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Abstract. Dowden (2010) showed that the maximum size of a minimal
definitive set Q of quartets is at least 2n − 8, for all n ≥ 4, where n is
the size of the label set of Q. In this paper, we show that the maximum
size of such a set of quartets is at least Ω(n2) and, moreover, is strictly
less than n3, for all n ≥ 4.

1. Introduction

Supertree methods are prominent methods for reconstructing phyloge-
netic (evolutionary) trees. These methods take as input a collection of
smaller phylogenetic trees with overlapping taxa (leaf labels) and output
a single parent tree whose taxa set is the union of the taxa sets of the
smaller trees. For unrooted methods, the basic input is a collection of quar-
tet trees, that is, binary phylogenetic trees with exactly four leaves. For an
insight into the scope and variety of supertree methods, we refer the inter-
ested to [1]. Ideally, for any reconstruction algorithm, supertree method or
otherwise, one would like the input to be compatible, in which case, there
is a phylogenetic tree that is consistent with the input. Moreover, if the
input is compatible, one would additionally like there to be precisely one
such tree, that is, the input is definitive. In this regard, a natural task is to
investigate definitive sets of quartets. In this paper, we study the problem of
determining the maximum size of a minimal definitive set of quartets. The
rest of the introduction formalizes the problem, details previous results, and
states the main results of this paper. Throughout the paper, our notation
and terminology follows Semple and Steel [4].

Let X be a finite set, where |X| ≥ 3. A phylogenetic X-tree T is a tree
with no degree-two vertices, whose interior vertices are unlabeled and whose
leaves are labeled distinctly by the elements of X. We often denote the label
set of T by L(T ). A phylogenetic tree is binary if every interior vertex has
degree three. A quartet is a binary phylogenetic tree with exactly four leaves.
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If q is a quartet with L(q) = {a, b, c, d} and the path from a to b does not
intersect the path from c to d, then we denote q by ab|cd.

Let T be a binary phylogenetic X-tree and let q = ab|cd be a quartet. We
say that T displays q if {a, b, c, d} ⊆ X and the path from a to b does not
intersect the path from c to d in T . More generally, letQ be a set of quartets,
then T displays Q if T displays each quartet in Q. Let L(Q) =

⋃
q∈Q L(q).

If L(Q) = X and T is the only phylogenetic X-tree that displays Q, then T
is defined by Q and Q is said to be definitive.

A definitive set Q of quartets is minimal if, for each q ∈ Q, the set
Q − q is not definitive, in the sense that, if we let X = L(Q), then there
is more than one phylogenetic X-tree that displays Q− q. It is well-known
that the minimum size of such a minimal definitive set is n − 3, where
n is the size of L(Q) (for example, see [4]). In contrast, the maximum
size of a minimal definitive set of quartets has remained unknown, other
than that it is trivially bounded above by O(n4). Until recently, it was
conjectured that the maximum size is n− 3 + k, where k is some constant.
However, Humphries [3] showed that the maximum size is at least 3

2n − 6,
while Dowden [2] showed the maximum size is at least 2n− 8, for all n ≥ 4.
In this paper, we show that the maximum size of a minimal definitive set of
quartets is at least quadratic in n and, moreover, at most cubic in n, for all
n ≥ 4. In particular, we prove the following two results, whose proofs are in
Sections 2 and 3.

Theorem 1.1. Let X be a finite set such that |X| = n. For all n ≥ 4,
there is a minimal definitive set Q of quartets, with L(Q) = X, such that
|Q| = f(n), where f(n) is Ω(n2). More precisely,

|Q| =
n−3∑
i=1

di/2e=

{
1
4(n− 3)(n− 1) if n is odd;
1
4(n− 2)2 if n is even.

Theorem 1.2. Let X be a finite set such that |X| = n. For all n ≥ 4, every
minimal definitive set Q of quartets, with L(Q) = X, has the property that
|Q| < n3. More precisely,

|Q| ≤
n−3∑
i=1

i(i + 2).

The next lemma and its corollary will be used in the proofs of Theo-
rems 1.1 and 1.2.

Lemma 1.3. Let P = {a1a2|yz, a2a3|yz, . . . , ak−2ak−1|yz, ak−1ak|yz} be a
set of quartets and let T be a phylogenetic tree in which L(P) ⊆ L(T ). If T
displays P, then T displays a1ak|yz.

Proof. The proof is by induction on k. If k = 2, the lemma trivially holds.
Suppose that k ≥ 3 and the lemma holds for

P ′ = {a1a2|yz, a2a3|yz, . . . , ak−2ak−1|yz},
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that is, if T displays P ′, then T displays a1ak−1|yz. Now it is easily seen
that if a phylogenetic tree displays a1ak−1|yz and ak−1ak|yz, then it also
displays a1ak|yz (see [4]). This completes the proof of the lemma. �

Corollary 1.4. Let Q be a set of quartets, and suppose that there is a
“cyclic” subset S of Q of the form

S = {a1a2|yz, a2a3|yz, . . . , ak−1ak|yz, aka1|yz}.
Then Q is not a minimal definitive set of quartets.

Proof. The proof is by contradiction. Suppose that Q is a minimal definitive
set of quartets. Since Q is definitive, Q is displayed by a unique phylogenetic
X-tree T , where X = L(Q). Furthermore, as Q is minimal, for each q ∈
Q, the set Q − q is displayed by more than one phylogenetic X-tree. In
particular, if si is a quartet in S, then there is more than one phylogenetic X-
tree displaying Q−si. By Lemma 1.3, any phylogenetic X-tree that displays
S − si also displays S. Thus, there must be more than one phylogenetic X-
tree that displays Q; a contradiction. �

2. Proof of Theorem 1.1

Let X be a finite set such that |X| = n, where n ≥ 4. Without loss of
generality, we set X = {1, 2, 3, . . . , n}. We begin by constructing a set of
quartets Qn, with L(Qn) = X, such that |Qn| =

∑n−3
i=1 di/2e. We then show

that Qn is a minimal definitive set of quartets, thereby proving Theorem 1.1.

For each i ∈ {1, 2, . . . , n− 3}, set Ei as follows. If i is odd, set

Ei =

{12|(i + 2)(i + 4)} ∪
⋃ i−1

2
j=1{(2j)(2j + 2)|(i + 2)(i + 4)}, if i < n− 3;

{12|(i + 2)(i + 3)} ∪
⋃ i−1

2
j=1{(2j)(2j + 2)|(i + 2)(i + 3)}, if i = n− 3.

If i is even, set

Ei =


⋃ i−2

2
j=0{(2j + 1)(2j + 3)|(i + 2)(i + 4)}, if i < n− 3;⋃ i−2

2
j=0{(2j + 1)(2j + 3)|(i + 2)(i + 3)}, if i = n− 3.

For convenience later in the proof, for when i is odd, we view the quartets
12|(i + 2)(i + 4) and 12|(i + 2)(i + 3) as resulting from setting j = 0 when
i < n− 3 and i = n− 3, respectively. Now set

Qn = E1 ∪ E2 ∪ · · · ∪ En−3.

Note that |Qn| =
∑n−3

i=1 di/2e. To illustrate the construction, if n = 8, then
E1 = {12|35}, E2 = {13|46}, E3 = {12|57, 24|57}, E4 = {13|68, 35|68}, and
E5 = {12|78, 24|78, 46|78}. Thus

Q8 = {12|35, 13|46, 12|57, 24|57, 13|68, 35|68, 12|78, 24|78, 46|78}.

For all n ≥ 4, let Cn denote the binary phylogenetic X-tree shown in Fig. 1.
For now, ignore the labeling of the interior edges. It is easily checked that
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Figure 1. The phylogenetic tree Cn. For each fixed n ≥
4, the phylogenetic tree Cn displays the set Qn of quartets
constructed at the start of Section 2.

Cn displays Qn for all n ≥ 4. We will show that Cn is the only phylogenetic
X-tree to display Qn, thus Qn is definitive, and that, for each q ∈ Qn, the
set Qn − q is not definitive, thus Qn is minimal.

We require one further definition before showing that Qn is definitive for
all n ≥ 4. Let T be a phylogenetic X-tree and let q = ab|cd be a quartet
with L(q) ⊆ X. Suppose that T displays q. We say that q distinguishes an
edge e of T if the path from a to b contains one end vertex of e, while the
path from c to d contains the other end vertex of e.

Lemma 2.1. For all n ≥ 4, the set Qn is definitive.

Proof. If n = 4, then Q4 = {12|34} and this set is clearly definitive, so
assume that n > 4. First observe that, for each i ∈ {1, 2, . . . , n− 4}, we can
write Ei, for i odd, in the form

{12|(i + 2)(i + 4), 24|(i + 2)(i + 4), . . . , (i− 1)(i + 1)|(i + 2)(i + 4))}

and, for i even,

{13|(i + 2)(i + 4), 35|(i + 2)(i + 4), . . . , (i− 1)(i + 1)|(i + 2)(i + 4)}.

Furthermore, when i = n− 3, we can write Ei, for i odd, in the form

{12|(i + 2)(i + 3), 24|(i + 2)(i + 3), . . . , (i− 1)(i + 1)|(i + 2)(i + 3))},

and, for i even,

{13|(i + 2)(i + 3), 35|(i + 2)(i + 3), . . . , (i− 1)(i + 1)|(i + 2)(i + 3)}.

Now let T be a phylogenetic X-tree that displays Ei for all i ∈
{1, 2, . . . , n − 3}. By Lemma 1.3, T displays 1(i + 1)|(i + 2)(i + 4) for
each i ∈ {1, 2, . . . , n − 4} and 1(i + 1)|(i + 2)(i + 3) for i = n − 3. In
particular, every phylogenetic X-tree that displays Qn, where n > 4, dis-
plays each of the quartets 12|35, 13|46, . . . , 1(n − 2)|(n − 1)n. Since each
interior edge ei of Cn is distinguished by one of the quartets in the set
{12|35, 13|46, . . . , 1(n−2)|(n−1)n}, and all of the quartets in this set share
the common leaf labeled 1, it follows by [4, Proposition 6.4.4] that Cn is the
only phylogenetic X-tree that displays Qn. Hence Qn is definitive. �

The next lemma is used in showing that Qn has the desired minimality
property. In particular, for each n ≥ 4, it provides an alternative way to



MINIMAL DEFINITIVE SETS OF QUARTETS 5

view Qn. We use this “mirror” view of Qn as a convenient tool to show that
for each quartet q in En−3, the set Qn − q is not definitive.

Lemma 2.2. For all n ≥ 4, let

Q∗n = {(n + 1− a4)(n + 1− a3)|(n + 1− a2)(n + 1− a1) : a1a2|a3a4 ∈ Qn}.
Then Q∗n = Qn.

Proof. We show that Q∗n ⊆ Qn, by showing that every quartet q ∈ Q∗n is
contained in Qn. Then, since clearly |Q∗n| = |Qn|, it must be the case that
Q∗n = Qn.

Choose a quartet q from Q∗n, of the form

(n + 1− a4)(n + 1− a3)|(n + 1− a2)(n + 1− a1),

where a1a2|a3a4 is a quartet in Qn. Recall that Qn = E1 ∪E2 ∪ · · · ∪En−3.
For all (i, j) such that 1 ≤ i ≤ n − 3 and 0 ≤ j < |Ei|, let qi,j denote
the j-th element of Ei. It must be the case that a1a2|a3a4 = qi,j for some
1 ≤ i ≤ n− 3 and 0 ≤ j < |Ei|.

We have four cases to consider, dependent on the parity of both n and i.
We complete the proof for the case that both n and i are odd and note that
the other three cases are similar.

Given that n and i are both assumed to be odd, and hence 1 ≤ i ≤ n− 4
and 0 ≤ j ≤ i−1

2 , the construction states that

qi,j =

{
12|(i + 2)(i + 4), if j = 0;
(2j)(2j + 2)|(i + 2)(i + 4), if j > 0.

Thus, q must be of the form

q =

{
(n + 1− (i + 4))(n + 1− (i + 2))|(n + 1− 2)(n + 1− 1), if j = 0;
(n + 1− (i + 4))(n + 1− (i + 2))|(n + 1− (2j + 2))(n + 1− 2j), if j > 0.

We can rewrite q as

q =

{
(n− i− 3)(n− i− 1)|(n− 1)n, if j = 0;
(n− i− 3)(n− i− 1)|(n− 1− 2j)(n + 1− 2j), if j > 0.

Now set i′ = n − 3 − 2j and j′ = n−i−4
2 . Note that, when n is odd, i′ is

even. Let

qi′,j′ =

{
(2j′ + 1)(2j′ + 3)|(i′ + 2)(i′ + 4), if i′ < n− 3;
(2j′ + 1)(2j′ + 3)|(i′ + 2)(i′ + 3), if i′ = n− 3.

The quartet qi′,j′ will be in Qn if and only if 2 ≤ i′ ≤ n−3, and 0 ≤ j′ ≤ i′−2
2 .

As 0 ≤ j ≤ i−1
2 , we get n − i − 2 ≤ i′ ≤ n − 3. So, as 1 ≤ i ≤ n − 4, we

get 2 ≤ i′ ≤ n − 3. Now, as i′ ≥ n − i − 2, we have i′−2
2 ≥ n−i−4

2 . Since
j′ = n−i−4

2 and 1 ≤ i ≤ n− 4, this gives us 0 ≤ j′ ≤ i′−2
2 . Hence, if both n

and i are odd and qi,j ∈ Qn, then qi′,j′ ∈ Qn.
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Finally, we rewrite qi′,j′ by substituting n− 3− 2j for i′ and n−i−4
2 for j′

to get

qi′,j′ =

{
(n− i− 3)(n− i− 1)|(n− 1− 2j)(n + 1− 2j), if j > 0;
(n− i− 3)(n− i− 1)|(n− 1)n, if j = 0.

It is clear that q = qi′,j′ . Thus, if n and i are both odd and a1a2|a3a4 = qi,j

for some 1 ≤ i ≤ n− 3 and 0 ≤ j < |Ei|, then q ∈ Qn.

The other three cases are similar. In particular, for those cases, we select
i′ and j′ as follows:

(i′, j′) =


(n− 3− 2j, n−i−4

2 ) if n odd, i odd;
(n− 3− 2j, n−i−3

2 ) if n even, i odd;
(n− 4− 2j, n−i−4

2 ) if n even, i even;
(n− 4− 2j, n−i−3

2 ) if n odd, i even.

�

We now complete the proof of Theorem 1.1.

Proof of Theorem 1.1. By Lemma 2.1, Qn is definitive for all n ≥ 4. We
establish the minimality part of the theorem by induction on n. Since Q4 =
{12|34} and Q4 − 12|34 = ∅, it follows that any one of the three distinct
binary phylogenetic trees with labeled set {1, 2, 3, 4} displays Q4 − 12|34.
Therefore, if n = 4, then the minimality property holds.

Suppose that the minimality property holds forQn−1, where n > 4. Then,
for X = {1, 2, . . . , n− 1} and each q ∈ Qn−1, there is a phylogenetic X-tree,
other than Cn−1, that displays Qn−1− q. Now let qi,j ∈ Qn, where i denotes
that qi,j ∈ Ei and, if i is odd, j denotes the value in {0, 1, 2, . . . , i−1

2 } resulting
in qi,j in the construction of Ei while, if i is even, j denotes the value in
{0, 1, 2, . . . , i−2

2 } resulting in qi,j in the construction of Ei.

First suppose that i ∈ {1, 2, . . . , n − 4} and consider the quartet qi,j . If
i ∈ {1, 2, . . . , n − 5}, then, for all j, we have that qi,j is a quartet in Qn−1,
in which case, there is a phylogenetic tree Ti,j with label set X − n, other
than Cn−1, that displays Qn−1 − qi,j . By adjoining a new leaf n to Ti,j via
the pendant edge incident with n− 1, it is easily checked that the resulting
tree displays Qn − qi,j , but it is not Cn.

For i = n − 4, we can similarly show that Qn − qi,j is not definitive as
follows. If i is odd, then Qn contains the subset

{12|(i + 2)(i + 4)} ∪

i−1
2⋃

j=1

{(2j)(2j + 2)|(n− 2)n}(1)
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n− 3
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6 n 1 3n− 2 n− 5

n− 1

Figure 2. For each fixed n ≥ 4, where n even, this phylo-
genetic tree displays Qn − 12|(n− 1)n.

of quartets and Qn−1 contains the subset

{12|(i + 2)(i + 3)} ∪

i−1
2⋃

j=1

{(2j)(2j + 2)|(n− 2)(n− 1)}(2)

of quartets. If i is even, then Qn contains the subset
i−2
2⋃

j=0

{(2j + 1)(2j + 3)|(n− 2)n}(3)

of quartets and Qn−1 contains the subset
i−2
2⋃

j=0

{(2j + 1)(2j + 3)|(n− 2)(n− 1)}(4)

of quartets. Let Ti,j be a phylogenetic tree with label set X − n, other than
Cn−1, that displays Qn−1− qn−1

i,j where, depending upon whether i is odd or
even, qn−1

i,j is the j-th quartet in (2) or (4), respectively, in the construction
of Qn−1. It is now easily checked that, by adjoining a new leaf n to Ti,j via
the pendant edge incident with n− 1, the resulting tree displays Qn − qi,j ,
but it is not Cn where, depending upon whether i is odd or even, qi,j is the
j-th quartet in (1) or (3), respectively, in the construction of Qn.

It remains to show how an alternative phylogenetic X-tree displaying
Qn − qi,j is produced for qi,j when i = n − 3. By Lemma 2.2, we know
that, for each such quartet qi,j = a1a2|(n − 1)n, a corresponding quartet
12|(n + 1 − a2)(n + 1 − a1) is an element of Qn. This “mirror quartet”
corresponds to some quartet qi′,j′ ∈ Qn, where i′ is odd and j′ = 0. If
i′ < n−3, we know by above that there is a phylogenetic X-tree T ′i′,j′ , other
than Cn, that displays Qn− qi′,j′ . Replacing each leaf l by (n+1− l) in T ′i′,j′
will result in a tree T ′i,j that displays Qn − qi,j , but it is not Cn.

If i′ = n − 3, it must be the case that i′ = i = n − 3 is odd, and so n
is even and qi,j = qi′,j′ = 12|(n − 1)n. Consider the phylogenetic X-tree,
C′n say, shown in Fig 2. Since C′n displays 2n|1(n − 1), it does not display
12|(n − 1)n. However, C′n does display each of the remaining quartets in
Qn since each such quartet takes one of the following forms: 12|a(a + 2),
where a is odd; a(a + 2)|b(b + 2) or b(b + 2)|a(a + 2), where a is odd and
b is even; a(a + 2)|(n − 1)n, where a is even. This completes the proof of
Theorem 1.1. �
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3. Proof of Theorem 1.2

Proof of Theorem 1.2. Let X be a finite set such that |X| = n, where n ≥ 4.
Without loss of generality, we set X = {1, 2, 3, . . . , n}, and let Q be an
arbitrary minimal definitive set of quartets with L(Q) = X. Fixing a 2-
element subset {y, z} ⊆ X, let Gyz be the graph with vertex set X − {y, z}
and where there is an edge {a, b} in Gyz precisely if ab|yz is a quartet in Q.
Since Q is a minimal definitive set, it follows by Corollary 1.4 that Gyz is
acyclic. Therefore, Gyz has at most n− 3 edges. Thus, Q contains at most
n− 3 quartets of the form ab|yz, where a, b ∈ X − {y, z}.

Now let PX be the set of 2-element subsets of X and observe that

|PX | = (n− 1) + (n− 2) + · · ·+ 2 + 1.

Furthermore, for each i ∈ {1, 2, . . . , n} and j ∈ {i + 1, . . . , n}, let Gij be the
graph with vertex set X −

{
{1, 2, . . . , i− 1} ∪ {i, j}

}
and where there is an

edge {k, l} precisely if there is a quartet in Q of the form ij|kl. For each
element in PX of the form {1, j}, where 2 ≤ j ≤ n, the graph G1j has at most
n− 3 edges by the argument in the previous paragraph. In general, for each
i ∈ {1, 2, . . . , n} and j ∈ {i+1, . . . , n}, the graph Gij has at most n− (i+2)
edges. For each i ∈ {1, 2, . . . , n}, let Qi be the subset of quartets in Q of the
form ij|kl, where i + 1 ≤ j ≤ n and k, l ∈ X −

{
{1, 2, . . . , i − 1} ∪ {i, j}

}
.

Since Gij has at most n− (i + 2) edges, for each j ∈ {i + 1, . . . , n}, it must
be the case that |Qi| ≤ (n− i)(n− (i + 2)). Since

Q = Q1 ∪Q2 ∪ · · · ∪ Qn−3,

it follows that |Q| ≤
∑n−3

i=1 (n− i)(n− (i + 2)) =
∑n−3

i=1 i(i + 2). �
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