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1 Abstract

This note extends the analysis of incremental PageRank in [B. Bahmani, A.
Chowdhury, and A. Goel. Fast Incremental and Personalized PageRank. VLDB
2011]. In that work, the authors prove a running time of O(nRε2 ln(m)) to keep
PageRank updated over m edge arrivals in a graph with n nodes when the algo-
rithm stores R random walks per node and the PageRank teleport probability
is ε. To prove this running time, they assume that edges arrive in a random
order, and leave it to future work to extend their running time guarantees to
adversarial edge arrival. In this note, we show that the random edge order as-
sumption is necessary by exhibiting a graph and adversarial edge arrival order

in which the running time is Ω
(
Rnmlg 3

2 (1−ε)
)

. More generally, for any integer

d ≥ 2, we construct a graph and adversarial edge order in which the running
time is Ω

(
Rnmlogd(Hd(1−ε))

)
, where Hd is the dth harmonic number.

2 Introduction

In [1], Bahmani, Chowdhury, and Goel propose a method of keeping an ap-
proximation to PageRank updated as edges from a graph arrive online. They
use the Monte Carlo method of computing PageRank [2]. In this method, we
start at each node in the graph and take a random walk. After each step of a
random walk, we terminate the walk with probability ε, the teleport probability,
and it is complete. With the remaining probability 1 − ε, we transition to an
out-neighbor of the current node, chosen uniformly at random, and continue
the walk. If we reach a node v with outdegree 0 before completing the walk,
we transition back to the starting node and continue from there. To reduce
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variance, we take R random walks per node, where R might be a constant or
log(n), depending on the accuracy required. When a new edge (u, v) is added
to the graph, we consider revising each walk which passed through u, since it
perhaps should have used this new edge. The probability that the walk should
have used this new edge is 1

d(u) where d(u) is the new outdegree of u. We flip a

biased coin for each walk through u, and with probability 1
d(u) we throw away

the remainder of the walk and generate a new remainder starting with v. To
make sure that the length of each walk is geometrically distributed with ex-
pected length 1

ε , we preserve the length of the original walk when we generate
a new remainder.

When the graph is chosen by an adversary, but edges arrive in a random
order, Bahmani, Chowdhury, and Goel [1] prove that the total work needed to
keep an estimate of PageRank updated as m edges arrive is O

(
nR
ε2 ln(m)

)
, where

n is the number of vertices, R is the number of stored walks per vertex, and ε
is the teleport probability. They state that it would be an interesting result to
extend their running time guarantees to adversarial edge arrival. This motivates
the following question: does their algorithm require at most O

(
nR
ε2 ln(m)

)
total

work for an adversarially chosen edge order? Our contribution is answering this
question in the negative.

Note that we are not considering the absolute worst case performance of
the algorithm in [1] or comparing it to other methods of computing PageRank.
We were motivated by our attempt to extend the bound of nR

ε2 ln(m) work to
the adversarial edge order model. We discovered that such an extension is not
possible.

3 Result and Theory

We first describe our construction in the case d = 2 which corresponds to binary
trees.

Theorem 1. Let ε < 1
3 be the teleport probability. There exists a family of

graphs with n vertices and m = n − 1 edges, and an edge order such that the
total number of walk segments updated as the edges arrive is

Ω
(
Rnmlg 3

2 (1−ε)
)
.

For example if ε = .2, the number of updates is Ω
(
Rnm0.26

)
. Hence the

PageRank algorithm in [1] does not run in time O(Rnpolylog(m)) in the ad-
versarial graph and adversarial edge order model.

Proof. For any power of two, N , we describe how to construct a graph on
n = 2N − 1 nodes. The case N = 16 is shown in figure 1, with labels indicating
the order of edge arrival. The n nodes are all present at the beginning, and the
m edges arrive one at a time. There is a top row of N nodes, each connected
to the root of a balanced binary tree of N − 1 nodes. The edges of the top row
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Figure 1: The case N = 16 of our graph. Edges are labeled with the order in
which they arrive.

arrive first, creating RN walk segments to the root of the binary tree. The edges
in the tree arrive in a depth-first traversal of the binary tree starting at the root,
so PageRank is funneled toward a leaf before being diluted among the branches.
The left edge leaving each vertex arrives before the right edge, so when the left
edge leaving a vertex u arrives, any incomplete walk through u will need to be
updated. When the right edge leaving a vertex u arrives, any incomplete walk
will need to be updated with probability 1

2 . Consider the probability that a
walk from the root needs to be updated when an edge (u, v) arrives to a node
u in row i. First of all the walk needs to have length at least i which happens
with probability (1 − ε)i. Now as we trace the unique path from the root to
u, the probability that a walk follows this path is the probability that it takes
the correct edge (right or left) leaving each vertex. Because the left edge to
each vertex on any path from the root arrives before the right edge, the walk
is guaranteed to follow the path to u at left edges, while at right edges it has
probability 1

2 of going towards u. Thus if there are k right edges on the path
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and i − k left edges, the probability that a walk of length at least i will reach

u is
(
1
2

)k
. Since there are RN paths from top nodes which could potentially

reach u, the expected number of paths which need to be updaded when edge
(u, v) arrives is

RN(1− ε)i
(

1

2

)k
.

In the ith row, there are
(
i
k

)
nodes which can be reached via k right branches

and i− k left branches from the root. Thus the total expected number of path
segments updated due to edges in the ith row is

RN(1− ε)i
i∑

k=0

(
i

k

)(
1

2

)k
= RN

(
3

2
(1− ε)

)i
after applying the binomial theorem. There are lg(N) rows in the tree, so the
total number of path segments updated is

RN

lg(N)−1∑
i=0

(
3

2
(1− ε)

)i
= RN

(
3
2 (1− ε)

)lgN − 1
3
2 (1− ε)− 1

= RN
N lg ( 3

2 (1−ε)) − 1
3
2 (1− ε)− 1

Now using the relations n = 2N − 1 = Θ(N) and m = 2N − 2 = Θ(N), the
result follows.

The above theorem needed to assume ε < 1
3 , because for larger teleport

probabilities, the walks from the top row of nodes will terminate on average
before they can reach a significant number of the nodes in the tree, so the walks
in this construction can be updated efficiently in time O(Rnpolylog(m)) time.
To disprove the conjecture in the case ε ≥ 1

3 , we generalize the above result to
d-ary trees so walks from the top row can reach a larger number of tree nodes
as the edges arrive.

Theorem 2. Let ε be the teleport probability. For each branching factor d such
that Hd(1− ε) > 1 , there exists a family of graphs where m = n−1 and an edge
order such that the total number of walk segments updated as the edges arrive is

Ω
(
Rnmlogd(Hd(1−ε))

)
where Hd is the dth harmonic number.

For any ε, if we set d such that Hd(1− ε) > 1, we see that this running time
is greater than O(Rnpolylog(m)).
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Proof. Given N , we describe how to construct a graph on n = 2N nodes. We
construct a graph similar to the binary construction above, but place d children
under each tree node. Let the N top edges arrive first, and the remaining edges
arrive in a depth-first traversal of the tree. Consider the probability that a
random walk needs to be updated when an edge (u, v) arrives in row i. On the
unique path from the root to u, let jr ∈ {1, . . . , d} be the index of the child of
the node followed in row r. The probability that a random path will follow the
branch toward u in row r is 1

jr
, since at the time u arrives, u’s ancestor in row r

will have exactly jr children. In addition, to reach node u, a random path from
the root must have length at least i, which happens with probability (1 − ε)i.
Thus the probability that a random path from the root is updated when edge
(u, v) arrives is

(1− ε)i
i∏

r=1

1

jr
.

Note that this generalizes the binary case, where we let k be the number of rows
r such that jr = 2. Summing over all nodes u in row i is equivalent to varying
all indices jr within their ranges. Thus the expected number of paths updated
as edges in row i arrive is

RN

d∑
j1=1

d∑
j2=1

· · ·
d∑

ji=1

(1− ε)i
i∏

r=1

1

jr
= RN ((1− ε)Hd)

i

where Hd is the dth harmonic number. Since there are N nodes in the tree,
there are at least blogd(N)c rows. Thus the total expected number of updates
as the N − 1 tree edges arrive is at least

RN

logd(N)−1∑
i=0

(Hd(1− ε))i = RN
(Hd(1− ε))log(N)/ log(d) − 1

Hd(1− ε)− 1

= Θ
(
RN1+log(Hd(1−ε))/ log(d)

)
.

Now using the relations n = 2N = Θ(N) and m = 2N − 1 = Θ(N), the result
follows.
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