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bLoránd Eötvös University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary

Abstract

We prove several combinatorial properties of suffix arrays, including a characterization
of suffix arrays through a bijection with a certain well-defined class of permutations. Our
approach is based on the characterization of Burrows-Wheeler arrays given in [1], that
we apply by reducing suffix sorting to cyclic shift sorting through the use of an additional
sentinel symbol. We show that the characterization of suffix arrays for a special case of
binary alphabet given in [2] easily follows from our characterization. Based on our results,
we also provide simple proofs for the enumeration results for suffix arrays, obtained in [3].
Our approach to characterizing suffix arrays is the first that exploits their relationship
with Burrows-Wheeler permutations.
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1. Introduction

Suffix array is a very popular data structure in string algorithms, both in theoretical
studies and practical applications, that has been designed as a space-efficient alternative
to suffix trees [4, 5]. With the discovery of linear-time construction algorithms for suffix
arrays [6, 7, 8], this data structure received an increasing attention during the last decade.
A good deal of work has been devoted to improving the practical efficiency of suffix arrays.

A suffix array for a string of length n is essentially a permutation of length n cor-
responding to the starting positions of all suffixes sorted lexicographically. Obviously,
if the alphabet has a fixed size k < n, then only a proper subset (at most kn) of all n!
permutations are suffix arrays for some word over this alphabet. A main motivation of
this paper is to provide a characterization for suffix array permutations for bounded-size
alphabets.

Our results take advantage of a very close relation between suffix arrays and the
Burrows-Wheeler transform [9]. The Burrows-Wheeler transform of a string is a permu-
tation of string letters which allows the string to be effectively reconstructed. Among
other applications, it is the basis for many compact text indexes that have been intensively
studied and used in practical applications (see e.g. [10] and references therein).

Crochemore et al. [1] pointed out a very nice characterization of Burrows-Wheeler
arrays, which are close relatives of suffix arrays. This characterization, attributed to
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Gessel and Reutenauer [11], uses the key notion of linking permutation which is similar
to (but different from) the notion of Ψ-function studied for suffix arrays [12]. We show
that the approach of [1] can be successfully applied to obtain characterization results for
suffix arrays, using a relation between orderings of suffixes and cyclic shifts.

As far as related works are concerned, He at al. [2] provided a characterization of
suffix arrays for the case of binary alphabet (k = 2) and an assumption that the terminal
sentinel symbol is ranked between the two main symbols in the alphabet ordering. We
show that the characterization of [2] easily follows from the characterization that we
propose in this paper.

In [3], Schürmann and Stoye prove several counting results for suffix arrays and
corresponding strings. They use a characterization of suffix array permutations through
Ψ-functions, that they call R+-arrays, which are mappings from [1, n] to [0, n]. A crucial
parameter in countings is the number of descents in R+-arrays, directly related to the
minimal alphabet size on which the corresponding suffix array can be realized (see also
[13]). Compared to our approach, the important difference is that the set of R+-arrays
is not characterized, while the set of linking permutations admit a neat combinatorial
characterization as permutations with only one orbit. This allows us to provide a bijection
between suffix arrays and a certain well-defined class of permutations. To demonstrate
the usefulness of our approach, we obtain much simpler proofs of counting theorems
from [3]. Our approach to characterizing suffix arrays is the first that exploits their
relationship with Burrows-Wheeler permutations.

2. Preliminaries

In what follows, Σ = {a1, a2, . . . , ak} is an ordered alphabet of size k, where a1 < a2 <
· · · < ak. The set of all permutations π = π(1)π(2) . . . π(n) of length n is denoted by Sn,
and id denotes the identity permutation 1 2 . . . n. The composition of permutations σ
and π is denoted πσ, i.e., (πσ)(i) = π(σ(i)). Throughout the paper, we assume that the
addition (subtraction) of a constant value to a permutation value verifies the identities
n + 1 ≡ 1, 1 − 1 ≡ n. In other words, π(i) + k = ((π(i) − 1 + k) mod n) + 1. For
a permutation π ∈ Sn, we let π + k, k ∈ [1, n], stand for the permutation defined by
(π + k)(i) = π(i) + k. Note that π + k = (id+k)π. The permutation (π − k) is defined
similarly.

Definition 1 (suffix array). Given a word w = w1w2 . . . wn on alphabet Σ, its suffix
array is a permutation π such that π(i) = j iff the suffix wj . . . wn is the ith in the
lexicographic ordering of all suffixes of w.

For example, the suffix array of babba is 5 2 4 1 3.

Definition 2 (primitive word). A word u ∈ Σ+ is called primitive if it is not a proper
power of another word, i.e., u = vn, v ∈ Σ+, implies n = 1.

Primitive words are exactly those words whose cyclic shifts are all distinct. There-
fore, for a primitive word, we can consider the permutation defined by the lexicographic
ordering of its cyclic shifts. We call this permutation the Burrows-Wheeler array because
of its direct relation to the Burrows-Wheeler transform [9].
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Definition 3 (BW-array). Given a primitive word w = w1 . . . wn, its Burrows-Wheeler
array (hereafter BW-array) is a permutation π such that π(i) = j iff the word wj . . . wnw1 . . . wj−1

is the ith in the lexicographic ordering of all cyclic shifts of w.

For example, the BW-array of bbaba is 3 5 2 4 1.
We write Sc

n for the set of all permutations of Sn with one orbit. The following
notion has proved to be very helpful for characterizing BW-arrays [11, 1]. It is related
to Ψ-functions [12] or R+-arrays [3] defined on suffix arrays, but defines a mapping on
permutations.

Definition 4 (linking permutation, linking mapping). Let π ∈ Sn. The linking permu-
tation of π is the permutation ϕ = π−1(π + 1) ∈ Sc

n. The mapping π 7→ ϕ is called the
linking mapping, and is denoted by Φ.

As an example, the linking permutation of 5 2 4 1 3 is 4 5 1 2 3. Observe that ϕ ∈ Sc
n

follows from ϕ(π−1(i)) = π−1(i+1), where n+1 ≡ 1. The linking permutation of a BW-
array gives the ranks of the consecutive shifts in the lexicographic order. Furthermore,
note that if π(1) and ϕ = Φ(π) are known, then one can reconstruct π by iterating
π(ϕ(i)) = π(i) + 1 starting with i = 1.

Definition 5. For two permutations π and σ of Sn, define π ∼ σ if and only if there
exists k ∈ [1, n] such that σ = π + k.

It is easily seen that ∼ is an equivalence relation on Sn.

Proposition 1. Φ is well-defined on Sn/∼ and bijective from Sn/∼ to Sc
n.

Proof. We first show that Φ(π) = Φ(σ) if π ∼ σ. Let σ = π + k. Then, Φ(π) =
π−1(π + 1) = π−1(((π + k) + 1) − k) = π−1(id−k)((π + k) + 1). Observe now that
(π + k)−1 = π−1(id−k). Therefore, Φ(π) = (π + k)−1((π + k) + 1) = Φ(π + k) = Φ(σ).
This shows that Φ is well-defined on Sn/∼.

Second, we can uniquely determine π from Φ(π) and π(1), and hence Φ is injective on
Sn/∼. The number of ∼-equivalence classes is (n − 1)! = |Sc

n|. Therefore, the mapping
is a bijection.

Definition 6 (permutation descent). Let π ∈ Sn. We say that i ∈ [1, n− 1] is a descent
of π if and only if π(i) > π(i + 1). The set of all descents of π is denoted D(π).

The following theorem from [1] provides a nice characterization of BW-arrays through
the linking mapping. It will play a central role in our study.

Theorem 1 ([1]). Let ri ≥ 0, 1 ≤ i ≤ k, be integers such that
∑k

i=1 ri = n. A
permutation π ∈ Sn is the BW-array of a primitive word w ∈ Σn with ri occurrences of
letter ai, 1 ≤ i ≤ k, if and only if D(Φ(π)) ⊆ {r1 , r1+r2 , . . . , r1+ · · ·+rk−1}. Moreover,
in this case π is the BW-array of exactly one such word.

3. Characterization of suffix arrays

In this section, we state our characterization theorems for suffix arrays: Theorems 4,
5 and 6. We use a reduction of suffix sorting to cyclic shift sorting by appending a
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sentinel symbol to the end of the word, and thereby reduce the characterization of suffix
arrays to the characterization of BW-arrays.

Consider a symbol ♯ /∈ Σ, and the alphabet Σ′ = {♯, a1, a2, . . . , ak} with ♯ < a1 <
a2 · · · < ak. We will examine the suffix arrays of words w♯ for w ∈ Σn. The following
proposition is obvious.

Proposition 2. There is a one-to-one correspondence between the suffix arrays of w ∈
Σn and the suffix arrays of w′ ∈ Σn♯. If σ ∈ Sn is the suffix array of w, then π ∈ Sn+1

is the suffix array of w♯ if and only if π = (n+ 1)σ(1)σ(2) . . . σ(n).

The following proposition shows, that for words in Σn♯, cyclic shift sorting is equiv-
alent to suffix sorting. Note that this property remains true even if we do not assume
that ♯ is the smallest element in the ordering of Σ ∪ {♯}. This will be important later.

Proposition 3. Let w′ = w♯, where w ∈ Σ∗, ♯ /∈ Σ and the ordering of Σ ∪ {♯}
is arbitrary. Then w′ is primitive, hence the order of its cyclic shifts is well-defined.
Moreover the order of the cyclic shifts of w♯ coincides with the order of the suffixes of
w♯.

Proof. If w′ = uk for some word u and a k > 1, then k would divide the number of
occurrences of ♯. Therefore w′ is primitive.

As w′ has only one occurrence of ♯, then in comparing two different cyclic shifts we
necessarily compare ♯ with some other character. This means that the lexicographic
order of two cyclic shifts is decided no later than at the position of the first ♯. Therefore
if we leave out the characters after the ♯ in both shifts, we get the same ordering.

Now, we give two theorems characterizing the permutations that are suffix arrays for
some word w♯ with w ∈ Σn.

Theorem 2. Let ri ≥ 0, 1 ≤ i ≤ k, be integers such that
∑k

i=1 ri = n. A permutation
π ∈ Sn+1 is the suffix array of a word w♯ with w ∈ Σn with ri occurrences of the letter
ai, 1 ≤ i ≤ k, if and only if D(Φ(π)) ⊆ {1, 1 + r1, 1 + r1 + r2, . . . , 1 + r1 + · · · + rk−1}
and π(1) = n+ 1. Moreover, in this case, π is the suffix array of exactly one such word.

Proof. According to Theorem 1, π ∈ Sn+1 is the BW-array of a primitive word w ∈
(Σ ∪ ♯)n+1 which has ri occurrences of letter ai and one occurrence of symbol ♯, if and
only if the first condition is satisfied, and in this case there is only one such primitive
word. Here the primitivity is immediate, since we have only one occurrence of ♯. Since
♯ is the smallest letter, condition π(1) = n+ 1 is necessary and sufficient for ♯ to be the
last letter. Finally the BW-array coincides with the suffix array on the class of words
type w♯, by Proposition 3.

From Theorem 2, we can easily deduce the following theorem:

Theorem 3. A permutation π ∈ Sn+1 is the suffix array of a word w♯ where w ∈ Σn if
and only if (i) | D(Φ(π)) \ {1}| ≤ k − 1, and (ii) π(1) = n+ 1.

Proof. Let π ∈ Sn+1 be the suffix array of a word w♯ for w ∈ Σn. Assume w has ri ≥ 0
occurrences of letter ai for each i ∈ [1, k]. Then conditions (i) and (ii) follow immediately
from Theorem 2. Conversely, let D(Φ(π)) \ {1} = {d1, d2, . . . , dℓ} for ℓ ≤ k − 1. Then
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for r1 = d1 − 1, r2 = d2 − d1, . . . , rℓ = dℓ − dℓ−1, rℓ+1 = . . . = rk−1 = 0, we have
D(Φ(π)) ⊆ {1, 1+r1, 1+r1+r2, . . . , 1+r1+· · ·+rk−1}. π(1) = n+1 is also satisfied. Then,
by Theorem 2, there is a word w♯ with the corresponding numbers of letter occurrences
that has π as its suffix array.

Now we provide a characterization of suffix arrays for the case where we do not assume
a sentinel symbol at the end of the word. Proposition 2 combined with Theorem 2 and
Theorem 3 respectively imply the following results.

Theorem 4. Let ri ≥ 0, 1 ≤ i ≤ k, be integers such that
∑k

i=1 ri = n. A permutation
π ∈ Sn is the suffix array of a word w ∈ Σn with ri occurrences of the letter ai, 1 ≤ i ≤ k,
if and only if, for π′ = (n + 1)π(1) . . . π(n), D(Φ(π′)) ⊆ {1, 1 + r1, 1 + r1 + r2, . . . , 1 +
r1 + · · ·+ rk−1}. Moreover, in this case π is the suffix array of exactly one such word.

Theorem 5. A permutation π ∈ Sn is the suffix array of some word w ∈ Σn if and only
if, for π′ = (n+ 1)π(1) . . . π(n), we have | D(Φ(π′)) \ {1}| ≤ k − 1.

Finally we give a result stating a bijection between the suffix arrays over an alphabet
Σ and a certain set of permutations.

Theorem 6. For a permutation π ∈ Sn, let π′ = (n + 1)π(1) . . . π(n). The mapping
π 7→ Φ(π′) is a bijection between the suffix arrays of words w ∈ Σn and the permutations
ϕ ∈ Sc

n+1 with | D(ϕ) \ {1}| ≤ k − 1. Moreover, given such a ϕ ∈ Sc
n+1, we can easily

compute the corresponding suffix array π as follows: π−1(i) = ϕi(1)−1 for each i ∈ [1, n].

Proof. Let us denote the ∼ equivalence class of a σ ∈ Sn+1 by [σ]. The mapping f :
Sn → Sn+1/ ∼ defined by f(π) = [π′] is a bijection between Sn and Sn+1/ ∼. Φ is
bijective from Sn+1/∼ to Sc

n+1, and hence π 7→ Φ(π′) is a bijection from Sn to Sc
n+1.

According to Theorem 5, a permutation π ∈ Sn is a suffix array of some word in Σn if
and only if, for its its image Φ(π′), | D(Φ(π′)) \ {1}| ≤ k − 1. Then it follows that the
restriction of the mapping to the set of suffix permutations gives a bijection into the set
of permutations ϕ ∈ Sc

n+1 with | D(ϕ) \ {1}| ≤ k − 1.
As for the computation of the inverse mapping, we know that (π′)−1(n + 1) = 1

and that Φ(π′)((π′)−1(i)) = (π′)−1(i + 1). Therefore, if ϕ = Φ(π′), then π−1(i) =
(π′)−1(i)− 1 = ϕi(1)− 1 for all i ∈ [1, n].

4. Relation to the characterization of He et al

He et al. [2] proposed a characterization of suffix arrays for a binary alphabet Σ =
{a, b} in the special case where the sentinel character ♯ is ranked between the characters
of Σ, i.e., a < ♯ < b. In this case, the lexicographic order of suffixes of w can be different
from the lexicographic order of the corresponding suffixes of w♯, therefore this definition
gives a slightly different suffix array notion.

In this section, we elucidate how the characterization of [2] is related to our charac-
terizations given in Section 3. In particular, we show that our approach yields a simpler
characterization that implies the result of [2]. Before describing the characterization
of [2], we show that Theorem 1 allows us to obtain a characterization of suffix arrays
for this kind of alphabet ordering as well, similarly to the usual ordering of the previous
section.
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Theorem 7. A permutation π ∈ Sn+1 is the suffix array of a word w♯ with w ∈ {a, b}n

and a < ♯ < b if and only if D(Φ(π)) ⊆ {π−1(n+ 1)− 1, π−1(n+ 1)}.

Proof. Let π ∈ Sn+1. By Proposition 3, π is the suffix array of w♯ if and only if it is the
BW-arrays of w♯. Therefore it is enough to prove the theorem for BW arrays instead of
suffix arrays.

We first show the ’only if’ part. Observe that if π is the BW array of w♯, then
wπ(i) = a for i < π−1(n + 1), and wπ(i) = b for i > π−1(n + 1). Therefore w has
π−1(n+ 1)− 1 occurrences of a, 1 occurrence of ♯ and n+1− π−1(n+1) occurrences of
b. By Theorem 1, we immediately obtain D(Φ(π)) ⊆ {π−1(n+ 1)− 1, π−1(n+ 1)}.

We now prove the ’if’ part. Suppose that D(Φ(π)) ⊆ {π−1(n + 1) − 1, π−1(n + 1)}.
From Theorem 1 there exists exactly one word w′ ∈ {a, ♯, b}n+1 that has π−1(n+ 1)− 1
occurrences of a, 1 occurrence of ♯ and n + 1 − π−1(n + 1) occurrences of b and which
has π as BW array. From w′

π(1) ≤ w′

π(2) ≤ · · · ≤ w′

π(n+1), this word is the following:

w′

π(i) = a for i < π−1(n+1), w′

π(π−1(n+1)) = w′

n+1 = ♯, and w′

π(i) = b for i > π−1(n+1).

We can see, that w′ = w♯ where w ∈ {a, b}n, therefore we have the sufficiency of the
condition.

Now, we repeat the characterization given by He et al. [2]. We need some additional
definitions.

Definition 7 (Ascending-to-max [2]). A permutation π ∈ Sn+1 is ascending-to-max if
and only if, for every i ∈ [1, n− 1], we have

(a) if π−1(i) < π−1(n+ 1), π−1(i+ 1) < π−1(n+ 1), then π−1(i) < π−1(i+ 1), and

(b) if π−1(i) > π−1(n+ 1), π−1(i+ 1) > π−1(n+ 1), then π−1(i) > π−1(i+ 1).

Definition 8 (Non-nesting [2]). A permutation π ∈ Sn+1 is non-nesting if and only if,
for each i, j ∈ [1, n] such that π−1(i) < π−1(j), if

(a) π−1(i) < π−1(i+ 1) and π−1(j) < π−1(j + 1), or

(b) π−1(i) > π−1(i+ 1) and π−1(j) > π−1(j + 1),

then π−1(i + 1) < π−1(j + 1).

The characterization of [2] is as follows.

Theorem 8 ([2]). A permutation π ∈ Sn+1 is the suffix array of a word w♯ with w ∈
{a, b}n and a < ♯ < b if and only if it is both ascending-to-max and non-nesting.

We now show that the condition of Theorem 8 is equivalent to that of Theorem 7. Let
ϕ = Φ(π). We have ϕ(π−1(i)) = π−1(i + 1). Therefore, the ascending-to-max property
reduces to i < ϕ(i) for i ∈ [1, π−1(n+1)− 1], and i > ϕ(i) for i ∈ [π−1(n+1)+ 1, n+1].
As for the non-nesting property, we have the following: for i, j ∈ [1, n] \ {π−1(n+ 1)}, if
i < ϕ(i) and j < ϕ(j), or i > ϕ(i) and j > ϕ(j), then i < j implies ϕ(i) < ϕ(j).

We show that the two conditions together are equivalent to the condition of Theo-
rem 7. The two conditions together trivially imply the condition of Theorem 7. Con-
versely, suppose that D(Φ(π)) ⊆ {π−1(n + 1) − 1, π−1(n + 1)}. ϕ has one orbit, and
hence ϕ(1) > 1. If for some j ∈ [1, n] we have ϕ(j) > j and ϕ(j + 1) < j + 1, then j is a
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descent. Hence for i ∈ [1, π−1(n+1)−1], i < ϕ(i). Similarly,for i ∈ [π−1(n+1)+1, n+1],
i > ϕ(i). From D(Φ(π)) ⊆ {π−1(n + 1) − 1, π−1(n + 1)} it follows that ϕ is monotone
on [1, π−1(n+1)− 1] and on [π−1(n+1)+ 1, n+1], and hence the non-nesting property
is also satisfied.

5. Enumerations

Our characterization theorems from Section 3 can also be used to count objects related
to suffix arrays. Schürmann and Stoye [3] obtained some counting results using “direct”
combinatorial considerations. Here we give shorter proofs of these results, based on
bijections provided by Theorems 4-6 from Section 3. The underlying ideas of the proofs
are the same as in [3], the simplification is due to the more simple characterization of
suffix arrays.

The following enumerations have been studied in [3].

(i) For a permutation π ∈ Sn, count the number of words of length n over an alphabet
of size k that have π as their suffix array,

(ii) For a permutation π ∈ Sn, count the number of words of length n over an alphabet
of size k, that have at least one occurrence of each letter and have π as their suffix
array,

(iii) Count the number of permutations π ∈ Sn that are suffix arrays of some word over
an alphabet of size k.

We start with question (i).

Theorem 9 ([3]). For a permutation π ∈ Sn, let π
′ = (n+1)π(1) . . . π(n). The number

of words of length n over an alphabet of size k having π as their suffix array is

(
n+ k − 1− |D(Φ(π′)) \ {1}|

k − 1− |D(Φ(π′)) \ {1}|

)

.

Proof. Theorem 4 states that if ri ≥ 0 for i = 1 . . . k,
∑k

i=1 ri = n, and

D(Φ(π′)) ⊆ {1, 1 + r1, 1 + r1 + r2, . . . , 1 + r1 + · · ·+ rk−1}, (1)

then there is exactly one word w with ri occurrences of ai that has π as its suffix
array. Therefore, we need to count the number of tuples (r1, . . . , rk) (Parikh vectors)
that satisfy (1) given a permutation π′ = (n + 1)π(1) . . . π(n). We represent a tuple

(r1, . . . , rk),
∑k

i=1 ri = n, as a sequence of n dots divided into k (possibly empty) groups
separated by k − 1 separators:

(r1, . . . , rk),
∑

ri = n ↔ ◦ · · · ◦
︸ ︷︷ ︸

r1

| ◦ · · · ◦
︸ ︷︷ ︸

r2

| . . . | ◦ · · · ◦
︸ ︷︷ ︸

rk

(2)

Clearly, this representation is a bijection.
If i > 1 is a descent of Φ(π′), there must be a separator between the (i − 1)-th and

the i-th dots. This defines the placement of | D(Φ(π′)) \ {1}| separators. The remaining

7



(k − 1 − |D(Φ(π′)) \ {1}|) separators can interleave the n dots arbitrarily. This can be
done in

(
n+ k − 1− |D(Φ(π′)) \ {1}|

k − 1− |D(Φ(π′)) \ {1}|

)

=

(
n+ k − 1− |D(Φ(π′)) \ {1}|

n

)

ways. It is easy to get convinced that the construction provides a bijection with the
considered set of tuples. The result follows.

Note that if k− 1 < | D(Φ(π′)) \ {1}|, there is no word on an alphabet of size k which
has π as its suffix array. This is confirmed by Proposition 9, as

(
m
n

)
= 0 for m < n. The

following proposition from [3] answers question (ii).

Theorem 10 ([3]). For a permutation π ∈ Sn, let π
′ = (n+1)π(1) . . . π(n). The number

of words of length n over an alphabet of size k that have at least one occurrence of each
of the k letters and have π as their suffix array is

(
n− 1− |D(Φ(π′)) \ {1}|

k − 1− |D(Φ(π′)) \ {1}|

)

.

Proof. We modify the proof of Proposition 9 to insure that that each letter occurs at
least once. We cannot have two adjacent separators, and we cannot start or end with
a separator. We then have to distribute k − 1 separators among n − 1 possible places
between the circles. Like in the proof of Proposition 9, the place of | D(Φ(π′)) \ {1}|
separators is determined by π′, and the remaining (k − 1− |D(Φ(π′)) \ {1}|) separators
are distributed among (n− 1− |D(Φ(π′)) \ {1}|) remaining places. This yields the count
of the Theorem.

Finally, we give a proof for question (iii), based on the results of Section 3. Let
〈n
d

〉

denote the Eulerian number, i.e. the number of permutations of [1, n] with exactly d
descents.

Theorem 11 ([3]). The number of permutations π ∈ Sn that are suffix arrays of a word

w ∈ Σn with |Σ| = k is

k−1∑

d=0

〈
n
d

〉

.

Proof. According to Theorem 6, there is a bijection between the suffix arrays of words
w ∈ Σn and the permutations ϕ ∈ Sc

n+1 such that | D(ϕ)\ {1}| ≤ k− 1. We then have to
count the number of such permutations. Let P (n, d) denote the number of permutations
ϕ ∈ Sc

n+1 with | D(ϕ) \ {1}| = d. To prove the theorem, we show that P (n, d) is equal to

the Eulerian number
〈
n
d

〉

.

The proof is by induction on n. Trivially, P (1, 0)=1=
〈
1
0

〉
(the only good permutation

is π = 2 1), and P (1, d)=0=
〈
1
d

〉
when d ≥ 1. We now show that P (n, d) = (d+1)P (n−

1, d)+(n−d)P (n−1, d−1), thereby proving that P (n, d) =
〈
n
d

〉

. For the inductive step,
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1 2 3 4

ϕ

1 2 4 5

Augs ◦ϕ ◦Aug−1
s

1 2 3 4 5

Ts(ϕ)

Figure 1: Illustration of Ts(ϕ) with ϕ = 3142 and s = 3. Informally, Aug
s
◦ϕ ◦ Aug−1

s
“increments by

one” all nodes s, . . . , n. Then Ts(ϕ) “splits” the mapping (1, ϕ(1)) into (1, s) and (s, ϕ(1)).

we describe a generative procedure for the considered permutations. Consider ϕ ∈ Sc
n

and let s ∈ [2, n+ 1]. Consider the mapping Augs : [1, n] → [1, n+ 1] defined by

Augs(i) =

{

i if i < s,

i+ 1 if i ≥ s.

Observe that Augs ◦ϕ ◦Aug−1
s is bijective on the set {1, . . . , s− 1, s+ 1, . . . , n} and has

one orbit. Now consider the transform Ts : S
c
n → Sc

n+1 defined by

Ts(ϕ)(i) =







Augs ◦ϕ ◦Aug−1
s (i) if i ∈ [1, n+ 1] \ {1, s},

s if i = 1,

Augs ◦ϕ ◦Aug−1
s (1) = ϕ(1) if i = s.

It is straightforward to check that Ts(ϕ) ∈ Sc
n+1, i.e., Ts(ϕ) ∈ Sn+1 and it has one orbit.

The construction is illustrated in Figure 1.
Furthermore, if r, s ∈ [2, n+ 1] and ϕ, ψ ∈ Sc

n, where r 6= s or ϕ 6= ψ, then Ts(ϕ) 6=
Tr(ψ). As there are (n − 1)! permutations in Sc

n, we get n · (n − 1)! = n! different
permutations Ts(ϕ) for s ∈ [2, n + 1] and ϕ ∈ Sc

n. Therefore, Sc
n+1 = {Ts(ϕ) : s ∈

[2, n+ 1], ϕ ∈ Sc
n}.

Now, we examine how the transform Ts(ϕ) affects the number of descents of ϕ.
For i ∈ [2, n − 1] \ {s − 1}, Ts(ϕ)(Augs(i)) = Augs(ϕ(i)) and Ts(ϕ)(Augs(i) + 1) =
Ts(ϕ)(Augs(i+ 1)) = Augs(ϕ(i + 1)). Therefore for i ∈ [2, n− 1] \ {s− 1}

Augs(i) ∈ D(Ts(ϕ)) ⇔ i ∈ D(Augs(ϕ)) ⇔ i ∈ D(ϕ),

where the second equivalence follows from the monotonicity of Augs. Thus, Augs gives
a one-to-one correspondence between D(ϕ) \ {1, s− 1} and D(Ts(ϕ)) \ {1, s− 1, s}). It
remains to analyze values s−1 and s. We have Ts(ϕ)(s+1) = Augs(ϕ)(s) < Augs(ϕ)(s−
1) = Ts(ϕ)(s − 1) if and only if s − 1 ∈ D(ϕ). In this case, s − 1 or s is a descent of
Ts(ϕ). The insertion of Ts(ϕ)(s) = ϕ(1) may or may not create a new descent. For a
given ϕ ∈ Sc

n, in each monotonic run of ϕ on indices {2, . . . , n}, there is exactly one
position where we can place ϕ(1) without creating a new descent, otherwise we create
exactly one new descent.

How many Ts(ϕ) can we have with | D(Ts(ϕ)) \ {1}| = d? For each ϕ ∈ Sc
n with

| D(ϕ)\{1}| = d, we have (d+1) possibilities to choose s (ϕ has d+1 monotonic runs on
{2, . . . , n}). For each ϕ ∈ Sc

n with | D(ϕ) \ {1}| = d− 1, we have (n− d) possibilities to
choose s. These permutations are all different as Ts(ϕ) 6= Tr(ψ) if s 6= r or ϕ 6= ψ. There

9



is no other way to get a permutation ψ ∈ Sc
n+1 with | D(ψ) \ {1}| = d. We conclude that

P (n, d) = (d+ 1)P (n− 1, d) + (n− d)P (n− 1, d− 1). This proves the Theorem.
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