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Abstract

The input of the Test Cover problem consists of a set V of vertices, and a collection
E = {E1, . . . , Em} of distinct subsets of V , called tests. A test Eq separates a pair vi, vj
of vertices if |{vi, vj} ∩ Eq| = 1. A subcollection T ⊆ E is a test cover if each pair vi, vj of
distinct vertices is separated by a test in T . The objective is to find a test cover of minimum
cardinality, if one exists. This problem is NP-hard.

We consider two parameterizations the Test Cover problem with parameter k: (a) decide
whether there is a test cover with at most k tests, (b) decide whether there is a test cover with
at most |V |−k tests. Both parameterizations are known to be fixed-parameter tractable. We
prove that none have a polynomial size kernel unless NP ⊆ coNP/poly. Our proofs use the
cross-composition method recently introduced by Bodlaender et al. (2011) and parametric
duality introduced by Chen et al. (2005). The result for the parameterization (a) was
an open problem (private communications with Henning Fernau and Jiong Guo, Jan.-Feb.
2012). We also show that the parameterization (a) admits a polynomial size kernel if the
size of each test is upper-bounded by a constant.

1 Introduction

In the Test Cover problem defined below we are given a set V = {v1, . . . , vn} of element called
vertices and a family E = {E1, . . . , Em} of distinct subsets of V called tests. We say that a test
Eq separates a pair vi, vj of vertices if |{vi, vj} ∩ Eq| = 1. A subset T of E is called a test cover
if for every pair of distinct vertices vi, vj there exists a test T ∈ T separating them.

TestCover(p)
Input: A set V = {v1, . . . , vn} of vertices, a family E = {E1, . . . , Em} of tests and an
integer p.
Task: Decide whether there exists a test cover with at most p tests.

The (optimization version of) Test Cover problem arises naturally in the following general
setting of identification problems: Given a set of items (i.e., vertices) and a set of binary at-
tributes that may or may not occur in each item, the aim is to find a minimum-size subset of
attributes (a minimum test cover) such that each items can be uniquely identified from the infor-
mation on the subset of attributes it contains. The Test Cover problem arises in fault analysis,
medical diagnostics, pattern recognition, and biological identification (see, e.g., [10, 11, 12]).

The TestCover(p) problem is NP-hard, as was shown by Garey and Johnson [8]. Moreover,
TestCover(p) is APX-hard [10]. There is an O(log n)-approximation algorithm for the problem
[12] and there is no o(log n)-approximation algorithm unless P=NP [10].

The generic parameterized version TestCover(p, k) of TestCover(p) is defined as follows.
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TestCover(p, k)
Input: A set V = {v1, . . . , vn}, a family E = {E1, . . . , Em} of subsets of V and two
integers p and k.
Parameter: k.
Task: Decide whether there exists a test cover with at most p tests.

In this paper, we study two parameterizations of TestCover: the standard parameteriza-
tion TestCover(k, k) and its dual1 TestCover(n− k, k). Both parameterizations are known
to be fixed-parameter tractable [5]. Fixed-parameter tractability of TestCover(k, k) is easy
to see using the fact that there is no test cover of size less than ⌈log n⌉ [10]. Indeed, if k < log n
then the corresponding instance of TestCover(k, k) is a No-instance, and if k ≥ log n then

n ≤ 2k and so m ≤ 22
k

allowing us to solve TestCover(k, k) by a brute force fixed-parameter
algorithm. The proof in [5] that TestCover(n − k, k) is fixed-parameter tractable is much
harder.

We first prove that TestCover(k, k) does not admit a polynomial kernel unless NP ⊆
coNP/poly. The latter is deemed unlikely as it is known to imply a collapse of the polynomial
hierarchy to its third level [14]. Note that our first result solves an open problem [6, 9]. Our
proof uses the cross-composition method recently introduced by Bodlaender et al. [2].

We show that TestCover(k, k) does admit a polynomial kernel if the size of each test is
bounded by a constant. This constraint is used in some practical applications of TestCover

[10]. We prove that TestCover(n − k, k) does not admit a polynomial kernel unless NP ⊆
coNP/poly. This result follows from our first result and a general result on nonexistence of
polynomial kernels in dual parameterized problems also obtained in our paper. We use the
notion of dual introduced by Chen et al. [4] as well as the cross-composition method.

Our paper is organized as follows. In the rest of this section we will give a couple of simple,
yet very useful, definitions on TestCover. In the next section we give basics on parameterized
algorithms and kernelization as well as on the cross-composition method. In Section 3, we prove
all our results. In Section 4 we pose some open problems.

A partial test cover T ′ to an instance of TestCover(p, k) is a subset of E of cardinality at
most p. We say that C ⊆ V is a class induced by a partial test cover T ′, if C is a maximal set
such that there does not exist a test in T ′ which separates two vertices of C. Notice that the
classes induced by every partial test cover form a partition of V and every test cover induces n
classes. For a positive integer p, let [p] = {1, 2, . . . , p}.

2 Fixed-Parameter Algorithms, Kernels and Cross-composition

Method

A parameterized problem P is a subset P ⊆ Σ∗×N over a finite alphabet Σ. P is fixed-parameter
tractable if the membership of an instance (x, k) of Σ∗×N in P can be decided by an algorithm
of runtime f(k)|x|O(1), where f is a function of the parameter k only (such an algorithm is a
fixed-parameter algorithm) [3, 7, 13]. Given a parameterized problem P , a kernelization of P
is a polynomial-time algorithm that maps an instance (x, k) to an instance (x′, k′) (the kernel)
such that (i) (x, k) ∈ P if and only if (x′, k′) ∈ P , (ii) k′ ≤ h(k), and (iii) |x′| ≤ g(k) for some
functions h and g. The function g(k) is called the size of the kernel. It is well-known [3, 7, 13]
that a decidable parameterized problem P is fixed-parameter tractable if and only if it has a
kernel. Polynomial-size kernels are of main interest, due to applications [3, 7, 13], but unfor-
tunately many fixed-parameter tractable problems have no such kernels unless coNP⊆NP/poly,
see, e.g., [1].

The following two definitions and Theorem 1 were given by Bodlaender et al. [2].

1See Definition 4 for a formal notion of parameterized duality.
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Definition 1 (Polynomial equivalence relation). An equivalence relation R on Σ∗ is called a
polynomial equivalence relation if the following two conditions hold:

• There is an algorithm that given two strings x, y ∈ Σ∗ decides whether x and y belong to
the same equivalence class in (|x|+ |y|)O(1) time.

• For any finite set S ⊆ Σ∗ the equivalence relation R partitions the elements of S into at
most (maxx∈S |x|)O(1) equivalence classes.

Definition 2 (Cross-composition). Let L ⊆ Σ∗ be a problem and let Q ⊆ Σ∗ × N be a pa-
rameterized problem. We say that L cross-composes into Q if there is a polynomial equivalence
relation R and an algorithm which, given t strings x1, . . . , xt belonging to the same equivalence
class of R, computes an instance (x∗, k∗) ∈ Σ∗ × N in time polynomial in

∑t
i=1 |xi| such that:

• (x∗, k∗) ∈ Q if and only if xi ∈ L for some 1 ≤ i ≤ t.

• k∗ is bounded by a polynomial in maxti=1 |xi|+ log t.

Theorem 1. If some problem L is NP -hard under Karp reductions and L cross-composes into
the parameterized problem Q then there is no polynomial kernel for Q unless NP ⊆ coNP/poly.

3 Results

Theorem 2. TestCover(k, k) does not admit a polynomial kernel, unless NP ⊆ coNP/poly.

Proof. We will use Theorem 1 to show the result, hence we need an NP -hard problem L which
cross-composes into TestCover(k, k). For this purpose, it is possible to use TestCover(p). An
instance of this problem is a triple (V, E , p). We say that two triples (V1, E1, p1) and (V2, E2, p2)
are equivalent if |V1| = |V2| and p1 = p2.

It is not difficult to see that this defines a polynomial equivalence relation on TestCover(p)
(see Definition 1). To see that the second condition of Definition 1 holds, observe that the
relation thus defined partitions a finite set S into at most O(n ·m) equivalence classes, assuming
that for every (V, E , p) ∈ S we have that |V | ≤ n and |E| ≤ m (since p ≤ |E|).

Consider now t instances Q1, . . . , Qt of TestCover(p), belonging to the same equivalence
class. For every i ∈ [t], let V = {v1, . . . , vn} be the set of vertices of Qi, Ei = {Ei

1, . . . , E
i
mi

}
its set of tests and p be the upper bound on the size of the solution. Let l = 2⌈(log t)/2⌉. We
will construct an instance Q∗ of TestCover(k, k) such that Q∗ has a solution of size at most
k = 2l + p if and only if at least one of Q1, . . . , Qt has a solution of size at most p. This will be
enough to prove our result (see Definition 2 and Theorem 1).

The vertex set of Q∗ is defined in the following way:

V (Q∗) = {v1, . . . , vn} ∪ (∪2l
j=1{yj , x

j
1, . . . , x

j
p}) ∪ {a1, . . . , al}.

The tests in Q∗ are defined as follows. Consider some i ∈ [t] and let (i1, . . . , il) be its binary
representation (e.g. if i = 11 and l = 6, (i1, . . . , il) = (1, 1, 0, 1, 0, 0)). For every i, consider the
following family of sets Si (where subscripts are taken modulo k):

Si =
{
{x1h, x

2
h+i1

, x3h, x
4
h+i2

, x5h, x
6
h+i3

, . . . , x2l−1
h , x2lh+il

} : h = 1, . . . , p
}
.

Define E(Q∗) = E∗ ∪ Ẽ1 ∪ · · · ∪ Ẽt, where

E∗ =
{
{aj , y2j−1, x

2j−1
1 , x2j−1

2 , x2j−1
3 , . . . , x2j−1

p }, {aj , y2j, x
2j
1 , x2j2 , x2j3 . . . , x2jp } : j ∈ [l]

}

and
Ẽi = {(S ∪ Ei

j) : j ∈ [mi], S ∈ Si}.
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This completes the definition of Q∗.
Assume that there is a solution to Q∗ using at most 2l+ p tests. Since ai and y2i−1 need to

be separated and similarly for ai and y2i for all i, all 2l tests in E∗ must be used (because they
are the only tests where ai, y2i−1 and y2i appear); notice also that they are enough to separate
them. Moreover, as every set in Ẽi (for all i) only intersects Xi = {xi1, x

i
2, . . . , x

i
p} in one vertex

and as all vertices in Xi have to be separated from yi, the tests not in E∗ all have to contain a
distinct vertex from Xi

2.
Consider now a test E in Ẽ =

⋃t
j=1 Ẽj. Its intersection with Xi ∪ Xi+1, for every i ∈

{1, 3, . . . , 2l − 1}, contains only vertices which are in S for some S ∈
⋃t

j=1 Sj .

Suppose S ∈ Sr for some r (this ensures that E ∈ Ẽr) and suppose that it is equal to

{x1h, x
2
h+r1

, . . . , x2l−1
h , x2lh+rl

},

where (r1, . . . , rl) is the binary representation of r and h ∈ [p].
The intersection with Xi ∪ Xi+1 is given by the black vertices in next figure if r i+1

2

= 0:

. . . . . .

. . . . . .

xi1 xi2 xih
xih+1 xip−1 xip

xi+1
1 xi+1

2 xi+1
h xi+1

h+1 xi+1
p−1

xi+1
p

If, on the contrary, r i+1

2

= 1, the intersection is given by the black vertices in next figure:

. . . . . .

. . . . . .

xi1 xi2 xih
xih+1 xip−1 xip

xi+1
1 xi+1

2 xi+1
h xi+1

h+1 xi+1
p−1

xi+1
p

These are the only possible types of intersection.
Notice that, if E is part of the solution, in order to cover all vertices in Xi ∪ Xi+1 (for every

i) it is possible to use only tests in Ẽr. Otherwise, if a test in Ẽs is used (with r 6= s), there
exists i∗ such that ri∗ 6= si∗ and it is impossible to cover all vertices in Xi∗ ∪ Xi∗+1. Therefore,
if there is a solution to Q∗ using 2l + p tests, then 2l tests are taken from E∗ and p tests from
Ẽr for some r. This ensures that Qr has a solution using at most p tests.

To prove the opposite direction, assume that Qr has a solution of size at most p. Using all
sets in E∗ and carefully choosing p sets from Ẽr

3, it is possible to obtain a solution to Q∗ with
at most 2l + p tests. This completes the proof.

Definition 3. The generic parameterized problem Test-r-Cover(p, k) is defined as TestCover(p, k),
except that for an instance (V, E , p, k) we have that r ≤ |V | and |E| ≤ r for every E ∈ E .

As the next theorem shows, this additional condition enables us to obtain a kernel which is
linear in the number of vertices in the case of Test-r-Cover(k, k).

2Notice that this ensures that a solution to Q∗ has at least 2l + p vertices. Therefore we are actually showing
that Q∗ has a solution of size exactly 4⌈(log t)/2⌉ + p if and only if at least one of Q1, . . . , Qt has a solution of
size at most p.

3The p tests from Ẽr have to contain the tests used in a solution to Qr and tests S which are chosen accordingly
to the binary representation of r, in order to cover all vertices in

⋃2l

j=1
Xj .
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Theorem 3. Test-r-Cover(k, k) admits a kernel with at most r · k − (⌊log r⌋ − 1) · r vertices.

Proof. Notice that s tests can create at most 2s classes: more specifically, adding a test to a
partial test cover which induces t classes produces a partial test cover with at most 2t classes.
This happens because in order to produce a new class, the test must contain a subset C ′ of
a class C such that C ′ is not empty and it does not coincide with C and if this happens for
every class, the number of classes doubles. At the same time, since every test contains at most
r vertices, this can happen with at most r different classes. Therefore, given a partial test cover
which induces t classes, adding a new test can create at most min{t, r} new classes. Using k
tests it is possible to create at most 2⌊log r⌋ + (k − ⌊log r⌋)r classes, since the first ⌊log r⌋ tests
can create at most 2⌊log r⌋ classes and every other test increases the number of classes by at most
r. It follows that we have a No-instance unless

n ≤ 2⌊log r⌋ + (k − ⌊log r⌋)r ≤ r + (k − ⌊log r⌋)r = kr − (⌊log r⌋ − 1)r.

Corollary 1. Test-r-Cover(k, k) admits a polynomial kernel when r is a constant.

Proof. Theorem 3 ensures the existence of a kernel with at most r · k− (⌊log r⌋− 1) · r vertices.
This means that the number m of tests is at most

r∑

s=1

(
rk

s

)
≤

r∑

s=1

(
erk

s

)s

∈ O(r(erk)r) = O(kr).

Corollary 2. Consider an instance (V, E , k) of TestCover(k, k) and let r = maxE∈E |E|. If
r ∈ O(n1−ε) for some ε > 0, then the problem admits a kernel which is polynomial in the
number of vertices.

Proof. By Theorem 3, n < kr. Now, for some positive constant c it holds that kr < kcn1−ε,
which ensures that nε < kc, that is n < (kc)

1

ε .

The proof of Theorem 2 can be modified to show the non-existence of a polynomial kernel
for the parameterized problem TestCover(n− k, k). However, it is possible to obtain this result
from a more general theorem. First of all, consider a definition of dual problem equivalent to
the one given by Chen et al. [4]:

Definition 4. Let P be a parameterized problem, i.e., P ⊆ Σ∗ × N. A mapping s : Σ∗ → N is
a size function for P if

• 0 ≤ k ≤ s(x) for every (x, k) ∈ P , and

• s(x) ≤ |x| for every x ∈ Σ∗.

The dual Pd of a problem P respectively to the size function s is the problem corresponding to
the language (i.e., the set of Yes-instances) Pd = {(x, s(x) − k) : (x, k) ∈ P}. Pd is also called
the s-dual of P .

Notice that the s-dual of the s-dual of a problem is again the original problem.

Theorem 4. Given a parameterized problem P , if P admits a cross-composition from a NP-hard
problem L, let (x, k) be the instance which is associated to the t strings x1, . . . , xt by the cross-
composition algorithm. If there exists a size function s(x) which is bounded by a polynomial
in maxti=1 |xi| + log t, then the s-dual problem Pd does not admit a polynomial kernel, unless
NP ⊆ coNP/poly.
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Proof. We will show that if the hypothesis hold, Pd admits a cross-composition from the same
problem L. Hence we conclude using Theorem 1. By Definition 2, we know that there exists i
such that xi ∈ L if and only if (x, k) ∈ P . By definition of s-dual problem, this is equivalent
to (x, s(x) − k) ∈ Pd. This provides a cross-composition for Pd, as long as the parameter
k′ = s(x) − k is a polynomial in maxti=1 |xi| + log t, that is as long as s(x) is a polynomial in
maxti=1 |xi|+ log t.

Now, notice that TestCover(n−k, k) is the s-dual problem of TestCover(k, k), with s(Q) = n.
Notice also that in Theorem 2, s(Q∗) = n + 2l · (k + 1) + l, which is a polynomial in n + l ≤
maxti=1 |Qi|+log t. Hence, the hypothesis of Theorem 4 holds and there is no polynomial kernel
for TestCover(n − k, k). Thus, we have the following:

Theorem 5. The problem TestCover(n−k, k) does not admit a polynomial kernel, unless NP ⊆
coNP/poly.

4 Open Problems

In Corollaries 1 and 2 we give sufficient conditions for the existence of kernels of polynomial
size and polynomial in the number of vertices, respectively. It would be interesting to obtain
extensions of the corollaries.
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