
 

 

COMPUTING 
SCIENCE 

Folded Hasse Diagrams of Combined Traces 
 
 
Lukasz Mikulski and Maciej Koutny 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TECHNICAL REPORT SERIES 
 

No. CS-TR-1357 November 2012 



TECHNICAL REPORT SERIES 
              
 
No. CS-TR-1357  November, 2012 
 
Folded Hasse Diagrams of Combined Traces 
 
L. Mikulski and M. Koutny 
 
Abstract 
 
To represent concurrent behaviours one can use concepts originating from language 
theory, including traces and comtraces. Traces can express notions such as 
concurrency and causality, whereas comtraces can also capture weak causality and 
simultaneity. This paper is concerned with the development of efficient data 
structures and algorithms for manipulating comtraces. We introduce and investigate 
folded Hasse diagrams of comtraces which generalise Hasse diagrams defined for 
partial orders and traces. We also develop an efficient on-line algorithm for deriving 
Hasse diagrams from language theoretic representations of comtraces. Finally, we 
briefly discuss how folded Hasse diagrams could be used to implement efficiently 
some basic operations on comtraces. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© 2012 Newcastle University. 
Printed and published by Newcastle University, 
Computing Science, Claremont Tower, Claremont Road, 
Newcastle upon Tyne, NE1 7RU, England. 



Bibliographical details 
 
MIKULSKI, L., KOUTNY, M. 
 
Folded Hasse Diagrams of Combined Traces  
[By] L. Mikulski and M. Koutny 
 
Newcastle upon Tyne: Newcastle University: Computing Science, 2012. 
 
(Newcastle University, Computing Science, Technical Report Series, No. CS-TR-1357) 
 
Added entries 
 
NEWCASTLE UNIVERSITY 
Computing Science. Technical Report Series.  CS-TR-1357 
 
Abstract 
 
To represent concurrent behaviours one can use concepts originating from language theory, including traces and 
comtraces. Traces can express notions such as concurrency and causality, whereas comtraces can also capture 
weak causality and simultaneity. This paper is concerned with the development of efficient data structures and 
algorithms for manipulating comtraces. We introduce and investigate folded Hasse diagrams of comtraces which 
generalise Hasse diagrams defined for partial orders and traces. We also develop an efficient on-line algorithm for 
deriving Hasse diagrams from language theoretic representations of comtraces. Finally, we briefly discuss how 
folded Hasse diagrams could be used to implement efficiently some basic operations on comtraces. 
 
About the authors 
 
Lukasz Mikulski obtained his PhD in 2012 from the University of Warsaw, Poland. He now works as a Lecturer at 
the Faculty of Mathematics and Computer Science of the Nicolaus Copernicus University, Torun, Poland. 
 
Maciej Koutny obtained his MSc (1982) and PhD (1984) from the Warsaw University of Technology. In 1985 he 
joined the then Computing Laboratory of the University of Newcastle upon Tyne to work as a Research Associate. 
In 1986 he became a Lecturer in Computing Science at Newcastle, and in 1994 was promoted to an established 
Readership at Newcastle. In 2000 he became a Professor of Computing Science. 
 
Suggested keywords 
 
COMTRACE, TRACE 
HASSE DIAGRAM 
STRATIFIED ORDER STRUCTURE 
PARTIAL ORDER 
CONCURRENCY 
CAUSALITY 
WEAK CAUSALITY 
INDEPENDENCE 
ALGORITHMIC COMPLEXITY 
PETRI NET 
INHIBITOR ARC 



Folded Hasse Diagrams of Combined Traces

Łukasz Mikulski1,2 and Maciej Koutny2

1 Faculty of Mathematics and Computer Science
Nicolaus Copernicus University
Toruń, Chopina 12/18, Poland
lukasz.mikulski@mat.umk.pl
2 School of Computing Science

Newcastle University
Newcastle upon Tyne, NE1 7RU, United Kingdom
{maciej.koutny,lukasz.mikulski}@ncl.ac.uk

Abstract. To represent concurrent behaviours one can use concepts
originating from language theory, including traces and comtraces. Traces
can express notions such as concurrency and causality, whereas com-
traces can also capture weak causality and simultaneity. This paper is
concerned with the development of efficient data structures and algo-
rithms for manipulating comtraces. We introduce and investigate folded
Hasse diagrams of comtraces which generalise Hasse diagrams defined for
partial orders and traces. We also develop an efficient on-line algorithm
for deriving Hasse diagrams from language theoretic representations of
comtraces. Finally, we briefly discuss how folded Hasse diagrams could
be used to implement efficiently some basic operations on comtraces.
Keywords: comtrace, trace, Hasse diagram, stratified order structure,
partial order, concurrency, causality, weak causality, independence, algo-
rithmic complexity, Petri net, inhibitor arc

1 Introduction

The dynamic behaviours of concurrent systems represented, e.g., by Petri nets,
are usually modelled as ongoing evolutions involving actions that take place at
the interface with the environment. The simplest representations of such evolu-
tions are sequences (or words) of executed actions, leading to a formal language
semantics of Petri nets. However, words alone cannot express concurrency and
causality between executed actions which are features of paramount importance
if one wants to understand or efficiently analyse concurrent behaviours. To ad-
dress this issue, one may consider keeping an additional information about the
relevant properties of behaviours, for example, in the form of causal dependencies
between actions.

This approach underpins the trace model of concurrent behaviour [1, 8].
Traces are not sufficient, however, when one needs to deal, e.g., with Petri nets
with inhibitor arcs. To deal with such systems, one may extend traces with addi-
tional information about intrinsic relationships between executed actions in the
form of weak causality (where a weakly precedes b if it can be executed earlier



or simultaneously with b). The resulting model of combined traces [4, 6, 5] (or
comtraces) enjoys properties similar to those which hold for traces.

In this paper, we are concerned with the development of efficient data struc-
tures and algorithms for manipulating comtraces. We first introduce and inves-
tigate folded Hasse diagrams of comtraces which generalise Hasse diagrams [12]
defined for partial orders and traces. We then develop an efficient algorithm
for deriving them from individual step sequence representatives of comtraces.
We also explain how the proposed representation of comtraces can be used to
implement efficiently some basic operations on comtraces. Note that our aims
are different from those pursued in papers like [3] where the main concern is to
develop visually pleasing ways of drawing Hasse diagrams. Here, we are focused
on their semantical extensions and effective manipulation.

The paper is organised as follows. Section 2 provides basic notation and
terminology. Section 3 discusses comtraces and introduces their folded Hasse
diagrams. Section 4 presents an efficient on-line construction of folded Hasse
diagrams from individual step sequence representatives of comtraces. Section 5
outlines possible applications of the results contained in this paper, and Section 6
briefly discusses directions for further research.

2 Preliminaries

Throughout the paper we use the standard notions of the set theory and formal
language theory. In particular, ⊎ denotes disjoint set union, and by an alphabet
we mean a nonempty finite set �, the elements of which are called (atomic)
actions. Finite sequences over � are called words. The set of all words is denoted
by �∗.

A directed acyclic graph is a pair dag = (X,R), whereX is a finite set and R is
an acyclic irreflexive binary relation on X. In a diagrammatical representation,
X is the set of vertices while R the set of arcs. A linearisation of dag is any
sequence u = x1 . . . xn of distinct elements of dag such that X = {x1, . . . , xn}
and, for all 1 ≤ i < j ≤ n the predicate xj(R+)xi is false.

A directed acyclic graph po = (X,≺) is a poset if the relation ≺ is transitive.
Moreover, a directed acyclic graph (X,≺pre) is a po-diagram if ≺= (≺pre)∗.
Among all the po-diagrams, we can distinguish the smallest one (i.e., that with
the smallest relation ≺pre), denoted by H(po) = (X,≺red) and called the Hasse
diagram of po. Note that ≺red can be obtained from ≺ by simply removing all the
arcs implied by the transitivity of ≺; in other words, ≺red is equal to ≺ ∖(≺ ∘ ≺).
Moreover, if (X,R) is a po-diagram, then ≺red= R ∖

∪
i≥2R

i.

3 Comtraces and Their Hasse Diagrams

A comtrace alphabet is a triple � = (�, sim, ser), where � is an alphabet and
ser ⊆ sim ⊂ � × � are two relations, respectively called serialisability and
simultaneity ; it is assumed that sim is irreflexive and symmetric. Intuitively,
if (a, b) ∈ sim then a and b may occur simultaneously, whereas (a, b) ∈ ser



means that in such a case a may also occur before b (with both executions being
equivalent). The set of (potential) steps over �, called step alphabet, is then
defined as the set S comprising all nonempty sets of actions A ⊆ � such that
(a, b) ∈ sim, for all distinct a, b ∈ A. To avoid confusion with the well-established
operation of set concatenation, we follow [2] and denote a step containing actions
a and b by (ab) rather then {a, b}, etc. Finite sequences in S∗, including the empty
one denoted by �, are called step sequences.

We now present a number of notions and notations for step sequences. In
what follows, � = (�, sim, ser) is a fixed comtrace alphabet.

Let w = A1 . . . An and v = B1 . . . Bm be two step sequences. Then w ∘ v =
wv = A1 . . . AnB1 . . . Bm is the concatenation of w and v. The alphabet alph(w)
of w comprises all actions occurring within w, and #a(w) is the number of
occurrences of an action a within w. The set occ(w) of action occurrences of w
comprises all pairs (a, i) with a ∈ alph(w) and 1 ≤ i ≤ #a(w).

The position posw(�) of an action occurrence � = (a, i) ∈ occ(w) is given as
the smallest integer j such that #a(A1 . . . Aj) = i. In such a case, we also denote
� ∈ occj(w). Hence occ(w) = occ1(w) ⊎ ⋅ ⋅ ⋅ ⊎ occn(w).

The default label of an action occurrence � = (a, i) is ℓ(�) = a. We can also
apply ℓ to sets of action occurrences and sequences of sets of action occurrences
in the usual way, e.g., ℓ({�1, . . . , �n}) = {ℓ(�1), . . . , ℓ(�n)}.

The head (first action occurrences) and tail (last action occurrences) of a
step sequence w are two sets defined by:

head(w) = {(a, 1) ∣ a ∈ alph(w)}
tail(w) = {(a,#a(w)) ∣ a ∈ alph(w)} .

3.1 Comtraces

Let � = (�, sim, ser) be a fixed comtrace alphabet. The comtrace congruence
over �, denoted by ≡�, is the reflexive, symmetric and transitive closure of the
relation ∼�⊆ S∗ × S∗ defined in such a way that w ∼� v if there are u, z ∈ S∗
and A,B,C ∈ S satisfying

w = uAz v = uBCz A = B ∪ C B × C ⊆ ser .

Note that B ∩ C = ∅ as ser is irreflexive.
Equivalence classes of the relation ≡� are called comtraces (see [5]), and

the comtrace containing a given step sequence w is denoted by [w]. The set
of all comtraces is denoted by S∗/≡� , and the pair (S∗/≡� , ∘) is a (comtrace)
monoid, where � ∘ � = [w ∘ w′], for any step sequences w ∈ � and w′ ∈ �.
Comtrace concatenation is well-defined as [w ∘ w′] = [v ∘ v′], for all w, v ∈ �
and w′, v′ ∈ �. Similarly, for every comtrace � and every a ∈ �, we can define
alph(�) = alph(w), #a(�) = #a(w) and occ(�) = occ(w), where w ∈ � is
arbitrarily chosen. A comtrace � is a prefix of a comtrace � if there is a comtrace
�′ such that � ∘ �′ = �.

The normal form of a comtrace captures a greedy, maximally concurrent,
execution of the actions occurring in the comtrace conforming to the simultaneity



and serialisability relations. A step sequence w = A1 . . . An ∈ S∗ is in (Foata)
normal form if, for each i ≤ n, whenever Av ≡� Ai . . . An for some A ∈ S and
v ∈ S∗, then ∣A∣ ≤ ∣Ai∣. One can see that each comtrace comprises a unique
step sequence in normal form. Note that an alternative (equivalent) definition of
normal form requires that, for every i < n, there is no ∅ ∕= A ⊆ Ai+1 such that
Ai ×A ⊆ ser and A× (Ai+1∖A) ⊆ ser .

3.2 Stratified order structures

Comtraces can be represented by so-structures, in a similar way as traces can
be represented by posets.

A stratified order structure (or so-structure) is a tuple sos = (X,≺,⊏) com-
prising two binary relations, ≺ (causality) and ⊏ (weak causality), on a finite
set X such that, for all x, y, z ∈ X:

S1 : x ∕⊏ x

S2 : x ≺ y =⇒ x ⊏ y

S3 : x ⊏ y ⊏ z ∧ x ∕= z =⇒ x ⊏ z

S4 : x ⊏ y ≺ z ∨ x ≺ y ⊏ z =⇒ x ≺ z .

Intuitively, ≺ represents the ‘earlier than’ relationship, and ⊏ the ‘not later than’
relationship, when the elements of X are being interpreted as events which have
occurred in an execution of some concurrent system. Note that ≺ is a partial
order, and x ≺ y implies y ∕⊏ x. In diagrams, ≺ is depicted by solid arcs, and ⊏
by dashed arcs.

Let % = (X,≺pre,⊏pre) be a triple such that ≺pre and ⊏pre are irreflexive
binary relations on a finite set X. Then the so-closure of % is defined as

%♦ = (X, 
 ∘ ≺pre ∘ 
, 
 ∖ idX) ,

where 
 = (≺pre ∪ ⊏pre)∗. If %♦ = sos, where sos is an so-structure, then % is
called an sos-diagram.

A stratification of an so-structure sos = (X,≺,⊏) is any sequence u =
X1 . . . Xn of nonempty subsets of X such that X = X1 ⊎ ⋅ ⋅ ⋅ ⊎Xn,

– (Xj ×Xi)∩ ≺= ∅, for all 1 ≤ i ≤ j ≤ n; and
– (Xj ×Xi)∩ ⊏= ∅, for all 1 ≤ i < j ≤ n.

We denote this by u ∈ str(sos).
The so-structure induced by a comtrace � is defined as

sos(�) = presos(w)♦ ,

where w is any step sequence w ∈ � , and

presos(w) = (occ(w),≺w,⊏w)

is a triple such that ≺w and ⊏w are irreflexive binary relations on occ(w) satis-
fying, for all distinct �, � ∈ occ(w),



– � ≺w � if posw(�) < posw(�) and (ℓ(�), ℓ(�)) /∈ ser ; and
– � ⊏w � if posw(�) ≤ posw(�) and (ℓ(�), ℓ(�)) /∈ ser .

The soundness of the last definition stems from the fact that presos(w) =
presos(v), for all step sequences w, v ∈ � . Crucially, one can see ([6]) that the
induced so-structure provides an alternative representation of � as we have:

� = {ℓ(u) ∣ u ∈ str(sos(�))} . (1)

Note that if wA is a step sequence then appending a step A results in proper
extension of presos(w):

≺w = ≺wA ∣occ(w)×occ(w)

⊏w = ⊏wA ∣occ(w)×occ(w) .
(2)

Moreover, only forward relationships are added:

≺wA∩occ∣w∣+1(wA)× occ(wA) = ∅
⊏wA∩occ∣w∣+1(wA)× occ(w) = ∅ .

(3)

As a result, presos(w) is a vertex-induced subgraph of presos(wA), i.e., the ver-
tices of presos(wA) contain those of presos(w), and if we take all the arcs of
presos(wA) joining the vertices of presos(w), then we obtain exactly the arcs of
presos(w).

3.3 Folded so-structures

Weak causality is a pre-order rather than a partial order relation, and so it can
be advantageous to work with a quotient so-structure derived from sos(�) =
(occ(�),≺,⊏) induced by a comtrace � . First, for each action occurrence � ∈
occ(�), we denote by ⟨�⟩ the equivalence class of the ⊏-cycle relation comprising
�, i.e., � together with the set of all � ∈ occ(�) satisfying � ⊏ � ⊏ �. Each such
	 = ⟨�⟩ will be called a folded action, and their set will be denoted by ôcc(�).
Note that folded actions are also called indivisible steps in [9], and the idea of
indivisibility of steps was utilised, in the case of traces, in [11].

The folded so-structure induced by a comtrace � is ŝos(�) = (ôcc(�), ≺̂, ⊏̂),
where, for all 	, � ∈ ôcc(�):

– 	≺̂� if (	 × �) ∩ ≺ ∕= ∅; and
– 	⊏̂� if (	 × �) ∩ ⊏ ∕= ∅ and 	 ∕= �.

By S4 , 	≺̂� means that 	 ×� is included in ≺. By S3 , 	⊏̂� means that 	 ×�
is included in ⊏. And, by S2–S4 , ŝos(�) is an so-structure, and ⊏̂ is a poset
containing ≺̂.

It turns out that different comtraces induce different folded so-structures.
Moreover, there is a straightforward way of recovering sos(�) from ŝos(�), as we
have, for all �, � ∈ occ(�):

– � ≺ � iff ⟨�⟩≺̂⟨�⟩; and



– � ⊏ � iff ⟨�⟩⊏̂⟨�⟩, or � ∕= � ∧ ⟨�⟩ = ⟨�⟩.

It can also be shown that, for every step sequence w ∈ � ,

ŝos(�) = p̂resos(w)♦ , (4)

where p̂resos(w) = (ôcc(w), ≺̂w, ⊏̂w) is a triple such that ≺̂w and ⊏̂w are ir-
reflexive binary relations on ôcc(w) satisfying, for all distinct �, 	 ∈ ôcc(w),

– �≺̂w	 if (�× 	)∩ ≺w ∕= ∅; and
– �⊏̂w	 if (�× 	)∩ ⊏w ∕= ∅.

Note that p̂resos(w) = p̂resos(v), for all w, v ∈ � , and that p̂resos(w) is an
ŝos(�)-diagram.

Action occurrences of a step can always be partitioned into folded actions.

Proposition 1. Let v = wAu be a step sequence. Then the set of action oc-
currences occ∣w∣+1(v) can be partitioned into a set � of folded actions, each of
which is a strongly connected component of the directed graph

(occ∣w∣+1(v),⊏v ∣occ∣w∣+1(v)×occ∣w∣+1(v)) (5)

and
(�, ⊏̂v∣�×� ) (6)

is a directed acyclic graph. Moreover, for any linearisation 	1 . . . 	m of the graph
in (6), w ∘ ℓ(	1) . . . ℓ(	m) ∘ u ∈ [v].

Proof. Let sos([v]) = (occ(�),≺,⊏) and � ∈ occ∣w∣+1(v). We first observe that
if � ∈ occ(v) is such that � ⊏ � ⊏ � then posv(�) ≤ posv(�) ≤ posv(�) which
means that � ∈ occ∣w∣+1(v). Hence the elements of any ⊏-cycle comprising �
belong to occ∣w∣+1(v). This further implies that if � is an element of a ⊏-cycle
comprising �, then � is also an element of some ⊏v-cycle comprising � and,
moreover, the elements of such a cycle belong to occ∣w∣+1(v). Hence ⟨�⟩ is a
strongly connected component of the graph in (5).

That (6) is a directed acyclic graph follows from the acyclicity of ⊏̂v. The
last part follows directly from the definitions.

Folded so-structures can also be used to recover all the step sequences be-
longing to a comtrace.

Proposition 2. Let � be a comtrace. Then

� = {ℓ̂(v) ∣ v ∈ str(ŝos(�))} , (7)

where, for every v = �1 . . . �k ∈ str(ŝos(�)),

ℓ̂(v) =
(∪

	∈�1

ℓ(	)
)
. . .
(∪

	∈�k
ℓ(	)

)
.



Proof. (⊇) Let v = �1 . . . �k ∈ str(ŝos(�)) and:

w = A1 . . . Ak =
(∪

	∈�1

	
)
. . .
(∪

	∈�k
	
)
.

We have that �1, . . . , �k are nonempty sets of folded actions such that ôcc(�) =
�1 ⊎ ⋅ ⋅ ⋅ ⊎ �k,

– (�j × �i) ∩ ≺̂ = ∅, for all 1 ≤ i ≤ j ≤ k; and
– (�j × �i) ∩ ⊏̂ = ∅, for all 1 ≤ i < j ≤ k.

Moreover, each folded action occurring in v is an equivalence class, and so differ-
ent folded actions occurring in v are disjoint sets. Hence A1, . . . , Ak are nonempty
sets of actions occurrences such that occ(�) = A1 ⊎ ⋅ ⋅ ⋅ ⊎Ak,

– (Aj ×Ai)∩ ≺= ∅, for all 1 ≤ i ≤ j ≤ k; and
– (Aj ×Ai)∩ ⊏= ∅, for all 1 ≤ i < j ≤ k.

As a result, w ∈ str(sos(�)). Since ℓ̂(v) = ℓ(w), we obtain, by (1), ℓ̂(v) ∈ � .

(⊆) To show the reverse inclusion, assume that w = A1 . . . Ak ∈ str(sos(�)).
Then each Ai can be partitioned into a set of folded actions �i (see Proposi-
tion 1). One can see that v = �1 . . . �k ∈ str(ŝos(�)) satisfies ℓ̂(v) = ℓ(w). Hence
the inclusion follows from (1).

Folded actions can be derived directly from step sequences forming a com-
trace.

Proposition 3. Let � and � be two action occurrences of a comtrace � . Then
⟨�⟩ = ⟨�⟩ iff posw(�) = posw(�), for every step sequence w ∈ � .

Proof. (=⇒) ⟨�⟩ = ⟨�⟩ implies that, for every step sequence v = X1 . . . Xn ∈
str(sos(�)), � and � belong to the same set Xi. Hence, by (1), posw(�) =
posw(�), for every step sequence w ∈ � .
(⇐=) Let sos(�) = (occ(�),≺,⊏). The implication follows from the fact (see [6])
that if � ∕⊏ � then there is a step sequence w ∈ � such that posw(�) > posw(�).

Proposition 4. For every step sequence wA, p̂resos(w) is a vertex-induced sub-
graph of p̂resos(wA).

Proof. By Proposition 1 and (2,3), ôcc(wA) = ôcc(w)⊎� , where � is a partition
of occ∣w∣+1(wA) onto folded actions (as in Proposition 1). Furthermore,

≺̂w = ≺̂wA∣ôcc(w)×ôcc(w)

⊏̂w = ⊏̂wA∣ôcc(w)×ôcc(w)
(8)

as well as
≺̂wA∩� × ôcc(wA) = ∅
⊏̂wA∩� × ôcc(w) = ∅ .

(9)

As a result, p̂resos(w) is a vertex-induced subgraph of p̂resos(wA).



3.4 Hasse diagrams of comtraces

As a folded so-structure ŝos(�) = (ôcc(�), ≺̂, ⊏̂) comprises two nested posets,
defining the folded Hasse diagram (or, simply, Hasse diagram) of a comtrace �
is straightforward:

H(�) = (ôcc(�), ≺̂h
, ⊏̂

h
) ,

where

– ≺̂h
= ≺̂ ∖ ((≺̂ ∘ ≺̂) ∪ (≺̂ ∘ ⊏̂) ∪ (⊏̂ ∘ ≺̂)); and

– ⊏̂
h
= (⊏̂ ∖ (⊏̂ ∘ ⊏̂)) ∖ ≺̂h.

Below we denote H(w) = H(�) = (ôcc(w), ≺̂h
w, ⊏̂

h
w), for every step sequence

w ∈ � .
One can see that H(�) is the smallest ŝos(�)-diagram which, in particular,

implies the following.

Proposition 5. If w ∈ � then ≺̂h ⊆ ≺̂w and ⊏̂
h ⊆ ⊏̂w.

Example 1. Consider a comtrace alphabet � with four actions � = {a, b, c, d}
together with a simultaneity and serialisability relations, ser and sim, given by:

sim =
a b

cd

ser =
a b

cd

The following is the folded Hasse diagram for the comtrace [w] = (d)(ab)(c)(d)(abc),
where we denote each action occurrence (x, i) by xi:

(d1)

(a1)

(b1)

(c1) (d2)

(a2c2)

(b2)

Note that the set (a2c2) is the only non-singleton folded action in this case. ⊓⊔

Proposition 6. For every step sequence wA, H(w) is a vertex-induced subgraph
of H(wA).

Proof. Follows from Propositions 4 and 5.

The last result can be strengthened for step sequences with steps correspond-
ing to single folded actions. In what follows, for every step sequence w,

t̂ail(w) = {	 ∈ ôcc(w) ∣ 	 ∩ tail(w) ∕= ∅} .



Proposition 7. Let wA = A1 . . . ApA be a step sequence such that ŝos(w) =
(ôcc(w), ≺̂, ⊏̂). Moreover, let

– occi(wA) = �i ∈ ôcc(w), for each i ≤ p; and
– occ∣w∣+1(wA) = � ∈ ôcc(wA).

Then the following hold:

1. ≺̂h
wA = ≺̂h

w ∪ Z, where Z is the set of all pairs (�k, �) such that

�k ∈ t̂ail(w) and �k≺̂wA� ,

and there is no �m ∈ t̂ail(w) satisfying k < m and

�k⊏̂�m≺̂wA� or �k≺̂�m⊏̂wA� .

2. ⊏̂
h
wA = ⊏̂

h
w ∪ Z, where Z is the set of all pairs (�k, �) such that

�k ∈ t̂ail(w) and �k⊏̂wA� and ¬�k≺̂wA� ,

and there is no �m ∈ t̂ail(w) satisfying k < m and

�k⊏̂�m≺̂wA� or �k⊏̂�m⊏̂wA� .

Proof. We first observe that, for all 	 = �i ∈ ôcc(w),

	≺̂h
wA� ∨ 	⊏̂

h
wA� =⇒ 	 ∈ t̂ail(w) . (10)

Indeed, suppose 	≺̂h
wA� and 	 /∈ t̂ail(w). By 	≺̂h

wA�, there are � ∈ 	 and
� ∈ � such that poswA(�) < poswA(�) = p+ 1 and (ℓ(�), ℓ(�)) /∈ ser .

Since 	 /∈ t̂ail(w), there are i < j ≤ p and 
 ∈ �j such that �j ∈ t̂ail(w)
and ℓ(
) = ℓ(�). Clearly, 	≺̂�j . We also have 
 ≺wA �, and so �j≺̂wA�. Hence
we have 	≺̂�j≺̂wA�, and so ¬	≺̂h

wA�, yielding a contradiction. If 	⊏̂h
wA�, we

proceed similarly. Thus (10) holds. We also note that, by Proposition 6,

ôcc(w) = {�1, . . . , �p} and ôcc(wA) = ôcc(w) ∪ {�} .

(1) Suppose that �k≺̂
h
wA	 and ¬�k≺̂

h
w	 . Then, by Proposition 6, 	 = �. Hence,

by (10), we have �k ∈ t̂ail(w) and, by Proposition 5, �k≺̂wA�. Suppose that
there is �m ∈ t̂ail(w) satisfying k < m and

�k⊏̂�m≺̂wA� or �k≺̂�m⊏̂wA� .

Then ¬�k≺̂
h
wA�, yielding a contradiction. Hence we obtained that (�k, 	) ∈ Z,

and so ≺̂h
wA ⊆ ≺̂

h
w ∪ Z.

To show the reverse inclusion, we first observe that, by Proposition 6, ≺̂h
w ⊆

≺̂h
wA. Let (�k, �) ∈ Z. Then, clearly, �k≺̂�. Suppose ¬�k≺̂

h
wA�. Then, by (10),

there is �l ∈ t̂ail(w) such that k < l and

�k⊏̂�l≺̂wA� or �k≺̂�l⊏̂wA� .

This, however, yields a contradiction with (�k, �) ∈ Z.
(2) The proof is similar to that of part (1).



Given a step sequence w, perhaps the most direct way of constructing the
graph of H(w) = (ôcc(w), ≺̂h

, ⊏̂
h
) is to follow the definitions. First, we generate

the graph of sos(w) = (occ(w),≺,⊏) by taking the set of vertices occ(w) and
processing one-by-one all possible pairs of distinct vertices to derive ≺w and
⊏w. Next, we apply the so-closure to get sos(w), and then compute all folded
actions obtaining ôcc(w) and ŝos(w). Then we remove all the arcs implied by
S2–S4 , in order to generate H(w). The operations of applying the so-closure and
removing unnecessary arcs are straightforward generalisations of the transitive
closure of a binary relation. Clearly, the whole procedure is at least quadratic in
the number of action occurrences of w. In the rest of the paper, we will provide
a more efficient solution which can be regarded as linear.

4 Direct Construction of Hasse Diagrams

In this section, we present an algorithm aimed at constructing a folded Hasse
diagram directly from a given representative v of a comtrace. More precisely, the
input to the algorithm is a comtrace alphabet (�, sim, ser) and a step sequence
v ∈ S∗ with ŝos(v) = (ôcc(v), ≺̂, ⊏̂). We first describe the algorithm and provide
its pseudo-code. After that, we evaluate its complexity.

The algorithm is on-line, which means that it generates H(w) for the suc-
cessive prefixes w of v, and during the construction of H(w) the algorithm does
not access any information about the (suffix) part of v which does belong to
w. Moreover, the algorithm exploits the knowledge of the structure of the in-
termediate diagrams, following the characterisation of Hasse diagrams captured
by Proposition 7. Note that the development of an on-line algorithm is possible
thanks to Propositions 4 and 6 as well as the fact that, for each prefix w of v,
presos(w) is a vertex-induced subgraph of presos(v) (see Section 3.2).

By Proposition 1, when discussing the operation of the algorithm, we may
assume that v = A1 . . . Ar, where occi(v) = �i ∈ ôcc(v), for each i ≤ r. Ensuring
that v is of such a form can be done either through pre-processing in which all
steps of the original step sequence are linearlised as described in Proposition 1,
or by linearising the currently processed step of the original step sequence, as
done in the on-line pseudo-code given later in this section.

We now describe a single phase of the algorithm which starts with the Hasse
diagram H(w) for a step sequence w = A1 . . . Ap (p < r), and constructs the
Hasse diagram H(wA) for wA = A1 . . . ApAp+1.

The construction is based on Proposition 7 and, in particular, the set t̂ail(w).
A crucial property is that only the elements from t̂ail(w) and � = �p+1 can be
connected by arcs added in the current phase.

To implement the generation of new arcs captured by Proposition 7, we
maintain an auxiliary list tail of (pointers to) the elements of t̂ail(w), stored in
the order in which they have been processed. That is, tail = �i1 . . . �im is such
that t̂ail(w) = {�i1 , . . . , �im} and i1 < ⋅ ⋅ ⋅ < im.



For each vertex of the diagram being constructed, i.e., each folded action �i,
we store two sets of folded actions, called strong tail predecessors (stp) and weak
tail predecessors (wtp). The invariant property assumed at the beginning of the
current phase (as well any other phase) is that, for each �i ∈ t̂ail(w),

�i.stp = {�j ∈ t̂ail(w) ∣ �j≺̂�i}
�i.wtp = {�j ∈ t̂ail(w) ∣ �j⊏̂�i} .

(11)

We split the processing of vertex �, for which �.stp = �.wtp = ∅ initially,
into two parts. In Part 1, we check, following Proposition 7, the necessity of
adding arcs from t̂ail(w) to � by scanning the list tail from right-to-left (i.e.,
from �im to �i1). For each �i in tail, we attempt to add a new strong arc (in
≺̂h) or a new weak arc (in ⊏̂

h), in the following way:

– If there are action occurrences � ∈ �i and � ∈ � such that (ℓ(�), ℓ(�)) /∈ ser ,
then we check whether �i belongs to �.stp. If �i /∈ �.stp, we add the arc
�i≺̂

h
� to H(wA) and then add

{�i} ∪ �i.stp ∪ �i.wtp

to both �.stp and �.wtp.
– If there are no action occurrences � ∈ �i and � ∈ � such that (ℓ(�), ℓ(�)) /∈

ser , but there are �′ ∈ �i and �′ ∈ � such that (ℓ(�′), ℓ(�′)) /∈ ser , then we
check whether �i belongs to �.wtp. If �i /∈ �.wtp, we add the arc �i⊏̂

h
wA�

to H(wA) and then add �i.stp to �.stp, and also add

{�i} ∪ �i.stp ∪ �i.wtp

to �.wtp.

At this point we have added all the necessary arcs, but tail still needs to be
updated. In Part 2, we first append � at the end of tail, and then scan tail to
check for the presence of �i in t̂ail(wA), for every �i in tail ∖ {�}. Whenever
�i /∈ t̂ail(wA) we delete �i from tail as well as from the �j.stp and �j.wtp
sets, for all the remaining �j ’s in tail.

To make the updating of tail efficient, we maintain information about those
action occurrences included in a folded action 	 which also belong to tail(w). We
do this by attaching to 	 a set 	 .occ of actions which is initialised to ℓ(	), i.e.,
it initially contains labels of all the action occurrences belonging to 	 . During
the check, if a folded action �i still belongs to tail, we remove from �i.occ all
the elements of �.occ (i.e., labels of all the action occurrences belonging to the
currently processed folded action). If, as a result, the set �i.occ becomes empty,
we know that �i does not belong to t̂ail(wA). In such a case, we remove �i from
tail as well as from the �j.stp and �j.wtp sets, for all the �j ’s in tail.

A pseudo-code of the resulting algorithm, divided into three parts, is given
next.



Algorithm 1: Hasse diagram
INPUT: step sequence v = A1 . . . Ar over (�, sim, ser)
OUTPUT: Hasse diagram H(v)

1: for i := 1 to r do
2: compute strongly connected components � of

(occi(A1 . . . Ai),⊏A1...Ai ∣occi(A1...Ai)×occi(A1...Ai))
3: compute any linearisation 	1 . . . 	m of (�, ⊏̂∣�×� )
4: for all � in 	1 . . . 	m do
5: add new arcs {Part 1}
6: update data structure {Part 2}
7: end for
8: end for

Algorithm 2: Part 1: adding new arcs

1: add vertex � {with occ = ℓ(�) and stp = wtp = ∅}
2: for all �i in tail {scanned right-to-left} do
3: if �i≺̂v� and �i /∈ �.stp then
4: add strong arc �i≺̂

h
�

5: �.stp := �.stp ∪ {�i} ∪ �i.stp ∪ �i.wtp
6: �.wtp := �.wtp ∪ {�i} ∪ �i.stp ∪ �i.wtp
7: end if
8: if �i⊏̂v� and ¬�i≺̂v� and �i /∈ �.wtp then
9: add weak arc �i⊏̂

h
�

10: �.stp := �.stp ∪ �i.stp
11: �.wtp := �.wtp ∪ {�i} ∪ �i.stp ∪ �i.wtp
12: end if
13: end for

Algorithm 3: Part 2: updating data structure

1: add � to tail
2: for all �i in tail ∖ {�} do
3: �i.occ := �i.occ ∖ �.occ
4: if �i.occ = ∅ then
5: remove �i from tail
6: for all �j ∈ tail do
7: remove �i from �j.stp
8: remove �i from �j.wtp
9: end for

10: end if
11: end for



Example 2. Consider the comtrace alphabet from Example 1, a step sequence
w = (d)(ab)(c)(d) and a step A = (abc). Then the Hasse diagram H(w) together
with the auxiliary data structure as well as the set A look as follows:

d1

(a1)

(b1)

(c1) (d2)

c2

a2

b2

tail stp wtp

(a1) ∅ ∅
(b1) ∅ ∅
(c1) {(a1)} {(a1), (b1)}
(d2) {(a1), (b1), (c1)} {(a1), (b1), (c1)}

In the diagram, the folded actions of t̂ail(w) are displayed in bold, while the new
step A is enclosed within a dashed frame.

Processing the new step starts by computing strongly connected components
� of the graph

(occ5(wA),⊏wA∣occ5(wA)×occ5(wA))
= ({a2, b2, c2}, {(a2, c2), (c2, a2), (b2, c2)}) .

There are two strongly connected components in this case, (b2) and (a2c2), and
the graph (�, ⊏̂∣�×� ) contains just one arc, from (b2) to (a2c2). Hence there is
only one linearisation of the folded actions in � , viz. (b2)(a2c2), and as a result
the algorithm will first process (b2) and after that (a2c2).
Applying Part 1 for � = (b2) leads to:

d1

(a1)

(b1)

(c1) (d2)

(b2)

tail stp wtp

(a1) ∅ ∅
(b1) ∅ ∅
(c1) {(a1)} {(a1), (b1)}
(d2) {(a1), (b1), (c1)} {(a1), (b1), (c1)}
(b2) {(a1), (b1), (c1), (d2)} {(a1), (b1), (c1), (d2)}

and the subsequent application of Part 2 results in:

d1

(a1)

(b1)

(c1) (d2)

(b2)



tail stp wtp

(a1) ∅ ∅
(c1) {(a1)} {(a1)}
(d2) {(a1), (c1)} {(a1), (c1)}
(b2) {(a1), (c1), (d2)} {(a1), (c1), (d2)}

We then apply Part 1 for � = (a2c2) which leads to:

d1

(a1)

(b1)

(c1) (d2)

(b2)

(a2c2)

tail stp wtp

(a1) ∅ ∅
(c1) {(a1)} {(a1)}
(d2) {(a1), (c1)} {(a1), (c1)}
(b2) {(a1), (c1), (d2)} {(a1), (c1), (d2)}
(a2c2) {(a1), (c1), (d2)} {(a1), (c1), (d2), (b2)}

and the subsequent application of Part 2 results in:

d1

(a1)

(b1)

(c1) (d2)

(b2)

(a2c2)

tail stp wtp

(d2) ∅ ∅
(b2) {(d2)} {(d2)}
(a2c2) {(d2)} {(d2), (b2)}

⊓⊔

We finally evaluate the complexity of the proposed algorithm. In what follows,
di denotes the size of the step Ai for each i ≤ r, k denotes the size of the
alphabet �, and n = d1 + ⋅ ⋅ ⋅+ dr denotes the size of the input step sequence v.

To start with, the algorithm is on-line, and so we do not have to store the
entire step sequence nor the entire Hasse diagram. All we need to do is maintain
the structure representing the tail of the current diagram. It contains a list of
at most k elements (as ∣t̂ail(w)∣ ≤ k, for every step sequence w) and, since each
element has the size O(k), the memory complexity is O(k2).

Evaluating time complexity of the algorithm is more involved. Let us start
by evaluating the two parts of a single phase, i.e., Algorithms 2 and 3, when
processing Ai.

Part 1 attempts to add new arcs, for every folded action 	 in tail. Tests
carried out in lines 3 and 8 have O(di ⋅ k) complexity. Each of the set operations
in lines 5,6,10 and 11 has O(k) complexity, while the time involved in adding an



arc is constant. The whole loop (lines 2-13) has therefore O(di ⋅ k2) complexity.
Hence the total contribution of Part 1 is equal to

O(d1 ⋅ k2) + ⋅ ⋅ ⋅+O(dr ⋅ k2) = O(n ⋅ k2) .

Part 2 has also O(di ⋅ k2) complexity. In Algorithm 3, the outer loop has at
most k iterations. In each iteration, we carry out some set operations of O(k)
complexity. Moreover, the test in line 4 gives a positive result at most di times
(as each label from ℓ(�) may appear in the �i.occ’s at most once). This means
that the inner loop in line 6 may be executed at most di times with k repetitions
each; thus the set operations in lines 7 and 8 may be executed at most di ⋅k times.
Therefore the overall time complexity is O(di ⋅ k2). Hence the total contribution
of Part 2 is equal to

O(d1 ⋅ k2) + ⋅ ⋅ ⋅+O(dr ⋅ k2) = O(n ⋅ k2) .

The time complexity of Algorithm 1 can now be calculated in the following
way. The main loop has r iterations. The first part involves some operations on
graphs of the size O(k2) or O(k) (by the size of a graph we mean a total number
of vertices and arcs). Finding strongly connected components and topologically
sorting a directed acyclic graph are both linear in its size, and so we can carry
out the first part in O(k2) time, for each step. This contributes O(r ⋅k2) towards
the overall time complexity.

We can now add up the above complexity estimates. The total contributions
of Part 1 and Part 2 were calculated separately, each providing one O(n ⋅ k2)
component. The third component, corresponding to the pre-processing phase
carried out for successive steps of the original step sequence, is O(r ⋅ k2). This
gives:

O(n ⋅ k2) +O(n ⋅ k2) +O(r ⋅ k2) = O((n+ r) ⋅ k2) .

Since r ≤ n, we finally obtain that the total time complexity of the algorithm
described in this section is equal to O(n ⋅ k2).

We can further observe that the factor k is fixed for a given system, and
usually much smaller than n. Hence, the algorithm can in practice be considered
as linear in the size of its input, and so optimal.

5 Applications

A major advantage of Hasse diagrams and the data structure used by the algo-
rithm described above is a convenient and efficient representation of comtraces.
We will now have a brief look at three of its possible applications.

To start with, Hasse diagrams provide an efficient support for checking the
equality of two comtraces. This follows from the fact that two step sequences,
w and v, belong to the same comtrace iff their Hasse diagrams are equal, i.e.,
w ≡� v ⇐⇒ H(w) = H(v). Testing for equality of two graphs is linear in
their size, and so using Hasse diagrams allows checking comtrace equivalence in
O(n ⋅ k2) time, where n is the total number of action occurrences in the two



step sequences, and k is the size of the action alphabet. Hence, for a fixed action
alphabet, comtrace equivalence can be checked in linear time.

In addition to keeping explicit representation of t̂ail(w), it is also worth
keeping information about the set

ĥead(w) = {� ∈ ôcc(w) ∣ � ∩ head(w) ∕= ∅} .

The extended structure supports an efficient concatenation of two comtraces,
[v] and [w]. This follows from the fact that the Hasse diagram H(v ∘ w) of the
concatenated comtrace [v ∘ w] is a disjoint union of Hasse diagrams H(v) and
H(w) together with some additional arcs, each such arc originating in a folded
action of t̂ail(v) and ending in a folded action of ĥead(w).

Using ĥead(w) we can also efficiently generate the normal form of [w]. To
do so, we first need to generate the set � comprising all the folded actions
� ∈ ĥead(w) such that � ⊆ head(w). Having done so, the first step of the normal
form of w is

∪
�∈� ℓ(�). We then iterate the same procedure after deleting from

H(w) all the folded actions in � . The time complexity of the resulting algorithm
is linear in the size of the Hasse diagram of [w], and therefore equal to O(n ⋅ k).

6 Conclusions

In this paper, we presented an efficient way of generating a graph theoretic
representations of comtraces. We also provided a number of properties of folded
versions of stratified order structures.

In future work we plan to extend our current results to cover also gener-
alised comtraces and generalised so-structures [4, 5]. Another, arguably more
challenging, problem is to use Hasse diagrams of comtraces to define an algebra
of comtraces with a suitable iteration operator.
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