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Abstract

We consider a topology control problem in which we are given a set of sensors in R
d and

we would like to assign a communication radius to each of them so that they generate a
connected network and have low receiver-based interference (defined as the largest in-degree
of the network). We show that any radii assignment that generates a connected network
can be modified so that interference is (asymptotically) unaffected and no sensor is assigned
communication radius larger than Rmin, where Rmin is the smallest possible radius needed
to obtain strong connectivity. Combining this result with the previous network construction
methods [7, 11], we obtain a way to construct a connected network of low interference and
bounded radii. Since the radius of a sensor is only affected by neighboring sensors, this
construction can be done in a distributed fashion.

1 Introduction

Ad-hoc networks are commonly used whenever a number of electronic devices are spread across
a geographical area and no central communication hub exists [2, 9]. In order to send messages
between two sensors located far from each other, the message is repeated by other devices located
between them. Due to technical constraints, the devices normally have very limited power sources
(such as a small battery or solar cells). Since energy is the limiting factor for the operability of
these networks, various methods have been proposed to reduce energy consumption [3, 7, 11].

In most cases the transmission radius is the major source of power dissipation in wireless net-
works. Another issue that strongly affects energy consumption is interference. Intuitively, the
interference of a network is defined as the largest number of sensors that can directly communi-
cate with a single point in the plane. Indeed, lowering the interference reduces the number of
package collisions and saves considerable amounts of energy which would otherwise be spent in
retransmission.

In this paper we look for an algorithm that assigns a transmission radius to a given list of
sensors in a way that the network is connected and has low interference. Additionally we consider
the case in which no sensor can be assigned a large radius; although theoretically one could
assign an arbitrarily large radius to a sensor, in many cases this is not possible (due to hardware
constraints, environmental noise, quick battery drainage, etc.). We note that, in virtually all cases
in which ad-hoc networks are used, sensors do not have knowledge of the location of other sensors.
As a result, our aim is to give a method to construct the network in a local fashion. That is, that
the communication radius of a given sensor does not depend in the location or existence of sensors
that are far away.

∗A preliminary version of this paper appeared in the proceedings of the 22nd International Symposium on
Algorithms and Computation (ISAAC 2011).

†Universitat Politècnica de Catalunya (UPC), Barcelona. matias.korman@upc.edu. With the support of the
Secretary for Universities and Research of the Ministry of Economy and Knowledge of the Government of Catalonia
and the European Union.
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2 Definitions and results

We model each device as a point in R
d (typically d = 2) and its transmission radius as a positive

real value. Given a set S of sensors, we look for a radii assignment r : S → R
+. The value r(s) is the

communication radius (or radius for short), and gives an idea of how far can the messages emitted
from s reach (or equivalently, how strong the signal is). Any radii assignment defines an undirected
graph Gr = (S,E) with S as the ground set. The most commonly adopted model is the symmetric
model in which there is an undirected edge st ∈ E if and only if min{r(s), r(t)} ≥ d(s, t), where
d(·, ·) denotes the Euclidean distance (that is, we add an edge between two sensors if they can
send messages to each other). Clearly, a requirement for any assignment r is that the associated
graph is strongly connected (i.e., for any u, v ∈ S there is a directed path from u to v in Gr).
Whenever this happens, we say that r is valid.

Asymmetric communication models have also been studied in the literature (see [6, 11], section
IV). In this second model, any radii assignment r defines a directed graph G′

r = (S,E′) and there
is a directed edge −→uv ∈ E′ whenever r(u) ≥ d(u, v). It is easy to observe that whenever we have
uv ∈ E. In particular, G′

r must be strongly connected whenever r is valid. More importantly,
although the focus of this paper is in the symmetric model, the same result also holds in the
asymmetric case.

We model interference following the received based interference model [11]. For a fixed radii
assignment r, the interference I(p) of any point p ∈ R

d is defined as the number of sensors that
can directly communicate with p (that is, I(p) = ||{s ∈ S | r(s) ≥ d(s, p)}||). The interference of
the network (or the radii assignment) is defined as the point in R

d with largest interference.1

A more geometric interpretation of the interference is as follows: for each sensor s ∈ S place a
disk of radius r(s) centered at s. The interference of a point is equal to the depth of that point
in the arrangement of disks (analogously, the interference of the network is equal to the depth of
the deepest point). This model has been widely accepted, since it has been empirically observed
that most of the package collisions happen at the receiver. The interested reader can check [9] or
[11] to see other models of interference.

We say that a radii assignment r has bounded radius R if it satisfies r(s) ≤ R for all s ∈ S. If
we are only interested in creating a valid network with the smallest possible communication radius,
the simplest approach is to consider the uniform-radius network. In this network all sensors are
assigned the same radius Rmin defined as the minimum possible value so that the associated
network is strongly connected. It is easy to see that Rmin is equal to the length of the longest
edge of the minimum spanning tree of S. Unfortunately it is easy to see that the interference of
this approach, commonly denoted by ∆, can be as high as n (for example, a single point located
far from a large cluster of points).

Computing the radii assignment that minimizes the interference of a given point set is NP-
hard. More specifically, Buchin [4] showed that it is NP-hard to obtain a valid radii assignment
that minimizes the network’s interference, or even approximate it with a factor of 4/3 or less.
As a result, most of the previous research focuses in constructing valid networks with bounded
interference, regardless of what the optimal assignment is for the given instance. For the symmetric
1-dimensional case (or highway model), von Rickenbach et al. [11] gave an algorithm that constructs
a network with O(

√
∆) interference, and showed that this algorithm approximates the minimum

possible interference by a factor of O( 4
√
∆). Afterwards, Halldórsson and Tokuyama [7] generalized

the symmetric construction to higher dimensions, although the approximation factor does not hold
anymore. Moreover, their construction uses bucketing to certify that their network has bounded
radius

√
dRmin.

A variation called the all-to-one problem was considered for the asymmetric model in [6, 11].
In this problem, one would like to assign radii in a way that all sensors can communicate to a
specific sensor s ∈ S (called the sink). By adding a sufficiently large communication radius to s
we can obtain a strongly connected directed network. Note that their construction has bounded

1In fact, the definition of [11] only measures interference at the sensors. The extension to measuring the
interference to R

d was done in [7].
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radius Rmin for all sensors other than the sink. Unfortunately, their method needs knowledge
of the whole network, and cannot be easily adapted to symmetric networks. The study of the
interference generated by a random set of points was also done in [8].

In this paper we show that any radii assignment can be transformed to another one with
(asymptotically speaking) the same interference and bounded radius Rmin. In our construction,
the radius of a sensor is only affected by the sensors located in its neighborhood. As a result, this
network can be constructed using only local information, even if the original assignment didn’t
have this property.

3 Bounded radius network

The objective of this section is to prove the following result:

Theorem 1. Any valid radii assignment of interference i can be transformed into another assign-
ment of interference O(i) and bounded radius Rmin.

We first give an intuitive idea of our construction. The algorithm classifies the elements of S
into clusters. For each cluster we select a constant number of sensors (which we call the leaders of
the cluster) and assign them communication radius Rmin. The main property of this set is that
they are capable of sending messages to any other sensor of the cluster by only hopping through
other leaders. Reciprocally, any other sensor whose radius is Rmin will be able to communicate to
a leader ℓ (and thus all other sensors of the cluster by hopping through ℓ). Hence, no sensor will
ever need to have radius strictly larger than Rmin. Finally, we will connect clusters in a way that
interference will not grow, except by a constant value.

More formally, the algorithm is as follows. Virtually partition the plane into d-dimensional
cubes of side length Rmin (each of these cubes will be referred as a bucket). For each bucket B,
let SB be the sensors inside B (i.e., SB = S ∩B). Without loss of generality we can assume that
no point lies in two buckets (this can be obtained by doing a symbolic perturbation of the point
set). We say that two sensors s, t ∈ S belong to the same cluster if and only if they belong to the
same bucket B and there is a path connecting them in the subgraph Gu[SB], where G[S′] denotes
the subgraph of a graph G = (S,E) induced by a subset of vertices S′ ⊆ S, and Gu is the network
associated to the uniform radius network.

Lemma 1. For any fixed dimension d, there can be at most O(1) clusters inside any bucket.
Moreover, in each cluster there are at most O(∆) sensors.

Proof. Partition B into dd cubes of side length Rmin/d. By construction, the largest distance
between any two sensors in the same sub-bucket is

√
dRmin/d = Rmin/

√
d ≤ Rmin. If there exists

a bucket B with more than dd clusters, we use the pigeonhole principle and obtain that there must
exist at least one sub-bucket with sensors of two different clusters. In particular, there will be an
edge in Gu[SB] that connects these sensors, contradicting with the definition of cluster. Proof for
the second claim is identical (this time we would find a sensor whose interference in Gu is larger
than ∆)

The set of leaders of a given cluster c inside a bucket B is constructed as follows: as in the
proof of Lemma 1, partition B into cubes of sidelength Rmin/d. If all the points belong to the
same sub-bucket, we pick any point as the leader. Otherwise, for any two different sub-buckets
pick any edge e in Gu[c] connecting the two sub-buckets (if any exists) and add the vertices of e to
the set of leaders. We repeat this process for all pairs of sub-buckets and obtain the set of leaders.

Lemma 2. For any cluster c, its associated set Lc of leaders has constant size. Moreover, for any
sensor s ∈ c, there exists a leader ℓs ∈ Lc such that d(s, ℓs) ≤ Rmin.

Proof. For every pair of sub-buckets occupied by sensors of c, two sensors are added into Lc.

Since a bucket is partitioned into dd sub-buckets, at most 2×
(

dd

2

)

sensors will be present in Lc (a
constant for any fixed dimension). In order to show the second claim it suffices to observe that for

3



any sensor s there exists a leader that belongs to the same sub-bucket. If all sensors are located
in a single sub-bucket, the claim is trivially true. Otherwise, for any given sensor s ∈ c, let t ∈ c
be any sensor located in a different sub-bucket, π = (s = v0, . . . , vk = t) be any path connecting
them in Gu[c], and let i > 0 be the smallest index such that vi does not belong to the the same
sub-bucket as s. By definition of leaders, there must be a sensor of the sub-bucket in which vi−1

belongs to in Lc (since the edge vi−1vi is present in Gu[c] and the two sensors belong to different
sub-buckets). In particular, this leader will be within Rmin communication distance to vi−1 (and
s, since they belong to the same sub-bucket).

We assign radius to all sensors s of cluster c as follows. If s ∈ Lc, we assign radius Rmin.
Otherwise, we assign radius equal to min{r(s), Rmin}, where r : S → R is the radii assignment of
interference i.

Finally, we must add a small modification to certify connectivity between clusters. We say that
two clusters c, c′ are neighboring if there exist sensors u ∈ c, v ∈ c′ such that d(u, v) ≤ Rmin (we
say that u and v are the witnesses). For any two neighboring clusters, pick any two witnesses u, v
and increase their radius to Rmin. Let r̄ be the obtained radii assignment and Gr̄ its associated
network.

Observation 1. A cluster c can only have a constant number of neighboring clusters. Moreover,
the interference of a point p in Gr̄ can only be affected by sensors that are in the same or a
neighboring bucket of the one containing p.

Proof. First notice that c cannot be neighbor to another cluster of the same bucket (since it would
contradict with the definition of cluster). The distance between any two points of non-neighboring
buckets is larger than Rmin, hence two clusters can only be neighbors if they belong to adjacent
buckets. A bucket has 3d − 1 neighboring buckets (a constant for fixed dimension). By Lemma 1,
each such bucket can have a constant number of clusters, hence the total amount of neighboring
clusters of c is also bounded by a constant. The second claim is direct from the fact that no sensor
is assigned radius larger than Rmin in Gr̄.

Lemma 3. Any u, u′ ∈ S be two sensors such that r̄(u) = r̄(u′) = Rmin. u and u′ can send
messages to each other, even by only using edges present in Gr̄ ∩Gu.

Proof. By Lemma 2, there exist leaders ℓ, ℓ′ such that the edge uℓ is in Gr̄ ∩ Gu (analogously ℓ′

and the edge u′ℓ′). Hence, it suffices to connect ℓ and ℓ′. Let π = (ℓ = v0, . . . , vk = ℓ′) be a path
that connects them in Gu and traverses the minimum possible number of different clusters. Let
m be the total number different clusters of that the path π traverses, we will show our claim by
induction on m.

Consider first the case in which m = 0; that is all sensors vi belong to the same cluster c of a
bucket B. For any i ≤ k, let bi be the sub-bucket to which sensor vi belongs to. By construction
of the set of leaders, each time we have bi 6= bi+1, there exist two leaders ti and si+1 such that
d(ti, si+1) ≤ Rmin and belong to sub-buckets bi and bi+1, respectively. Since both ti and si+1

are leaders, we must have tisi+1 ∈ Gr̄ ∩ Gu. Our aim is to connect ℓ and ℓ′ by hopping through
sensors si and ti. In order to do so we must define si and ti for the case in which the path does
not change sub-bucket. Whenever bi = bi+1, we simply set ti := si+1 := si (we also define s0 = ℓ
and tk = ℓ′). By choice of the si and ti sensors, we always have siti ∈ Gr̄ ∩ Gu for all i ≤ k and
tisi+1 ∈ Gr̄ ∩Gu for all i < k. In particular, the path π′ = (ℓ = s0, t0, s1, t1, . . . , tk−1, sk, tk = ℓ′)
will be feasible in Gr̄ ∩Gu.

Assume now that the path π traverses different buckets. Let i+ 1 be the smallest index such
that vi+1 does not belong to the same cluster as ℓ. By induction, the subpaths (ℓ = v0, . . . vi) and
(vi+1, . . . , vk = ℓ′) are feasible, hence we must connect vi with vi+1.

Observe that the clusters containing vi and vi+1 are neighboring (since vi and vi+1 are witnesses
to this fact). By definition of r̄, there will exist two sensors w1, w2 that belong to the clusters of
vi and vi+1, (respectively), and that the edge w1w2 is present in Gr̄ ∩Gu. We again use induction
and obtain that there must exist paths π1 (resp. π2) connecting sensors vi and w1 (resp. vi+1 and
w2). Hence, by concatenating these two paths with the edge w1w2 we can connect ℓ with ℓ′.
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Lemma 4. Gr̄ is connected and has O(i) interference.

Proof. For any two sensors s, t ∈ S, let π = (s = v0, . . . , vk = t) be the shortest path connecting
them in Gr. If all edges vjvj+1 are present in Gr̄, the path π is feasible in Gr̄ for some j < k.
The only situation in which the edge vjvj+1 might not present in GĀ(S) is if the radius of vj or
vj+1 was reduced below d(vj , vj+1). By construction of the r̄ assignment, this can only happen if
d(vj , vj+1) > Rmin. In particular, we must have r̄(vj) = r̄(vj+1) = Rmin. In this case we can use
Lemma 3 to obtain connectivity between vj and vj+1 and proceed walking along π.

We must now show that the interference of Gr̄ is indeed O(i). Since no sensor is assigned
radius larger than Rmin, the interference of any point p can only be affected by sensors that are
in the same or a neighboring bucket of the one containing p. There are exactly 3d such buckets (a
constant for fixed dimension). Combining this fact with Lemma 1, we obtain that only a constant
number of buckets can affect to the interference of p. Hence, it suffices to see that a single cluster
c can only contribute a constant amount of additional interference.

Clearly, the sensors that satisfy r(s) = r̄(s) cannot contribute more than i interference to p,
hence we focus on the sensors of c whose radii was increased. By definition of r̄, this only happens
for the set Lc or sensors whose radius was increased to have connectivity with neighboring clusters.
By Lemma 2 and Observation 1, either case can only happen a constant number of times, hence
the claim is shown.

This completes the proof of Theorem 1. Combining this result with the GHUB network given
in [7] we obtain a method to construct a network with low interference and bounded radii.

Theorem 2. For any set S of n points in R
d, there exists a valid radii assignment of bounded

radius Rmin and O(
√
∆) interference (for d ≤ 2) or O(

√
∆ log∆) (otherwise) interference. More-

over, the bounded radius construction only adds an additional computation cost of T (n), where
T (n) is the time needed to compute the minimum spanning tree of a set of n points in R

d.

Proof. Our algorithm proceeds as follows:

1. Compute Rmin, partition the sensors of S into buckets and further split each bucket into
clusters.

2. For each cluster c apply the GHUG construction algorithm, capping the maximum radius
to Rmin.

3. For each cluster also compute its set of leaders and increase their radius to Rmin.

4. For any two neighboring clusters c and c′ pick two witnesses s ∈ c and s′ ∈ c′ and increase
their radii to Rmin.

Recall that Rmin is equal to the length of the longest edge in the Euclidean minimum spanning
tree, hence it can be computed in O(T (n)) time. Classifying the sensors of S into buckets can esily
be done in O(n logn) time for any fixed dimension. For each non-empty bucket B we compute the
minimum spanning tree of SB and delete the edges whose length is larger than Rmin. It is easy to
see that each edge removed will create an additional cluster inside the bucket. The total cost of
this operation is O(T (nB)), where nB is the number of points in SB. Since

∑

SB 6=∅ nB = n, the
total running time of the first step is bounded by O(T (n)).

Observe that the last two operations are very similar: in both cases we are given a collection
L of sets of sensors, and for each pair U, V ∈ L we must find two sensors u ∈ U, v ∈ V such that
d(u, v) ≤ Rmin (if any exists). Given a pair of sets U, V , we can check if pair of nearby sensors
exists by computing the minimum spanning tree of the set U ∪ V . One of the edges of the tree
will be the closest pair between sensors of U and V .

This operation must be repeated for every pair of sets in L, giving a total running time of
∑k

i=1

∑

j∈Cand(i) O(T (mi +mj)) = O(T (mi) + T (mj)), where mi is the size of the i-th set, k is

the total number of sets in the collection, and Cand(i) is the set of candidate sets of the i-th set
(i.e., sets for which there might exist sensors whose distance is at most Rmin). When computing
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leaders, the set Cand(i) is of constant size (because there are a constant number of sub-buckets).
Moreover, by Observation 1, any cluster can only be a candidate for a constant number clusters.
That is, each set appears a constant number of times in the above expression. In particular, the
above sum can be expressed as

∑k
i=1 O(1)× T (ni) = O(T (n)).

If we consider the asymmetric model, we can replace the GHUB construction and use the
all-to-one construction of [11] instead. By doing so, we can reduce the interference.

Corollary 1. Under the asymmetric model, the interference can be reduced to O(log∆).

Recall that, the all-to-one construction needs to assign large communication radius to a given
sensor (so that it can send messages to all other sensors of S). Moreover, the exact radii assignment
of a sensor would depend on non-local properties. The approach presented in here solves both
issues.

Remarks

The currently best known algorithms that compute the minimum spanning tree run in O(n log n)

time (for d = 2), O((n log n)4/3) (for d = 3) or O(n2− 2
(d/2+1)ǫ ) (for higher dimensions) [1]. The

time needed to construct the GHUB network is polynomial, but the exact cost depends on the
dimension and the computation model used (see more details in [7]). The all-to-one network can
also be constructed by adding several layers of the nearest neighbor graph, each time of smaller
size [11]. This graph can be computed in O(n log n) time for any fixed dimension [5, 10], hence
the dominating term is O(T (n)) in the asymmetric model.

As mentioned in the Introduction, the radius assigned to a sensor s in this algorithm only
depends on the sensors the bucket containing s and its neighboring buckets, regardless of which
network model that we use. As a result, each sensor can compute its communication radius using
of only local information, provided that the value of Rmin is known in advance. Unfortunately, the
value of Rmin is a global property that cannot be easily computed in a distributed environment.
Whenever this value is unknown, it can be replaced by any larger value (like for example the
largest possible communication radius). By doing so we retain the local construction property
and only increase the interference from O(

√
∆) or O(log∆) to O(

√
n) or O(log n), respectively.

4 Conclusion

Finding a method to approximate the minimum interference of any given problem instance by
a o(

√
∆) factor is one of the most important open problems in this field [3]. The techniques

introduced in this paper provide a small step towards this goal, since they tell us that it is
sufficient to construct such a network in a centralized fashion, assuming that the exact location of
all sensors is known.

The key property of our bounded radius approach is the fact that, for any cluster c, we can
construct a set of constant size that forms a connected dominating set of Gu[c]. Although the size
of this set is constant for fixed dimension, the exact value is quite large. Hence, a natural open
problem is to reduce the size of this set. For d = 2 our construction might create a set of 12 leaders
for a cluster, although a more intricate proof can show that 5 sensors are always sufficient and
sometimes necessary. On the negative side, we know that the exponential dependency on d cannot
be avoided: consider the case in which Rmin = 1 and there exists a cluster with many sensors
covering a unit hypercube. Any dominating set of that cluster must cover the whole cube. Since

the ratio between the volume of the unit cube and the volume of the unit ball is (d/2)!
πd/2 ≈

√
πddd/2

(2eπ)d/2
,

at least such many sensors will be needed to dominate the cluster.
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