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1 Introduction

A problem in industry, which contains an optimal conversion of machines or
moulds (see [3] or [4]), supplied the origin of investigations of the ”Stochastic
Dynamic Distance Optimal Partitioning (SDDP) problem” (see [6]). Super-
ordinately regarded, SDDP problems are stochastic dynamic programming
problems. If we disregard the given probability distributions for SDDP pro-
blems k-server problems with parallel requests where several servers can also
be located on one point are present. We will distinguish the surplus-situation
where the request can be completely fulfilled by means of the k servers and
and the scarcity-situation where the request cannot be completely met.

Bartal/Grove showed that the ”Harmonic algorithm” is ”competitive”
for the (usual) k-server problem where at most one server is moved in one
step (see [1]). We use the method of the potential function by Bartal/Grove
in order to prove that a corresponding Harmonic algorithm is competitive
for the more general k-server problem in the case of unit distances. For this
we partition the set of points in relation to the online and offline server
positions. (The proof in the case of general distances is the aim of further
investigations.)

2 The Formulation of the Model

1 Let k >
(=)1 be an integer, and M = (M, d) be a finite metric space where

M is a set of points with |M | = N . An algorithm controls k mobiles ser-
vers, which are located on points of M . Several servers can be located on
one point. The algorithm is presented with a sequence σ = r1, r2, · · · , rn of
requests where a request r is defined as an N -ary vector of integers with
ri ∈ {0, 1, · · · , k}. The request means that ri server are needed on point

i (i = 1, 2, · · · , N). We say a request r is served if
{

at least
at most

}
ri ser-

vers lie on i (i = 1, 2, · · · , N) in case
{

C[r, k]
C[k, r]

}
. C[r, k] denotes the case

1For basic knowledge of (usual) k-server problems see also [2], chapters 10 and 11 for
example.
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N∑
i=1

ri ≤ k (surplus-situation, the request can be completely fulfilled) and

C[k, r] denotes the case
N∑

i=1
ri ≥ k (scarcity-situation, the request cannot

be completely met, however they should be met as much as possible). By
moving servers, the algorithm must serve the requests r1, r2, · · · , rn sequen-
tially. For any request sequence σ and any generalized k-server algorithm
ALGp(arallel), ALGp(σ) is defined as the total distance (measured by the
metric d) moved by the ALGp’s servers in servicing σ.

In this paper we will show that the (generalized) harmonic k-server al-
gorithm attains a competitive ratio of k(2(R(k)−1) + 1) (see Theorem 3.1)
against an adaptive online adversary in the case of unit distances (for the
definitions of competitive ratio and adaptive online adversary see [1] or [2],
sections 4.1 and 7.1).

Analogous to [2], p. 152 working with lazy algorithms ALGp is sufficient.
For that reason we define the set of feasible servers positions with respect
to s and r in the following way

ÂN ;k(s, r)

=



s′ ∈ SN ;k

∣∣∣∣∣∣
ri ≤ s′i ≤ max{si, ri}, i = 1, · · · , N, in C[r, k]

min{si, ri} ≤ s′i ≤ ri, i = 1, · · · , n, in C[k, r]





(1)

where

SN ;k :=
{

s ∈ Zn
+ | 0 ≤ si ≤ k (i = 1, · · · , n),

N∑
i=1

si = k

}
(2)

.

The metric d implies that SN ;k = (SN ;k, d̂) is also a finite metric space
where d̂ are the optimal values of the classical transportation problems with
availabilities s and requirements s′ from SN ;k:

N∑
i=1

N∑
j=N

d(i, j) xij → min

subject to

N∑
j=1

xij = si ∀i,
N∑

i=1
xij = s′j ∀j, x ∈ Zn

+ × Zn
+

(see [5], Lemma 3.6).
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The (generalized) HARMONICp k-server algorithm operates as follows:
Serve a (not completely covered) request r with randomly chosen servers so
that for the (new) server positions s′ ∈ ÂN ;k(s, r) is valid with respect to the
previous server positions s and the request r. More precisely, HARMONICp

leads to s′ ∈ ÂN ;k(s, r) with probability

1

d̂(s,s′)∑
s′′:s′′∈ÂN ;k(s,r)

1

d̂(s,s′′)
. (3)

3 The Competitiveness of HARMONICp in case of
Unit Distances

Theorem 3.1 .The HARMONICp k-server algorithm attains a competi-
tive ratio of k(2(R(k)−1) + 1) against an adaptive online adversary in case of
unit distances if

∑
i∈M

rt
i ≤ R(k) (∀t) for given R(k) >

(=)k. 2

Proof. We use the method of the potential function (see [1]) in order
to prove the statement. In case of unit distances it is sufficient to use the
following simple potential function

Φ(s, s′) := f̂
N∑

i=1

1
2 |si − s′i| (= f̂ d̂(s, s′)), s, s′ ∈ SN ;k. (4)

.
At the beginning let f̂ ≥ 0. We will solve for f̂ later.

More precisely and analogous to Bartal/Grove, let Φt denote the value
of Φ at the end of the t th step (corresponding to the t th request rt in
the request sequence) and let Φ∼t denote the value of Φ after the first stage
of the t th step (i.e., after the adversary’s move and before the algorithm’s
move).

In cases C[r, k] and C[k, r] we will show the following properties (see [1],
pages 4 and 5)

Φ ≥ 0. (5)

Φ∼t − Φt−1 ≤ C(k)Dt, where (6)

2This condition is important for case C[k, rt]. (According to the above model∑
i∈M

rt
i ≤ k is true in case C[rt, k].)
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Dt denotes the distance moved by the offline servers (controlled
by the adversary) to serve the request in the t th step.

E(Φ∼t − Φt) ≥ E(Zt), where (7)

Zt represents the cost which incurred by the online algorithm
to serve the request in the t th step.

(5) is straightforward if f̂ ≥ 0.

In the following let

s̄ (∈ SN ;k) denote the (offline) servers position controlled by the
adversary at the end of the t-1 th step (i.e., at the
beginning of the t th step)

s (∈ SN ;k) denote the (online) servers position controlled by the
algorithm at the beginning of the t th step

s′ (∈ ÂN ;k(s, rt)) denote the (online) servers position at the end of
the t th step and

s̄′ (∈ SN ;k) denote the (offline) servers position controlled by the
adversary after the first stage of the t th step.

Then (6) follows by means of the triangle-equation of the metric d̂:

f̂ d̂(s, s̄′)− f̂ d̂(s, s̄) ≤ f̂ d̂(s̄, s̄′) = f̂Dt if C(k) = f̂ .

Proof of (7) and determination of f̂ in case C[rt, k]:

In this case and for assumed unit distances d(i, j) = 1, i 6= j

Φ∼t (s, s̄′) = f̂
∑

i:s̄′i>si

(s̄′i − si) = f̂
∑

i:s̄′i<si

(si − s̄′i) ∀s′ ∈ ÂN ;k(s, rt) (8)

and

Zt(s, s′) =
∑

i:rt
i>si

(rt
i − si) ∀s′ ∈ ÂN ;k(s, rt) (9)

follow and (7) is equivalent to

Φ∼t −E(Φt) ≥ Zt. (7a)
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Now, the set M = {i = 1, · · · , N} of points is partitioned in relation to
s, s̄′i, rt, s′i in case C[rt, k] where rt

i ≤ s′i ≤ max{rt
i , si} for i = 1, · · · , N :

Ma1 =
{
i ∈ M | si ≤ rt

i = s′i ≤ s̄′i
}

=
{
i ∈ M | si ≤ rt

i

}
,

Ma2 =
{
i ∈ M | rt

i ≤ s′i < si ≤ s̄′i
}
,

Ma3 =
{
i ∈ M | rt

i < s′i = si ≤ s̄′i
}
,

Mb1 =
{
i ∈ M | si > s′i ≥ s̄′i ≥ rt

i or si ≥ s′i > s̄′i ≥ rt
i

}
,

Mb2 =
{
i ∈ M | si > s̄′i > s′i ≥ rt

i

}
.

Φ∼t (s, s̄′)− Φt(s̄′, s′)

= f̂

[
∑

i∈Mb1∪Mb2

(si − s̄′i)−
∑

i∈Mb1

(s′i − s̄′i)

]

= f̂

[
∑

i∈Mb2

(si − s̄′i) +
∑

i∈Mb1

(si − s′i)

]
≥ 0

(10)

follows from (8), Φt(s̄′, s′) =
∑

i∈Mb1

(s′i − s̄′i) for unit distances and si > s̄′i

for i ∈ Mb2 and si > s′i for i ∈ Mb1.

Furthermore, we show that

∃s′ ∈ ÂN ;k(s, rt) : Φ∼t (s, s̄′)− Φt(s̄′, s′) > 0 if s /∈ ÂN ;k(s, rt). (11)

We notice that

s /∈ ÂN ;k(s, rt) ⇔ Zt(s, s′) 6= 0 ∀s′ ∈ ÂN ;k(s, rt)

⇔ s 6= s′ ∀s′ ∈ ÂN ;k(s, rt).
(12)

If s 6= s′ then ∃ io : sio > s′io and hence io ∈ Mb2 or io ∈ Mb1 or io ∈ Ma2.
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Furthermore, ∃ io : sio < s′io and hence Ma1 6= ∅.

Firstly, we show that

∃ s′ ∈ ÂN ;k(s, rt) : Ma2 = ∅ and Mb2 = ∅. (13)

We set s′i = rt
i (≤ s̄′i) if si ≤ rt

i according to the conditions from
ÂN ;k(s, rt) in case C[r, k] and

s′i ≥ min {si, s̄
′
i} (≥ rt

i) if si > rt
i (14)

such that
N∑

i=1
s′i = k. That is possible since s̄′i ≥ rt

i ∀i and
N∑

i=1
s̄′i = k.

(14) implies that Ma2 = ∅ and also Mb2 = ∅ in relation to s, s̄′i, rt, s′i.

If now sio > s′io for io ∈ Mb1 then

Φ∼t (s, s̄′)− Φt(s̄′, s′) ≥ f̂ · 1 (15)

using (10), and (11) is valid since we have above constructed s′ ∈ ÂN ;k(s, rt)
with sio > s′io for io ∈ Mb1.

Let

α :=

∣∣∣∣∣

{
s′ ∈ ÂN ;k(s, rt) | (Mb2 6= ∅) ∨ (

∑
i∈Mb1

(si − s′i) ≥ 1)

}∣∣∣∣∣ ,

β :=
∣∣∣
{

s′ ∈ ÂN ;k(s, rt) | (Ma2 6= ∅) ∧ (Mb2 = ∅)

∧ (
∑

i∈Mb1

(si − s′i) = 0)

}∣∣∣∣∣ and
(16)

γ :=
∣∣∣
{

s′ ∈ ÂN ;k(s, rt) | Φ∼t (s, s̄′)− Φt(s̄′, s′) = 0
}∣∣∣ .

As we have above shown α ≥ 1. (15) and (10) yield that γ ≤ β.

Now we want to compute a rough upper bound of β.
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According to its definition Ma2 ⊆ {i ∈ M | si > s′i (≥ 0)} and

together with
∑
i

si =
∑
i

s′i = k the relationship

|Ma2| ≤ k − 1 follows.

Let s′ ∈ ÂN ;k(s, rt) satisfy the conditions from (16). Then the
following relationships are valid for its components s′i:

s′i = rt
i for i ∈ Ma1,

s′i = si for i ∈ Ma3 or i ∈ Mb1,

0 ≤ s′i < si for i ∈ Ma2.

Hence 0 ≤ s′i ≤ si for i ∈ Ma3 or i ∈ Mb1 or i ∈ Ma2 is true and

∏
i∈{i∈M | si > 1}\Ma1

(si + 1) is a rough upper bound for β.

Since
∑

i∈Ma2

si ≤ k − 1 the relationship

β ≤ ∏
i∈{i∈M | si > 1}\Ma1

(si + 1)

≤ max
M ′⊆{i∈M | si > 1}\Ma1

max
(ŝi)i∈M′ :ŝi∈{0,1,··· ,k−1}∑

i∈M′
ŝi=k−1,

∏
i∈M ′

(ŝi + 1)

follows and furthermore

β ≤ max
M ′⊆{i∈M | si > 1}\Ma1

(
k−1
|M ′| + 1

)|M ′|
≤

(
k−1
k−1 + 1

)k−1

since a product is maximal for identical factors subject to the

restriction that the sum of the factors is a constant, and
(

k−1
|M ′| + 1

)|M ′|
is

monotone increasing in |M ′|.

Thus
γ ≤ β ≤ 2k−1. (17)
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In case of unit distances the HARMONICp k-server algorithm includes
that s′ ∈ ÂN ;k(s, rt) are identical distributed.

(3),(17) and (15) in connection with α lead to

E
s′∈ÂN ;k(s,rt) [Φ∼t (s, s̄′)− Φt(s̄′, s′)] ≥ f̂ .0. 2k−1

2k−1+α
+ f̂ .1. α

2k−1+α

E
s′∈ÂN ;k(s,rt) [Φ∼t (s, s̄′)− Φt(s̄′, s′)] ≥ f̂ . 1

2k−1+1
follows since

α
b+α ≥ 1

b+1 for b ≥ 0, α ≥ 1.

Note that Zt(s, s′) ≤ k in case of unit distances.

Then f̂ ≥ k(2k−1 + 1) implies that

E
s′∈ÂN ;k(s,rt) [Φ∼t (s, s̄′)− Φt(s̄′, s′)] ≥ k ≥ E

s′∈ÂN ;k(s,rt) Zt(s, s′)

and the relationship (7) is true for such f̂ .

Finally, the HARMONICp k-server algorithm is k(2k−1 + 1)-competitive
in case C[rt, k] according to [1], Lemma 1.

Proof of (7) and determination of f̂ in case C[k, rt]:

We can use many ideas from case C[rt, k] in analogous way.

For this we replace




<
(−)

>
(−)



 by





>
(−)

<
(−)



 in (8), (9) and (14),

′′min′′ by ′′max′′ in (14),

and • − o by o− • in (8), (9), (10) and (16)

and in corresponding formulas without numbers.
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Thus the considered subsets of M are

Ma1 =
{
i ∈ M | si ≥ rt

i = s′i ≥ s̄′i
}

=
{
i ∈ M | si ≥ rt

i

}
,

Ma2 =
{
i ∈ M | rt

i ≥ s′i > si ≥ s̄′i
}
,

Ma3 =
{
i ∈ M | rt

i > s′i = si ≥ s̄′i
}
,

Mb1 =
{
i ∈ M | si < s′i ≤ s̄′i ≤ rt

i or si ≤ s′i < s̄′i ≤ rt
i

}
,

Mb2 =
{
i ∈ M | si < s̄′i < s′i ≤ rt

i

}

in case C[k, rt].

However the computation of a rough upper bound of β is more different:

If Ma2 6= ∅ then s̄′ 6= s′ and with
N∑

i=1
s̄′i =

N∑
i=1

s′i = k the relationship

Mb1 6= ∅ follows. Since rt
i > 0 for i ∈ Mb1 the inequality

∑
i∈Ma2

rt
i ≤ R(k)− 1 (18)

is valid.

Let s′ ∈ ÂN ;k(s, rt) satisfy the conditions which are analogous to the
conditions from (16). Then the following relationships are valid for the com-
ponents s′i:

s′i = rt
i for i ∈ Ma1,

s′i = si for i ∈ Ma3 or i ∈ Mb1,

rt
i ≥ s′i > si for i ∈ Ma2.

Hence rt
i ≥ s′i ≥ si for i ∈ Ma3 or i ∈ Mb1 or i ∈ Ma2 is true and

since Ma2 ⊆
{
i ∈ M | rt

i > si

}
the numbers

∏
i∈{i∈M | rt

i>si }\Ma1

(rt
i − si + 1) and also

∏
i∈{i∈M | rt

i >0 }\Ma1

(rt
i + 1)

are rough upper bounds for β.
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Using (18)

β ≤ max
M′⊆{i∈M | 0 < rt

i}\Ma1

and |M′|≤R(k)−1

max
(r̂t

i)i∈M′ : r̂t
i∈{1,2,··· ,k}

∑
i∈M′

r̂t
i
=R(k)−1,

∏
i∈M ′

(r̂t
i + 1)

follows and furthermore analogously to the corresponding inequalities
in case C[rt, k]:

β ≤ max
M′⊆{i∈M | si < rt

i}\Ma1

and |M′|≤R(k)−1

(
R(k)−1
|M ′| + 1

)|M ′|
≤

(
R(k)−1
R(k)−1 + 1

)R(k)−1
=

2R(k)−1

Thus
γ ≤ β ≤ 2R(k)−1. (19)

In case of unit distances the HARMONICp k-server algorithm includes
that s′ ∈ ÂN ;k(s, rt) are identical distributed, and analogously to the case
C[rt, k] follows that

the HARMONICp k-server algorithm is k(2R(k)−1 + 1)-competitive.

¥

Conceivable values of R(k) could be 1, 1k; ...; 1, 3k for problems in indu-
stry.

Furthermore we give an example that an additional assumption (as∑
i∈M

rt
i ≤ R(k) in the above theorem) in case C[k, rt] is necessary in order

to prove the competitiveness.

Let k = 1 and
∑

i∈M

rt
i not bounded in case C[k, rt].

The adversary moved his server to another point if and only if the servers
of the adversary and of the algorithm are located on the same point.

The adversary produces request sequence rt = (1, · · · , 1, 0, 1, · · · , 1) in steps
t where rt

i0
= 0 for this point i0 on which the server of the algorithm is

located. Then the cost of the algorithm is equal to 1 in every step.

The HARMONICp algorithm moved his server to a point i 6= i0 with the
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probability 1
N−1 . This also means that then the servers of the adversary and

of the algorithm are located on the same point with the probability 1
N−1 .

Hence E[cost(HARMONICp algorithm)] = (N−1)E[cost(adversary)] fol-
lows in relation to the expected costs and no C(k) (independent of N) exists
such that the HARMONICp k-server algorithm is C(k)-competitive.
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