apply(�, p0, q),Apply(�, p1, q));
12: else
13: let r be Getnode(y,Apply(�, p, q0),Apply(�, p, q1));
14: end if
15: register r to cache with the key 〈p, q〉;
16: return r;
17: end if

Algorithm 2 Getnode
Input: x: variable, p0, p1: BDD nodes
Result: BDD node with [x, p0, p1]

1: if p0 = p1 then
2: return p0;
3: else if there is a node p with the key 〈x, p0, p1〉 in uniquetable then
4: return p;
5: else
6: create a node p with p 7→ [x, p0, p1];
7: register p to uniquetable with the key 〈x, p0, p1〉;
8: return p;
9: end if

4

where

β(z1, . . . , zm) =















1 +
∑m

k=1 2k−1zk if
∑m

k=1 2k−1zk < n ;
1 otherwise.

Lemma 4. The numbers of nodes of B(fn) and B(gn) are at most 4 · 2n, respectively.

Proof. We will prove the lemma for fn, and the same argument then applies to gn.
B(fn) has no nodes labeled yi for any i. Therefore, counting the number of other

nodes is sufficient, which is bounded by the number of `-level subfunctions of fn for
` = 2k for k = 0, . . . , n and ` = 2n + k for k = 1, . . . ,m by Theorem 2.

An `-level subfunction h of fn for ` = 2k with k ≤ n has the form

h(xk, yk, . . . , xn, yn, z1, . . . , zm)
= fn(a1, 0, a2, 0, . . . , ak, 0, xk+1, yk+1, . . . , xn, yn, z1, . . . , zm)

for some a1, . . . , ak ∈ {0, 1}. There are 2k choices of a1, . . . , ak, and thus the number of
`-level subfunctions is at most 2k

An `-level subfunction h of fn for ` = 2n + k with 1 ≤ k ≤ m is a function of m − k
variables. At most 22m−k

such functions exist by Lemma 3.
Hence,

|B(fn)| ≤
n
∑

k=0

2k +

m
∑

k=1

22m−k
≤ 2 · 2n + 2 · 22m−1

≤ 4 · 2n ,

where 2m−1 = 2dlog ne−1 ≤ n. �

Lemma 5. The function fn has 2n distinct 2n-level subfunctions.

Proof. For each ~a = 〈a1, . . . , an〉 ∈ {0, 1}n,

fn,~a(z1, . . . , zm) = aβ(z1,...,zm)

is a 2n-level subfunction of fn. For each ~a, ~b ∈ {0, 1}n, if ~a , ~b, then fn,~a(z1, . . . , zm)
and fn,~b(z1, . . . , zm) are distinct subfunctions because there exist d ∈ {1, . . . , n} and
c1, . . . , cm ∈ {0, 1} such that d = β(c1, . . . , cm) and ad , bd. �

Lemma 6. For any properly binary operation �, Algorithm 1 calls itself recursively at
least (2n)2 times with input 〈�,B(fn),B(gn)〉.

Proof. For each ~a ∈ {0, 1}n, let p~a denote the unique node of B(fn) such that

φp~a (zk+1, . . . , zm) = fn(a1, 0, a2, 0, . . . , an, 0, c1, . . . , ck, zk+1, . . . , zm)

for any c1, . . . , ck ∈ {0, 1}, where k is some natural number. Similarly, let q~b denote the
unique node of B(gn) such that

φq~b (zk+1, . . . , zm) = gn(0, b1, 0, b2, . . . , 0, bn, c1, . . . , ck, zk+1, . . . , zm)

for any c1, . . . , ck ∈ {0, 1}, where k is some natural number. For each pair of ~a and
~b ∈ {0, 1}n, the algorithm calls Apply(�, p~a, q~b). By Lemma 5, p~a and p~a ′ are distinct
if ~a , ~a ′ for ~a, ~a ′ ∈ {0, 1}n. The same argument holds true for q~b and q~b ′ with ~b , ~b ′.
Hence, the algorithm calls itself at least (2n)2 times. �

5

Lemma 7. fn � gn has at most 6 · 2n subfunctions for any binary operation �.

Proof. For each ` ∈ {0, . . . , 2n + m}, we count the number of `-level subfunctions. Let
h be a subfunction of

(fn � gn)(x1, . . . , zm) = xβ(z1,...,zm) � yβ(z1,...,zm) .

We have three cases:

Case 1: ` = 2k for k ∈ {0, . . . , n}. There exist a1, b1, . . . , ak, bk ∈ {0, 1} such that

h(xk+1, yk+1, . . . , zm) = (fn � gn)(a1, b1, . . . , ak, bk, xk+1, yk+1, . . . , zm)

=















ci if β(z1, . . . , zm) = i ≤ k ;
xi � yi if β(z1, . . . , zm) = i > k ,

where ci = ai � bi for i ∈ {1, . . . , k}. Since there are two possible choices of ci ∈ {0, 1}
for each i, the number of `-level subfunctions of fn � gn is at most 2k.

Case 2: ` = 2k− 1 for k ∈ {1, . . . , n}. There exist a1, b1, . . . , ak−1, bk−1, ak ∈ {0, 1} such
that

h(yk, xk+1, yk+1, . . . , zm) = (fn � gn)(a1, b1, . . . , ak, yk, xk+1, yk+1, . . . , zm)

=



























ci if β(z1, . . . , zm) = i < k ;
ak � yk if β(z1, . . . , zm) = k ;
xi � yi if β(z1, . . . , zm) = i > k ,

where ci = ai � bi for i ∈ {1, . . . , k − 1}. Since there are two possible choices of both
ci ∈ {0, 1} for each i and ak, the number of `-level subfunctions of fn � gn is at most 2k.

Case 3: ` = 2n + k for k ∈ {1, . . . ,m}. In this case, h is a function of m − k variables.
Therefore, the number of `-level subfunctions of fn � gn is at most 22m−k

by Lemma 3.
All in all, fn � gn has at most

n
∑

k=0

2k +

n
∑

k=1

2k +

m
∑

k=1

22m−k
≤ 2 · 2n + 2 · 2n + 2 · 2n = 6 · 2n

subfunctions. �

Corollary 8. The number of nodes of B(fn � gn) is at most 6 · 2n for any �.

Figure 1 illustrates the linear growth in the BDD size through computation of
Apply(⊕,B(f),B(g)).

Theorem 9. For any properly binary Boolean operation �, Algorithm 1 does not run
in O(|B(fn)| + |B(gn)| + |B(fn � gn)|) time on input 〈�,B(fn),B(gn)〉.

Proof. By Lemmata 4 and 6 and Corollary 8. �

6

xi

xi+1

xi+2 xi+2

xi+1

xi+2 xi+2

yi

yi+1 yi+1

xi

xi+1

xi+2 xi+2

xi+1

xi+2 xi+2

yi yi

yi+1 yi+1 yi+1 yi+1

⊕

=⇒

B(fn) B(gn) B(fn ⊕ gn)

Figure 1: The result of Apply(⊕, p, q), where p is labeled by xi and q by yi. Here 0-edges are
shown by dotted lines and 1-edges are by solid lines.

3.2. More Drastic Counterexample
The size of the output BDD B(fn�gn) is proportional to the input size |B(fn)|+|B(gn)|

in the construction in the previous subsection. The construction can be modified so
that the resultant function is constant when the binary operation � is ∧ or ∨. For a
positive integer n, we assume that we have 2n+m+ 1 variables x1, y1, x2, y2, . . . , xn, yn,

z1, . . . , zm,w in this order, where m =
⌈

log n
⌉

. We then define two functions of these
variables f i

n and gi
n for i = 0, 1 by

f i
n(x1, y1, . . . , zm,w) =















fn(x1, y1, . . . , zm) if w = 0 ;
i if w = 1 ;

gi
n(x1, y1, . . . , zm,w) =















i if w = 0 ;
gn(x1, y1, . . . , zm) if w = 1 ,

where fn and gn are the functions given in Sec. 3.1. Clearly,

|B(f 0
n ∧ g0

n)| = |B(f 1
n ∨ g1

n)| = 1 ,

because

(f 0
n ∧ g0

n)(x1, y1, . . . , zm,w) = 0 ,

(f 1
n ∨ g1

n)(x1, y1, . . . , zm,w) = 1 ,

for any x1, y1, . . . , xn, yn, z1, . . . , zm,w. All lemmata in Sec. 3.1 still hold for the com-
putation of B(f 0

n ∧ g0
n) and B(f 1

n ∨ g1
n). Specifically, the numbers of nodes of B(f i

n) and
B(gi

n) are at most 4 · 2n (Lemma 4)3 and Algorithm 1 recursively calls itself at least

3In fact, the shape of B(f 0
n) is almost identical to that of B(fn). We can obtain B(f 0

n) from B(fn) by
reconnecting all edges going into terminal node 1 to a new node assigned [w, 1, 0]. That is, |B(f 0

n)| =
|B(fn)| + 1. The same argument holds for f 1

n , g
0
n, g

1
n.

7

Table 1: Sizes of B(fn), B(gn), B(fn ⊕ gn), and B(fn ∧ gn), and computation times of fn ⊕ gn and fn ∧ gn. T �S
(T �C) is the computation time (sec.) of fn � gn by the SAPPORO BDD (CUDD) package.

n |B(fn)| |B(gn)| |B(fn ⊕ gn)| T⊕S T⊕C |B(fn ∧ gn)| T∧S T∧C
9 895 895 1,661 0.031 0.046 1,406 0.04 0.04

10 1,662 1,662 3,196 0.141 0.187 2,685 0.156 0.156
11 3,196 3,196 6,266 0.656 0.780 5,243 0.624 0.686
12 6,264 6,264 12,406 2.81 3.23 10,359 2.50 2.78
13 12,400 12,400 24,686 12.3 13.3 20,591 11.1 11.5
14 24,672 24,672 49,246 54.5 53.5 41,055 49.1 46.0
15 49,216 49,216 98,366 243 222 81,983 227 196
16 98,304 98,304 196,606 1038 1043 163,839 1068 903

(2n)2 times for inputs 〈∧,B(f 0
n),B(g0

n)〉 and 〈∨,B(f 1
n),B(g1

n)〉 (Lemma 6).

4. Experimental Results on Actual BDD Packages

Many existing implementations adopt slight modifications to the original BDDs
introduced in Sec. 2, which make theoretical analysis on the time complexity cumber-
some, although those modifications are usually supposed to have no significant change
on the computational complexity of BDDs. This section demonstrates experimentally
that our counterexamples are most likely valid for existing packages. To this end, us-
ing the SAPPORO BDD package by Minato (unreleased) and the CUDD package by
Somenzi [5], we computed fn ⊕ gn, fn ∧ gn, and f 0

n ∧ g0
n, where fn, gn, f 0

n , and g0
n are

defined in Sec. 3 . Tables 1 and 2 show the sizes of the BDDs and the computation time
for these binary operations when n = 9, . . . , 16. The program was coded in C++ and
was performed on a 2.80 GHz CPU with 6 GB RAM, running Windows 7 with Cyg-
win. (The source code is available from http://www-erato.ist.hokudai.ac.jp/
˜jkawahara/BryantConjecture.html.) For each increase of n by one, |B(fn)|,
|B(gn)|, |B(fn ⊕ gn)| and |B(fn ∧ gn)| (|B(f 0

n)|, |B(g0
n)| and |B(f 0

n ∧ g0
n)|) increase by a

factor of about two, while the computation time increases by a factor of about four.
Thus, the results suggest that the computation time of these binary operations are not
bound linearly by the size of input and output BDDs.

5. Concluding Remarks

In this article, we have presented counterexamples to the long-standing conjecture
on the complexity of the BDD Apply algorithm. Our results show that the computation
time of the algorithm is not always a linear relation of the input-output sizes for any
properly binary operation (f �g). Our counterexamples require a computation time that
is a quadratic function of the input BDD size, while the output BDD size is linearly
related to input size. In addition, for the operations ∧ and ∨, we have shown a stronger
counterexample where the output BDD size is constant while computation time is still
a quadratic of the input BDD size.

We note that our results can also be applied to the zero-suppressed binary decision
diagram (ZDD) [3], which is based on node reduction rules that are slightly different

8

Table 2: Sizes of B(f 0
n), B(g0

n), and B(f 0
n ∧g0

n), and computation times of f 0
n ∧g0

n. T∧0S (T∧0C) is the computation
time (s) of f 0

n ∧ g0
n by the SAPPORO BDD (CUDD) package.

n |B(f 0
n)| |B(g0

n)| |B(f 0
n ∧ g0

n)| T∧0S T∧0C
9 1,278 1,278 1 0.032 0.016

10 2,300 2,300 1 0.094 0.078
11 4,344 4,344 1 0.390 0.296
12 8,432 8,432 1 1.50 1.14
13 16,608 16,608 1 6.77 4.66
14 32,960 32,960 1 29.7 20.7
15 65,664 65,664 1 125 87.8
16 131,072 131,072 1 621 393

from the ones in conventional BDD. Space does not allow to discuss ZDD here; how-
ever, we consider that the difference between ZDD and BDD has almost no (exponen-
tially small) effect on the computation time of our counterexamples. Thus, asymptotic
behaviors will be the same in our argument for ZDD.

While our results are important from a theoretical point of view, the following
observations can also be made.

• Our counterexamples have an artificial structure, and would rarely appear in real-
life problems. In most practical situations, the conjecture may be correct.

• While our counterexamples assume a specific variable ordering for the Boolean
functions, the ordering is far from optimal. If we use a reasonable variable or-
dering, the conjecture may still stand. We are yet to find a counterexample ap-
plicable regardless to the variable ordering used.

Although theoretically disproved, the conjecture is still useful as a good estimation
of the computation time for BDD construction in many practical applications.

References

[1] Bryant, R.E.: Graph-based algorithms for boolean function manipulation.
IEEE. Trans. Comput., vol. C-35, no. 8, 677–691 (1986)

[2] Knuth, D.E.: The Art of Computer Programming, vol. 4, fasc. 1, Bitwise Tricks
& Techniques; Binary Decision Diagrams. Addison-Wesley (2009)

[3] Minato, S.: Zero-Suppressed BDDs for Set Manipulation in Combinatorial Prob-
lems. In Proc. of 30th ACM/IEEE Design Automation Conference (DAC’93),
272–277 (1993)

[4] Shannon, C.E.: A Symbolic Analysis of Relay and Switching Circuits. Transac-
tions of the AIEE, vol. 57, 1938, pp. 713–723.

[5] Somenzi, F.: CUDD: CU Decision Diagram Package.
http://vlsi.colorado.edu/˜fabio/CUDD/cuddIntro.html (accessed
November 4, 2011)

9

