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Abstract

The Binary Jumbled String Matching problem is defined as: Given a string s over {a, b} of length
n and a query (x, y), with x, y non-negative integers, decide whether s has a substring t with
exactly x a’s and y b’s. Previous solutions created an index of size O(n) in a pre-processing step,
which was then used to answer queries in constant time. The fastest algorithms for construction
of this index have running time O(n2/ log n) [Burcsi et al., FUN 2010; Moosa and Rahman, IPL
2010], or O(n2/ log2 n) in the word-RAM model [Moosa and Rahman, JDA 2012]. We propose an
index constructed directly from the run-length encoding of s. The construction time of our index
is O(n+ ρ2 log ρ), where O(n) is the time for computing the run-length encoding of s and ρ is the
length of this encoding—this is no worse than previous solutions if ρ = O(n/ log n) and better if
ρ = o(n/ log n). Our index L can be queried in O(log ρ) time. While |L| = O(min(n, ρ2)) in the
worst case, preliminary investigations have indicated that |L| may often be close to ρ. Furthermore,
the algorithm for constructing the index is conceptually simple and easy to implement. In an
attempt to shed light on the structure and size of our index, we characterize it in terms of the
prefix normal forms of s introduced in [Fici and Lipták, DLT 2011].
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1. Introduction

Binary jumbled string matching is defined as follows: Given a string s over {a, b} and a query
vector (x, y) of non-negative integers x and y, decide whether s has a substring containing exactly
x a’s and y b’s. If this is the case, we say that (x, y) occurs in s. The Parikh set of s, Π(s), is the
set of all vectors occurring in s.

For one query, the problem can be solved optimally by a simple sliding window algorithm in
O(n) time, where n is the length of the text. Here we are interested in the indexing variant where
the text is fixed, and we expect a large number of queries. Recently, this problem and its variants
have generated much interest [4, 1, 2, 7, 8, 3, 5]. The crucial observation is based on the following
property of binary strings:

Interval Lemma. ([4]) Given a string s over Σ = {a, b}, |s| = n. For every m ∈ {1, . . . , n}:
if, for some x < x′, both (x,m − x) and (x′,m − x′) occur in s, then so does (z,m − z) for all z,
x < z < x′.

It thus suffices to store, for every query length m, the minimum and maximum number of a’s in
all m-length substrings of s. This information can be stored in a linear size index, and now any
query of the form (x, y) can be answered by looking up whether x lies between the minimum and
maximum number of a’s for length m = x+ y. The query time is proportional to the time it takes
to find x+ y in the index, which is constant in most implementations.

This index can be constructed naively in O(n2) time. In [1] and independently in [7], con-
struction algorithms were presented with running time O(n2/ log n), using reduction to min-plus
convolution. In the word-RAM model, the running time can again be reduced to O(n2/ log2 n),
using bit-parallelism [8]. More recently, a Monte Carlo algorithm with running time O(n1+ε) was
introduced [5], which constructs an approximate index allowing one-sided errors, with the proba-
bility of an incorrect answer depending on the choice of ε.

Any binary string s can be uniquely written in the form s = au1bv1au2bv2 · · · aurbvr , where the
ui, vi are non-negative integers, all non-zero except possibly u1 and vr. The run-length encoding
of s is then defined as rle(s) = (u1, v1, u2, v2, . . . , ur, vr). This representation is often used to
compress strings, especially in domains where long runs of characters occur frequently, such as the
representation of digital images, multimedia databases, and time series.

In this paper, we present the Corner Index L which, for strings with good run-length compres-
sion, is much smaller than the linear size index used by all previous solutions. It is constructed
directly from the run-length encoding of s, in time O(ρ2 log ρ), where ρ = |rle(s)|. The Corner In-
dex has worst-case size min(n, ρ2) (measured in the number of entries, which fit into two computer
words). We pay for this with an increase in lookup time from O(1) to O(log |L|) = O(log ρ).

In a recent paper [6], the prefix normal forms of a binary string were introduced. Given s of
length n, PNFa(s) is the unique string such that, for every 1 ≤ m ≤ n, its m-length prefix has
the same number of a’s as the maximum number of a’s in any m-length substring of s; PNFb(s)
is defined analogously. It was shown in [6] that two strings s and t have the same Parikh set if
and only if PNFa(s) = PNFa(t) and PNFb(s) = PNFb(t). From this perspective, our index can be
viewed as storing the run-length encodings of PNFa(s) and PNFb(s). This allows us a fresh view
on the problem, and may point to a promising way of proving bounds on the index size. Moreover,
our algorithm constitutes an improvement both for the computation and the testing problems on
prefix normal forms (see [6]) whenever rle(s) is short.
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i 0 1 2 3 4 5 6 7 8 9

bmin(i) 0 0 0 0 2 2 4 4 6 6

bmax(i) 3 3 5 5 5 7 8 9 9 9

Table 1: Functions bmin and bmax for the string s = aabababbaaabbaabbb.

The construction time of O(n + ρ2 log ρ), where O(n) is for computing rle(s) and O(ρ2 log ρ)
for constructing the Corner Index, is much better than the previous O(n2/ log n) time algorithms
for strings with short run-length encodings, and no worse as long as ρ = O(n/ log n). For strings
with good run-length compression, the increase in lookup time from O(1) to O(log |L|) is justified
in our view by the reduced size and construction time of the new index. Finally, our algorithm is
conceptually simple and easy to implement.

2. Preliminaries

A binary string s = s1s2 · · · sn is a finite sequence of characters from {a, b}. We denote the
length of s by |s|. For two strings s, t, we say that t is a substring of s if there are indices
1 ≤ i, j ≤ |s| such that t = si · · · sj . If i = 1, then t is called a prefix of s. We denote by |s|a (resp.
|s|b) the number of a’s (resp. b’s) in s. The Parikh vector of s is defined as p(s) = (|s|a, |s|b). We
say that a Parikh vector q occurs in string s if s has a substring t such that p(t) = q. The Parikh
set of s, Π(s), is the set of all Parikh vectors occurring in s.

The Interval Lemma from the Introduction implies that, for any binary string s, there are
functions F and f s.t.

(x, y) occurs in s if and only if f(x+ y) ≤ x ≤ F (x+ y), (1)

namely, for m = 0, . . . , |s|, F (m) = max{x | (x,m− x) ∈ Π(s)} and f(m) = min{x | (x,m− x) ∈
Π(s)}. This can be stated equivalently in terms of the minimum and maximum number of b’s in
all substrings containing a fixed number i of a’s. Let us denote by bmin(i) (resp. bmax(i)) the
minimum (resp. maximum) number of b’s in a substring containing exactly i a’s. Then

(x, y) occurs in s if and only if bmin(x) ≤ y ≤ bmax(x). (2)

The table of functions F and f in (1) is the index used in most algorithms for Binary Jumbled
String Matching [2, 7, 8], while that of functions bmin and bmax in (2) was used in [3]. Even
though the latter is always smaller, both are linear size in n. Note that one table can be computed
from the other in linear time (e.g. bmin(i) = min{m | F (m) = i} − i).

Example 1. Let s = aabababbaaabbaabbb. Then (3, 3) occurs in s while (5, 1) does not. We have
F (6) = 4 and f(6) = 2, bmin(3) = 0 and bmax(3) = 5. We give the full table of values of the two
functions bmin and bmax in Table 1.

3. The Corner Index

In Fig. 1, we plot both functions bmin and bmax for our example string. The x-axis denotes
the number of a’s and the y-axis the number of b’s. It follows from (2) that the integer points

3



no. a's

no. b's

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

s

bmin

bmax

Figure 1: The bmin and bmax functions for the string s = aabababbaaabbaabbb. Representing binary strings as walks
on the integer grid, s is indicated by a dashed line, while the functions bmin and bmax correspond to the prefix
normal forms of s; see Sec. 4 for more details.

within the shaded area correspond to the Parikh set of s. The crucial observation is: Since both
functions bmin and bmax are monotonically increasing step functions, it is sufficient to store those
points where they increase. These points are specially marked in Fig. 1.

Example 2. In our example, these points are, for bmin: {(3, 0), (5, 2), (7, 4), (9, 6)}, and for bmax:
{(0, 3), (2, 5), (5, 7), (6, 8), (7, 9)}.

Definition 1. We define the Corner Index for the Parikh set of a given binary string s as two
ordered sets Lmin and Lmax, where

Lmin = {(i, bmin(i)) | i = |s|a or bmin(i) < bmin(i+ 1)}, (3)

Lmax = {(i, bmax(i)) | i = 0 or bmax(i) > bmax(i− 1)}. (4)

The order is according to both components, since for any (x, y), (x′, y′) ∈ Lmin (or ∈ Lmax), we
have that x < x′ if and only if y < y′. Now for any x, we can recover bmin(x) from Lmin (resp.
bmax(x) from Lmax) by noting that

bmin(x) = bmin(xR), xR = min{x′ | x′ ≥ x,∃y′ : (x′, y′) ∈ Lmin}, (5)

bmax(x) = bmax(xL), xL = max{x′ | x′ ≤ x, ∃y′ : (x′, y′) ∈ Lmax}. (6)

3.1. Construction

To construct the Corner Index, we will use the run-length encoding of s, rle(s) =
(u1, v1, u2, v2, . . . , ur, vr). We refer to maximal substrings consisting only of a’s (resp. b’s) as a-runs
(resp. b-runs), and denote by ρ = |rle(s)|, thus 2r − 2 ≤ ρ ≤ 2r. It follows directly from the
definitions that

(x, y) ∈ Π(s) ⇒ ∀x′ ≤ x : bmin(x′) ≤ y and ∀x′ ≥ x : bmax(x′) ≥ y. (7)
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Algorithm Construct Lmin

1. input: rle(s) = (u1, v1, u2, v2, . . . , ur, vr)
2. for k from 1 to r
3. for i = 1 to r − k + 1
4. (x, y)← (ui + . . .+ ui+k−1, vi + . . .+ vi+k−2)
5. if not Lmin B (x, y)
6. then insert (x, y) into Lmin

7. for each (x′, y′) in Lmin s.t. (x, y) B (x′, y′),
8. delete (x′, y′) from Lmin

Figure 2: The algorithm computing Lmin.

Lemma 2. Let s be a binary string and (x, y) ∈ Π(s). Then there exists a substring t of s which
begins and ends with a full a-run such that p(t) = (x1, y1) and x1 ≥ x, y1 ≤ y. Similarly, there is a
substring t′ of s which begins and ends with a full b-run such that p(t′) = (x2, y2) and x2 ≤ x, y2 ≥ y.

Proof. Let w = si · · · sj be a substring of s such that p(w) = (x, y). If si = a, then extend w to the
left to the beginning of the a-run containing si; if si = b, then shrink w from the left to exclude all
b’s of the b-run containing si, likewise for sj . The substring t so obtained fulfils the requirements.
A substring t′ can be found analogously by extending b-runs and shrinking a-runs.

Lemma 2, together with (7), implies that it suffices to compute substrings beginning and ending
with full a-runs (for Lmin) and beginning and ending with full b-runs (for Lmax). The algorithm
generates the Parikh vectors of these substrings one by one, inspects them and incrementally
constructs Lmin and Lmax. For brevity of exposition, we only give the algorithm for constructing
Lmin; Lmax can be computed simultaneously. We need the following definition:

Definition 3. Let (x, y), (x′, y′) ∈ Π(s). We say that (x, y) dominates (x′, y′), denoted (x, y) B
(x′, y′), if (x, y) 6= (x′, y′), x ≥ x′ and y ≤ y′. For X ⊂ Π(s), (x, y) ∈ Π(s), define X B (x, y) iff
exists (x′, y′) ∈ X s.t. (x′, y′) B (x, y).

Since B is irreflexive and transitive, it is a (strict) partial order. Note that Lmin is the set of
maximal elements in the poset (Π(s),B). (Another relation I can be defined analogously s.t. the
set of maximal elements equals Lmax.)

We present the algorithm computing the index in Fig. 2. Recall that ui (resp. vi) is the
length of the i-th a-run (resp. b-run) of s. We compute, for every interval size k ≥ 1, and every
1 ≤ i ≤ r−k+1, the Parikh vector (x, y) of the substring starting with the ith a-run and spanning
k a-runs, and query whether (x, y) is dominated by some element in Lmin. Note that this is the
case if and only if (x, y) is dominated by the unique pair (x′, y′) where x′ = xR from (5). If no
element of Lmin dominates (x, y), then it is added to Lmin, and all elements of Lmin which (x, y)
dominates are removed from the list. These can be found consecutively in decreasing order from
the position where (x, y) was inserted. The algorithm is illustrated in Fig. 3 on our example string.
Top left gives the run-length encoding of s, with a-runs in the first row, and b-runs in the second.
On the right we list all pairs which need to be inspected, and on the left bottom the final list Lmin.
Elements which are inserted into Lmin and later removed are struck through.
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a 2 1 1 3 2
b 1 1 2 2 3

Lmin : (2, 0), (3, 0), (4, 2), (5, 2),

(6, 4), (7, 4), (9, 6)

k

1 (2, 0)(1, 0)(1, 0)(3, 0)(2, 0)
2 (3, 1)(2, 1)(4, 2)(5, 2)
3 (4, 2)(5, 3)(6, 4)
4 (7, 4)(7, 5)
5 (9, 6)

Figure 3: Computation of Lmin for the example s = aabababbaaabbaabbb.

3.2. Analysis

The number of entries of each list is upper bounded by min{|s|a, |s|b,
(
r+1
2

)
}, thus the total size

of the Corner Index is O(min(n, ρ2)). The query time is O(log |L|) = O(log ρ).
The working space of the construction algorithm is the maximum size Lmin reaches during the

algorithm, which is at most
(
r+1
2

)
= O(ρ2). For the construction time, note that O(ρ2) pairs have

to be inspected. For each, we have to decide whether it is dominated by an element in Lmin; this
query amounts to finding xR from (5) in Lmin, in O(log ρ) time. Insertion of an element can cause
more than one deletion in the list; however, since each element is deleted at most once, we have
amortized time O(log ρ) per element, and thus altogether O(ρ2 log ρ) time for the construction
algorithm.

Note that Lmin can be constructed by inspecting the
(
r+1
2

)
pairs in an arbitrary order, although

our bound on the construction time assumes that the pairs are generated in constant time. We
summarize:

Theorem 4. Queries for the Binary Jumbled String Matching problem can be answered in O(log ρ)
time, using an index of size O(min(ρ2, n)), where n is the length of the text and ρ the length of its
run-length encoding. The index can be constructed in O(n+ ρ2 log ρ) time from the string s.

4. Prefix Normal Forms

We recall the definitions of rank and select (cf. [9]). Given a binary string s, we denote, for
c ∈ {a, b}, by rankc(s, i) = |s1 · · · si|c, the number of c’s in the prefix of length i of s, and by
selectc(s, i) the position of the i’th c in s, i.e., selectc(s, i) = min{k : |s1 · · · sk|c = i}.

It is possible [6] to associate to any binary string s a unique string s′ such that for all 0 ≤ i ≤ |s|,
Fs(i) = Fs′(i) = ranka(s′, i), i.e., for any length i, the number of a’s in the prefix of s′ of length
i equals the maximum number of a’s in any substring of s of length i. The string s′ is called
the prefix normal form of s with respect to a, denoted PNFa(s); the prefix normal form w.r.t. b,
PNFb(s), is defined analogously.

Example 3. For our string s = aabababbaaabbaabbb, the prefix normal forms are

PNFa(s) = aaabbaabbaabbaabbb, and (8)

PNFb(s) = bbbaabbaaabbababaa. (9)

By definition, bmin(i) is the minimum number of b’s in a prefix of PNFa(s) containing exactly
i a’s, and bmax(i) the maximum number of b’s in a prefix of PNFb(s) containing exactly i a’s. So
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we have:

F (i) = ranka(PNFa(s), i) for 0 ≤ i ≤ |s|, (10)

bmin(i) = selecta(PNFa(s), i)− i for 0 ≤ i ≤ |s|a, and (11)

bmax(i) =

{
selecta(PNFb(s), i+ 1)− (i+ 1) for 0 ≤ i < |s|a,
|s|b for i = |s|a.

(12)

In fact, if we represent binary strings by drawing a horizontal unit line segment for each a and
a vertical one for each b, then PNFa(s) is represented by function bmin, and PNFb(s) by function
bmax, see Fig. 1.

Moreover, the run-length encoding of PNFa(s) contains the same information as the list Lmin

output by our algorithm: Indeed, let rle(PNFa(s)) = (u′1, v
′
1, u
′
2, v
′
2, . . . , u

′
r′ , v

′
r′). Then, setting

pm =
∑m

i=1 u
′
i and qm =

∑m
i=1 v

′
i, one has

Lmin = {(pm, qm−1) | m = 1, . . . , r′}. (13)

In particular, |Lmin| = 1
2 |rle(PNFa(s))|, and this gives a bound on the size of the output in

terms of the prefix normal form.

5. Open problems

We conclude with some open problems. First, we are interested in tighter bounds on the size
of the Corner Index in terms of ρ, the length of the run-length encoding of the input string—our
preliminary experiments on random strings suggest that the size of the index may often be close
to ρ. Second, how much working space is required by our algorithm: in our experiments it was
rare for the maximal size of the index during construction to exceed the final index size. Hopefully
this working space can be bounded by making use of the structure of the posets (Π(s),B) and
(Π(s),I) introduced in Sec. 3. Third, does the number of maximal pairs in these posets (which
is the total length of the run-length encodings of the two PNFs) constitute a lower bound on the
size of any index for the Binary Jumbled String Matching problem? Better understanding these
posets could also lead to an improvement of our algorithm’s running time: if we could characterize
maximal pairs, it may no longer be necessary to inspect all possible pairs.
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