
ar
X

iv
:1

31
2.

74
99

v1
 [

cs
.D

S]
 2

9
D

ec
 2

01
3

A Note on Sparse Least-squares Regression

Christos Boutsidis

Mathematical Sciences Department

IBM T.J. Watson Research Center

cboutsi@us.ibm.com

Malik Magdon-Ismail

Computer Science Department

Rensellaer Polytechnic Institute

magdon@cs.rpi.edu

December 31, 2013

Abstract

We compute a sparse solution to the classical least-squares problem minx ‖Ax−b‖2, where A
is an arbitrary matrix. We describe a novel algorithm for this sparse least-squares problem. The

algorithm operates as follows: first, it selects columns from A, and then solves a least-squares

problem only with the selected columns. The column selection algorithm that we use is known

to perform well for the well studied column subset selection problem. The contribution of this

article is to show that it gives favorable results for sparse least-squares as well. Specifically, we

prove that the solution vector obtained by our algorithm is close to the solution vector obtained

via what is known as the “ SVD-truncated regularization approach”.

1 Introduction

Fix inputs A ∈ R
m×n and b ∈ R

m. We study least-squares regression: minx∈Rn ‖Ax − b‖2. It is

well known that the minimum norm solution vector can be found using the pseudo-inverse of A:

x∗ = A†b = (ATA)−1ATb. When A is ill-conditioned, A† becomes unstable to perturbations and

overfitting can become a serious problem. For example, when the smallest non-zero singular value

of A is close to zero, the largest singular value of A† can be extremely large and the solution vector

x∗ = A†b obtained via a numerical algorithm is not the optimal, due to numerical instability issues.

Practitioners deal with such situations using regularization.

Popular regularization techniques are the Lasso [8], the Tikhonov regularization [4], and the

truncated SVD [6]. The lasso minimizes ‖Ax−b‖2+λ||x||1, and Tikhonov regularization minimizes

‖Ax − b‖22 + λ||x||22 (in both cases λ > 0 is the regularization parameter). The truncated SVD

minimizes ‖Akx− b‖2, where k < rank(A) is a rank parameter and Ak ∈ R
m×n is the best rank-k

1

http://arxiv.org/abs/1312.7499v1

approximation to A obtained via the SVD. So, the truncated SVD solution is x∗
k = A

†
kb. Notice that

these regularization methods impose parsimony on x in different ways. A combinatorial approach to

regularization is to explicitly impose the sparsity constraint on x, requiring it to have few non-zero

elements. We give a new deterministic algorithm which, for r = O(k), computes an x̂r ∈ R
n with at

most r non-zero entries such that ‖Ax̂r − b‖2 ≈ ‖Ax∗
k − b‖2.

1.1 Preliminaries

The compact (or thin) Singular Value Decomposition (SVD) of a matrix A ∈ R
m×n of rank ρ is

A =
(

Uk Uρ−k

)

︸ ︷︷ ︸

UA∈Rm×ρ

Σk 0

0 Σρ−k

︸ ︷︷ ︸

ΣA∈Rρ×ρ

VT

k

VT

ρ−k

︸ ︷︷ ︸

V
T

A
∈Rρ×n

,

Here, Uk ∈ R
m×k and Uρ−k ∈ R

m×(ρ−k) contain the left singular vectors of A. Similarly, Vk ∈ R
n×k

and Vρ−k ∈ R
n×(ρ−k) contain the right singular vectors. The singular values of A, which we denote

as σ1(A) ≥ σ2(A) ≥ · · · ≥ σρ(A) > 0 are contained in Σk ∈ R
k×k and Σρ−k ∈ R

(ρ−k)×(ρ−k). We

use A† = VAΣ−1
A

UT

A
∈ R

n×m to denote the Moore-Penrose pseudo-inverse of A with Σ−1
A

denoting

the inverse of ΣA. Let Ak = UkΣkV
T

k ∈ R
m×n and Aρ−k = A −Ak = Uρ−kΣρ−kV

T

ρ−k ∈ R
m×n.

For k < rank(A), the SVD gives the best rank k approximation to A in both the spectral and the

1: Input: A ∈ R
m×n, b ∈ R

m, target rank k < rank(A), and parameter 0 < ε < 1/2.
2: Obtain Vk ∈ R

n×k from the SVD of A and compute E = A−AVkV
T

k ∈ R
m×n.

3: Set C = AΩS ∈ R
m×r, with r =

⌈
9k
ε2

⌉
and

[Ω,S] = DeterministicSampling(VT

k ,E, r),
4: Set xr = C†b ∈ R

r, and x̂r = ΩSxr ∈ R
n (x̂r has at most r non-zeros at the indices

of the selected columns in C).
5: Return x̂r ∈ R

n.

Algorithm 1: Deterministic Sparse Regression

Frobenius norm: for Ã ∈ R
m×n, let rank(Ã) ≤ k; then, for ξ = 2,F, ‖A−Ak‖ξ ≤ ‖A− Ã‖ξ . Also,

‖A − Ak‖2 = ‖Σρ−k‖2 = σk+1(A), and ‖A − Ak‖2F = ‖Σρ−k‖2F =
∑ρ

i=k+1 σ
2
i (A). The Frobenius

and the spectral norm of A are defined as: ‖A‖2F =
∑

i,j A
2
ij =

∑ρ
i=1 σ

2
i (A); and ‖A‖2 = σ1(A).

Let X and Y be matrices of appropriate dimensions; then, ‖XY‖F ≤ min{‖X‖F‖Y‖2, ‖X‖2‖Y‖F}.
This is a stronger version of the standard submultiplicativity property ‖XY‖F ≤ ‖X‖F‖Y‖F, which
we will refer to as “spectral submultiplicativity”.

2

1: Input: VT = [v1, . . . ,vn] ∈ R
k×n; E = [e1, . . . , en] ∈ R

m×n; and r > k.
2: Output: Sampling and rescaling matrices Ω ∈ R

n×r,S ∈ R
r×r.

3: Initialize B0 = 0k×k, Ω = 0n×r, S = 0r×r.
4: for τ = 0 to r − 1 do

5: Set lτ = τ −
√
rk.

6: Pick index i ∈ {1, 2, ..., n} and t such that U(ei) ≤ 1
t
≤ L(vi,Bτ , lτ).

7: Update Bτ+1 = Bτ + tviv
T

i . Set Ωi,τ+1 = 1 and Sτ+1,τ+1 = 1/
√
t.

8: end for

9: Return: Ω ∈ R
n×r,S ∈ R

r×r.

Algorithm 2: DeterministicSampling (from [1])

Given k < ρ = rank(A), the truncated rank-k SVD regularized weights are

x∗
k = A

†
kb = VkΣ

−1
k UT

k b ∈ R
n,

and note that ‖b−AkA
†
kb‖2 = ‖b−UkU

T

k b‖2
Finally, for r < n, let Ω = [zi1 , . . . , zir] ∈ R

n×r where zi ∈ R
m are standard basis vectors; Ω

is a sampling matrix because AΩ ∈ R
m×r is a matrix whose columns are sampled (with possible

repetition) from the columns of A. Let S ∈ R
r×r be a diagonal rescaling matrix with positive entries;

then, we define the sampled and rescaled columns from A by C = AΩS: Ω samples some columns

from A and then S rescales them.

2 Results

Our sparse solver to minimize ‖Ax− b‖2 takes as input the sparsity parameter r (i.e., the solution

vector x is allowed at most r non-zero entries), and selects r rescaled columns from A (denoted by

C). We then solve the least-squares problem to minimize ||Cx − b||2. The result is a dense vector

C†b with r dimensions. The sparse solution x̂r will be zero at indices corresponding to columns not

selected in C, and we use C†b to compute the other entries of x̂r.

Theorem 1. Let A ∈ R
m×n, b ∈ R

m, rank k < rank(A), and 0 < ε < 1/2. Algorithm 1 runs in

time O(mnmin{m,n} + nk3/ε2) and returns x̂r ∈ R
n with at most r =

⌈
9k/ε2

⌉
non-zero entries

such that:

‖Ax̂r − b‖2 ≤ ‖Ax∗
k − b‖2 + (1 + ε) · ‖b‖2 ·

‖A−Ak‖F
σk(A)

.

This upper bound is “small” when A is “effectively” low-rank, i.e., ‖A−Ak‖F/σk(A) ≪ 1. Also,

3

a trivial bound is ‖Ax̂r−b‖2 ≤ ‖b‖2 (error when x̂r is the all-zeros vector), because ‖CC†b−b‖2 ≤
‖C0r×1 − b‖2 = ‖b‖2.

In the heart of Algorithm 1 lies a method for selecting columns from A (Algorithm 2), which

was originally developed in [1] for column subset selection, where one selects columns C from A to

minimize ‖A−CC†A‖F. Here, we adopt the same algorithm for least-squares.

The main tool used to prove Theorem 1 is a new “structural” result that may be of independent

interest.

Lemma 2. Fix A ∈ R
m×n, b ∈ R

n, rank k < rank(A), and sparsity r > k. Let x∗
k = A

†
kb ∈ R

n,

where Ak ∈ R
m×n is the rank-k SVD approximation to A. Let Ω ∈ R

n×r and S ∈ R
r×r be any

sampling and rescaling matrices with rank(VT

kΩS) = k. Let C = AΩS ∈ R
m×r be a matrix of

sampled rescaled columns of A and let x̂r = ΩSC†b ∈ R
n (having at most r non-zeros). Then,

‖Ax̂r − b‖2 ≤ ‖Ax∗
k − b‖2 + ‖(A−Ak)ΩS

(
VT

kΩS
)†
ΣkU

T

k b‖2.

The lemma says that if the sampling matrix satisfies a simple rank condition, then solving the

regression on the sampled columns gives a sparse solution to the original problem with a performance

guarantee.

2.1 Algorithm Description

Algorithm 1 selects r columns from A to form C and the corresponding sparse vector x̂r. The core of

Algorithm 1 is the subroutine DeterministicSampling, which is a method to simultaneously sample the

columns of two matrices, while controlling their spectral and Frobenius norms. DeterministicSampling

takes inputs VT ∈ R
k×n and E ∈ R

m×n; the matrix V is orthonormal, VTV = Ik. (In our

application, VT = VT

k and E = A − Ak.) We view VT and E as two sets of n column vectors,

VT = [v1, . . . ,vn], and E = [e1, . . . , en].

Given k and r and the iterator τ = 0, 1, 2, ..., r − 1, define lτ = τ −
√
rk. For a symmetric

matrix B ∈ R
k×k with eigenvalues λ1, . . . , λk and l ∈ R, define functions φ(l,B) =

∑k
i=1

1
λi−l

, and

L(v,B, l) = v
T(B−l

′
Ik)

−2
v

φ(l′,B)−φ(l,B) −vT(B−l
′Ik)

−1v, where l′ = l+1. Also, for a column e, define U(e) =

eTe

‖A‖2
F

(

1−
√

k/r
)

. At step τ , the algorithm selects any column i for which U(ei) ≤ L(vi,B, lτ) and

computes a weight t such that U(ei) ≤ t−1 ≤ L(vi,B, lτ); Any t−1 in the interval is acceptable.

(There is always at least one such index i (see Lemma 8.1 in [1]).)

The running time is dominated by the search for a column which satisfies U ≤ L. To compute

L, one needs φ(l,B), and hence the eigenvalues of B, and (B− l
′Ik)

−1. This takes O(k3) time once

4

per iteration, for a total of O(rk3). Then, for i = 1, . . . , n, we need to compute L for every vi. This

takes O(nk2) per iteration, for a total of O(nrk2). To compute U , we need eTi ei for i = 1, . . . , n

which takes O(mn). So, in total, DeterministicSampling takes O(nrk2+mn) time, hence Algorithm 1

needs O(mnmin{m,n}+ nk3/ε2) time.

DeterministicSampling uses a greedy procedure to sample columns of VT
k that satisfy the next

Lemma.

Lemma 3 ([1]). On VT ∈ R
k×n, E ∈ R

m×n, and r > k DeterministicSampling returns Ω,S satisfying

σk(V
TΩS) ≥ 1−

√

k/r, ‖EΩS‖F ≤ ‖E‖F.

By Lemma 3, Algorithm 1returns Ω,S that satisfy the rank condition in Lemma 2, so the

structural bound applies. Lemma 3 also bounds two key terms in the bound which ultimately allow

us to prove Theorem 1.

2.2 Proofs

Proof of Theorem 1 By Lemma 3, rank(VT

k ΩS) = k so the bound in Lemma 2 holds. Recall

E = A−Ak. By submultiplicativity, ‖EΩS(VT

kΩS)+Σ−1
k UT

k b‖2 is at most

‖EΩS‖2‖(VT

kΩS)
†‖2‖Σ−1

k UT

k b‖2.

We now bound each term to obtain Theorem 1:

‖EΩS‖2 ≤ ‖EΩS‖F ≤ ‖E‖F = ‖A−Ak‖F (a)

‖(VT

k ΩS)
†‖2 =

1

σk(V
T

kΩS)
≤ 1

1−
√

k/r
≤ 1 + ε (b)

‖Σ−1
k UT

k b‖2 ≤ ‖Σ−1
k ‖2‖UT

k ‖2‖b‖2 = ‖b‖2/σk(A) (c)

(a) follows from Lemma 3; (b) also follows from Lemma 3 using r = ⌈9k/ε2⌉ and ε < 1/2; (c) follows

from submultiplicativity.

Proof of Lemma 2 We will prove a more general result, and Lemma 2 will be a simple corollary.

We first introduce a general matrix approximation problem and present an algorithm for this problem

(Lemma 4). Lemma 2 is a corollary of Lemma 4.

Let B ∈ R
m×ω be a matrix which we would like to approximate; let A ∈ R

m×n be the matrix

5

which we will use to approximate B. Specifically, we want a sparse approximation of B from A,

which means that we would like to choose C ∈ R
m×r consisting of r < n columns from A such that

‖B−CC†B‖F is small. If A = B , then, this is the column based matrix approximation problem,

which has received much interest recently [2, 1]. The more general problem which we study here,

with A 6= B, takes on a surprisingly more difficult flavor. Our motivation is regression, but the

problem could be of more general interest. We will approach the problem through the use of matrix

factorizations. For Z ∈ R
n×k, with ZTZ = Ik, let A = HZT +E, where H ∈ R

m×k; and, E ∈ R
m×n

is the residual error. For fixed A and Z, ‖E‖ξ (ξ = 2,F) is minimized when H = AZ. Let Ω ∈ R
n×r,

S ∈ R
r×r, and C = AΩS ∈ R

m×r.

Lemma 4. If rank(ZTΩS) = k, then,

‖B−CC†B‖ξ ≤ ‖B−HH†B‖ξ + ‖EΩ(ZTΩ)+H†B‖ξ .

Proof. ‖B−CC†B‖ξ

≤ ‖B−C(ZTΩS)
†
H†B‖ξ (a)

= ‖B−AΩS(ZTΩS)
†
H†B‖ξ

= ‖B− (HZT +E)ΩS(ZTΩS)
†
H†B‖ξ

= ‖B−H(ZTΩS)(ZTΩS)
†
H†B+EΩ(ZTΩS)

†
H†B‖ξ

= ‖B−HH†B+EΩS(ZTΩS)
†
H†B‖ξ (b)

≤ ‖B−HH†B‖ξ + ‖EΩS(ZTΩS)
†
H†B‖ξ. (c)

(a) follows by the optimality of C†B; (b) follows because rank(ZTΩS) = k and so ZTΩS(ZTΩS)
†
=

Ik; (c) follows by the triangle inequality of matrix norms.

Lemma 4 is a general tool for the general matrix approximation problem. The bound has two

terms which highlight some trade offs: the first term is the approximation of B using H (H is

used in the factorization to approximate A); the second term is related to E, the residual error in

approximating A. Ideally, one should choose H and Z to simultaneously approximate B with H

and have small residual error E. In general, these are two competing goals, and a balance should be

struck. Here, we focus on the Frobenius norm, and will consider only one extreme of this trade off,

namely choosing the factorization to minimize ‖E‖F. Specifically, since Z has rank k, the best choice

for HZT which minimizes ‖E‖F is Ak. In this case, E = A −Ak. Via the SVD, Ak = UkΣkV
T

k ,

6

and so A = (UkΣk)V
T

k + A − Ak. We apply Lemma 4, with B = b, H = UkΣk, Z = Vk and

E = A−Ak, obtaining the next corollary.

Corollary 5. If rank(VT

kΩS) = k, then,

‖b−CC†b‖2 ≤ ‖b−UkU
T

k b‖2 + ‖EΩS(VT

kΩS)
†
Σ−1

k UT

k b‖2.

Setting ‖b−CC†b‖2 = ‖b−Ax̂r‖2, with x̂r = ΩSC†b and ‖b −UkU
T

k b‖2 = ‖b−Ax∗
k‖, we get

Lemma 2.

3 Related work

A bound can be obtained using the Rank-Revealing QR (RRQR) factorization [3] which only applies

to r = k: a QR-like decomposition is used to select exactly k columns of A to obtain a sparse

solution x̂k. Combining Eqn. (12) of [3] with Strong RRQR [5] one gets a bound ‖x∗
k − x̂k‖2 ≤

√

4k(n − k) + 1/σk(A) · (2‖b‖2 + ‖b−Ax∗
k‖2) . We compare ‖Ax̂r − b‖2 and ‖Ax∗

k − b‖2 and our

bound is generally stronger and applies to any user specified r > k.

Sparse Approximation Literature The problem studied in this paper is NP-hard [7]. Sparse

approximation has important applications and many approximation algorithms have been proposed.

The proposed algorithms are typically either greedy or are based on convex optimization relaxations

of the objective. We refer the reader to [9, 10, 11] and references therein for more details. In general,

these results try to reconstruct b to within an error using the sparsest possible solution x. In our

setting, we fix the sparsity r as a constraint and compare our solution x̂r with the benchmark x∗
k.

4 Numerical illustration

We implemented our algorithm in Matlab and tested it on a sparse approximation problem ‖Ax−b‖2,
where A and b are m× n and m × 1, respectively, with m = 2000 and n = 1000. Each element of

A and b are i.i.d. Gaussian random variables with zero mean and unit variance. We chose k = 20

and experimented with different values of r = 20, 30, 40, ..., 200. Figure 1 shows the additive error

‖Ax̂r−b‖2−‖Ax∗
k−b‖2. This experiment illustrates that the proposed algorithm computes a sparse

solution vector with small approximation error. In this case, ‖b‖2 ≈ 25 and ‖A−Ak‖F/σk(A) ≈ 18,

so the algorithm performs empirically better than what the worst-case bound of our main theorem

predicts.

7

20 40 60 80 100 120 140 160 180 200
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

sparsity parameter r

A
dd

iti
ve

 a
pp

ro
xi

m
at

io
n

bo
un

d
as

 in
 T

he
or

em
 1

experimetal bound

Figure 1: Residual error on a problem with a 2000 × 1000 matrix A. The non-monotonic decrease
arises because the algorithm chooses columns given r, which means that the columns chosen for a
small r are not necessarily a subset of the columns chosen for a larger r.

5 Concluding Remarks

We observe that our bound involves ‖A−Ak‖F. This can be converted to a bound in terms of

‖A−Ak‖2 using ‖A−Ak‖F ≤
√
n− k · ‖A−Ak‖2. The better bound ‖A−Ak‖F ≤ O(1 +

ε
√

n/k) · ‖A−Ak‖2 can be obtained by using a more expensive variant of Deterministic sampling

in [1] that bounds the spectral norm of the sampled E: ‖EΩS‖2 ≤ (1 +
√

n/r)‖E‖2.
Sparsity in our algorithm is enforced in an unsupervised way: the columns C are selected obliv-

iously to b. An interesting open question is whether the use of different factorizations in Lemma 5,

together with choosing the columns C in a b-dependent way can give an error bound in terms of

the optimal error ‖b−AA†b‖2?

8

Acknowledgements

Christos Boutsidis acknowledges the support from XDATA program of the Defense Advanced Re-

search Projects Agency (DARPA), administered through Air Force Research Laboratory contract

FA8750-12-C-0323. Malik Magdon-Ismail was partially supported by the Army Research Labora-

tory’s NS-CTA program under Cooperative Agreement Number W911NF-09-2-0053 and an NSF

CDI grant NSF-IIS 1124827.

References

[1] C. Boutsidis, P. Drineas, and M. Magdon-Ismail. Near-optimal column based matrix recon-

struction. In Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2011.

[2] C. Boutsidis, M. W. Mahoney, and P. Drineas. An improved approximation algorithm for the

column subset selection problem. In SODA, 2009.

[3] T. F. Chan and P. C. Hansen. Some applications of the rank revealing QR factorization. SIAM

Journal on Scientific and Statistical Computing, 13:727–741, 1992.

[4] G.H. Golub, P.C. Hansen, and D. O’Leary. Tikhonov regularization and total least squares.

SIAM Journal on Matrix Analysis and Applications, 21(1):185–194, 2000.

[5] M. Gu and S. Eisenstat. Efficient algorithms for computing a strong rank-revealing QR factor-

ization. SIAM Journal on Scientific Computing, 17:848–869, 1996.

[6] P.C. Hansen. The truncated svd as a method for regularization. BIT Numerical Mathematics,

27(4):534–553, 1987.

[7] B. Natarajan. Sparse approximate solutions to linear systems. SIAM Journal on Computing,

24(2):227234, 1995.

[8] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical

Society, pages 267–288, 1996.

[9] J. Tropp. Greed is good: Algorithmic results for sparse approximation. Information Theory,

IEEE Transactions on 50:10 (2004): 2231-2242.

[10] J. Tropp, A. Gilbert, and M. Strauss. Algorithms for simultaneous sparse approximation. Part

I: Greedy pursuit. Signal Processing 86.3 (2006): 572-588.

9

[11] J. Tropp. Algorithms for simultaneous sparse approximation. Part II: Convex relaxation. Signal

Processing 86.3 (2006): 589-602.

10

