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Abstract : We prove that edge contractions do not preserve the
property that a set of graphs has bounded clique-width.
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1 Introduction

Clique-width is, like tree-width, an integer graph invariant that is an appropriate
parameter for the contruction of many fixed-parameter tractable algorithms ([4,
6, 7, 11]). It is thus important to know that the graphs of a particular type have
bounded tree-width or clique-width. The article [13] is a survey of clique-width
bounded classes. Gurski has reviewed in [9] how clique-width behaves under
different graph operations. He asks whether, for each k, the class of graphs of
clique-width at most k is stable under edge contractions. This is true for k = 2,
i.e., for cographs, and we prove that this is false for k = 3. (For each k, this
stability property is true for graphs of tree-width at most k. It is thus natural
to ask the question for clique-width.)

Gurski proves that contracting one edge can at most double the clique-width.
The conjecture is made in [14] (Conjecture 8) that contracting several edges in
a graph of clique-width k yields a graph of clique-width at most f(k) for some
fixed function f . We disprove this conjecture and answer Gurski’s question by
proving the following proposition.

Proposition 1 : The graphs obtained by edge contractions from graphs of
clique-width 3 or of linear clique-width 4, have unbounded clique-width.
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The graphs of clique-width at most 2 (they are the cographs) are preserved
under edge contractions.The validity of the conjecture of [14] would have implied
that the restricted vertex multicut problem is fixed-parameter tractable if the
parameter is the clique-width of a certain graph describing the input in a natural
way. This problem consists in finding a set of vertices of given size that meets
every path between the two vertices of each pair of a given set and does not
contain any vertex of these pairs. Without Conjecture 8, this problem is fixed-
parameter tractable under the additional condition that no two vertices from
different pairs are adjacent.

For sake of comparison, we also consider contractions of edges, one end of
which has degree 2. We say in this case that we erase a vertex : we erase x if
it has exactly two neighbours ; to do so, we add an edge between them (unless
they are adjacent, we only consider graphs without parallel edges) and we delete
x and its two incident edges. The graphs obtained from a graph by erasing and
deleting vertices are its induced topological minors.

Proposition 2: The induced topological minors of the graphs of clique-
width k have clique-width at most 2k+1 − 1.

2 Some basic facts

Graphs are finite, undirected, loop-free and without parallel edges. To keep
this note as short as possible, we refer the reader to any of [3, 11, 13, 15, 16]
for the definitions of clique-width and rank-width. Other references for clique-
width are [1, 5, 8, 14]. A variant of clique-width called linear clique-width is
studied in [3, 10]. We denote by cwd(G) and rwd(G) the clique-width and,
respectively, the rank-width of a graph G. We recall from [16] that we have
rwd(G) ≤ cwd(G) ≤ 2rwd(G)+1 − 1. Proving that cwd(G) > k for given G
and k is rather difficult in most cases. (See for instance the computation of the
exact clique-width of a square grid in [8]. The computation of its rank-width
in [12] is not easier.) We overcome this difficulty by using monadic second-

order transductions : they are graph transformations specified by formulas of
monadic second-order logic. The (technical) definition is in [2,3]. We will only
need the fact that the graphs defined by a monadic second-order transduction τ
from graphs of clique-width at most k have clique-width at most fτ (k) for some
computable function fτ that can be determined from the formulas forming the
definition of τ (Corollary 7.38(2), [3]). However, we also give an alternative proof
based on rank-width and vertex-minors that does not use monadic second-order
transductions.

A vertex-minor of a graph is obtained by deleting vertices (and the inci-
dent edges) and performing local complementations. (Local complementation
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exchanges edges and non-edges between the neighbours of a vertex.) These
transformations do not increase rank-width [15]. Erasing a vertex x yields a
vertex-minor of the considered graph: let y and z be its neighbours; if they are
adjacent, erasing x is the same as deleting it because we fuse parallel edges;
if they are not, erasing x is the same as performing a local complementation
at x (which creates an edge between y and z), and then deleting x. Hence, by
transitivity, every induced topological minor is a vertex-minor.

3 Proofs

Definitions and notation

(a) We denote by H/F the graph obtained from a graph H by contracting
the edges of a set F . (Parallel edges are fused, no loops are created.) If H is
a set of graphs, we denote by EC(H) the set of graphs H/F such that H ∈ H
and F is a set of edges of H .

(b) We denote by R the set of graphs having a proper edge coloring with
colors in {1, ..., 4}: every two adjacent edges have different colors. These graphs
have unbounded tree-width and clique-width as they include the square grids
(the n× n grid has clique-width n+ 1 if n ≥ 2 by [8]).

(c) For n ≥ 2, we define a graph Gn. Its vertices are x1, ..., xn, y1, ..., yn and
its edges are xi−yi, yi−yj for all i, j 6= i. (The notation x−y designates an edge
between x and y). We let D consist of 4 vertices and no edge, and we let Hn be
obtained from Gn by substituting disjoint copies of D to each vertex yi. Hence
and more precisely, Hn has the 5n vertices x1, ..., xn, y

1
1 , y

2
1 , y

3
1 , y

4
1, y

1
2 , ..., y

4
n and

the 8n2 − 4n edges xi − yci , y
c
i − ydj for all i, j 6= i and c, d = 1, ..., 4. We denote

by H the set of graphs Hn. It is easy to construct expressions of Gn and Hn

showing that they have clique-width at most 3 and linear clique-width at most
4. If n ≥ 3, they have clique-width 3 because they contain, as an induced
subgraph, the path with 4 vertices, so that they do not have clique-width 2,
and linear clique-width 4 because they contain, as an induced subgraph, the
graph G3 that is not a cocomparability graph, so that they do not have linear
clique-width at most 3 by Proposition 14 of [10].

(d) We define a monadic second-order transduction α with one parameter
X . If G is a graph and X is a set of vertices, then the graph α(G,X) is defined
if X is stable (no two vertices are adjacent); its vertex set is X and it has an
edge between x and y if and only if these vertices are at distance 2 in G. We
denote by α(G) the set of all such graphs, and by α(G) the union of the sets
α(G) for G in a set G.

Lemma 3 : We have α(EC(H)) ⊇ R.

Proof : Let R be a graph in R with vertices x1, ..., xn and a proper edge
coloring with colors 1 to 4. The set X = {x1, ..., xn} is also a subset of the vertex
set of Hn. The four neighbours of xi in Hn are y1i , y

2
i , y

3
i and y4i .
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Let F be the set of edges of the form yci − ycj such that xi − xj is an edge of
R colored by c, c ∈ {1, ..., 4} (hence, xi and xj are at distance 3 in Hn). The
graph K = Hn/F belongs to EC(H) and X is stable in this graph (the vertices
x1, ..., xn are not affected by the contractions of edges). It is clear that xi − xj

is an edge of R if and only if there is in K a path xi − z − xj where z results
from the contraction of the edge yci − ycj and c is the color of xi − xj in R. It
follows that R = α(K,X). �

Proof of Proposition 1: By Lemma 3, the set α(EC(H)) has unbounded
clique-width. Hence, so has EC(H) by Corollary 7.38(2) of [3] recalled above.
This concludes the proof because the graphs Hn have clique-width 3 and linear
clique-width 4 for n ≥ 3. �

NLC-width and clique-width are linearly related (see [9]). Hence, the graphs
obtained by edge contractions from graphs of NLC-width at most 3 have un-
bounded NLC-width.

Remark: For each n, the graph Hm2 of clique-width 3 having 5m2 vertices
where m = fα(n) yields by edge contractions a graph of clique-width at least
n + 1. Here, fα is the computable function of Section 2 that can be assumed
monotone. To prove this, we let F be a set of edges such that α(Hm2/F ) contains
the m ×m grid Rm and k = cwd(Hm2/F ). Then, m + 1 = cwd(Rm) ≤ fα(k),
hence fα(n) + 1 ≤ fα(k), and so, k > n. The function fα is very fast growing.
A much better upper-bound will be obtained from the alternative proof we give
next.

Edge contractions can increase rank-width because the same sets of graphs
have bounded rank-width and bounded clique-width [16]. The following proof
shows this directly.

Alternative proof of Proposition 1 : The construction is similar and
we use the same notation. We construct H ′

n from Gn by substituting disjoint
copies of K4 to each vertex yi and by adding a vertex y0 adjacent to all vertices
y11 , y

2
1, y

3
1 , y

4
1 , y

1
2 , ..., y

4
n. Hence, H ′

n has 5n+ 1 vertices.We denote by H′ the set
of graphs H ′

n. They have clique-width 3 and linear clique-width 4 (by the same
argument as for Hn).

Let us fix n and let R be the n × n grid with vertices x1, ..., xn2 . To prove
that it is a vertex-minor of H ′

n2 , we take a proper edge-coloring of R with colors
1, ..., 4, we contract the edges yci − ycj of H ′

n2 such that xi − xj is an edge of
R colored by c. This gives a graph R′ that has R as vertex-minor. To prove
this, we delete the vertices yci such that xi has no incident edge colored by c,
we take a local complementation at y0, we delete y0 and finally, we erase the
vertices resulting from the contraction of the edges yci − ycj after taking local
complementations at them.

The rank-width of R is n− 1 by [12], that of R′ is thus at least n− 1, and
so is its clique-width. Hence, by contracting edges in a graph of clique-width
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3 (and linear clique-width 4) that has 5n2 + 1 vertices, one can get a graph of
clique-width at least n− 1.�

Remark: An algorithm can determine a graph of clique-width 3 that yields
a graph of clique-width more than 3 by the contraction of a single edge. It
performs an exhaustive search until some graph is obtained: for each n = 2, 3
... it considers the finitely many sets F of pairwise nonadjacent edges of Hn. By
using the polynomial-time algorithm of [1] to check if a graph has clique-width
at most 3, it can look for a set F and an edge f ∈ F such that Hn/(F − {f})
has clique-width 3 and Hn/F has clique-width more than 3 (actually 4, 5 or 6
by Theorem 4.8 of [9]). By Proposition 1, one must find some n and such F
and f . However, we have not implemented this algorithm.

Gurski has proved that erasing a vertex of degree 2 can increase (or decrease)
the clique-width by at most 2. In Proposition 2, we consider the effect of erasing
several vertices and taking induced subgraphs.

Proof of Proposition 2 : As noted above, an induced topological minor is
a vertex-minor. The result follows since, for every graph G, we have rwd(G) ≤
cwd(G) ≤ 2rwd(G)+1 − 1.�

This proof leaves open the question of improving the upper bound 2k+1 − 1,
possibly to a polynomial in k or even to k.

Acknowledgement: I thank the anonymous referee who suggested the
alternative proof of Proposition 1, and M. Kanté and D. Meister for useful
comments.
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