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Abstract

One way to state the Load Coloring Problem (LCP) is as follows. Let G = (V,E)
be graph and let f : V → {red,blue} be a 2-coloring. An edge e ∈ E is called
red (blue) if both end-vertices of e are red (blue). For a 2-coloring f , let r′f and
b′f be the number of red and blue edges and let µf (G) = min{r′f , b

′

f}. Let µ(G)
be the maximum of µf (G) over all 2-colorings.

We introduce the parameterized problem k-LCP of deciding whether µ(G) ≥
k, where k is the parameter. We prove that this problem admits a kernel with
at most 7k. Ahuja et al. (2007) proved that one can find an optimal 2-coloring
on trees in polynomial time. We generalize this by showing that an optimal
2-coloring on graphs with tree decomposition of width t can be found in time
O∗(2t). We also show that either G is a Yes-instance of k-LCP or the treewidth
of G is at most 2k. Thus, k-LCP can be solved in time O∗(4k).

1 Introduction

For a graph G = (V,E) with n vertices, m edges and maximum vertex degree ∆,
the load distribution of a 2-coloring f : V → {red, blue} is a pair (rf , bf), where
rf is the number of edges with at least one end-vertex colored red and bf is the
number of edges with at least one end-vertex colored blue. We wish to find a coloring
f such that the function λf (G) := max{rf , bf} is minimized. We will denote this
minimum by λ(G) and call this problem Load Coloring Problem (LCP). The
LCP arises in Wavelength Division Multiplexing, the technology used for constructing
optical communication networks [1, 9]. Ahuja et al. [1] proved that the problem is
NP-hard and gave a polynomial time algorithm for optimal colorings of trees. For
graphs G with genus g > 0, Ahuja et al. [1] showed that a 2-coloring f such that
λf (G) ≤ λ(G)(1 + o(1)) can be computed in O(n + g logn)-time, if the maximum

degree satisfies ∆ = o(m
2

ng
) and an embedding is given.

For a 2-coloring f : V → {red, blue}, let r′f and b′f be the number of edges whose
end-vertices are both red and blue, respectively (we call such edges red and blue,
respectively). Let µf (G) := min{r′f , b

′

f} and let µ(G) be the maximum of µf (G) over
all 2-colorings of V . It is not hard to see (and it is proved in Remark 1.1 of [1])
that λ(G) = m − µ(G) and so the LCP is equivalent to maximizing µf (G) over all
2-colorings of V .
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In this paper we introduce and study the following parameterization of LCP.

k-Load Coloring Problem (k-LCP)
Input: A graph G = (V,E) and an integer k.
Parameter: k
Question: Is µ(G) ≥ k ? (Equivalently, is λ(G) ≤ m− k?)

We provide basics on parameterized complexity and tree decompositions of graphs
in the next section. In Section 3, we show that k-LCP admits a kernel with at most
7k vertices. Interestingly, to achieve this linear bound, only two simple reduction
rules are used. In Section 4, we generalise the result of Ahuja et al. [1] on trees by
showing that an optimal 2-coloring for graphs with tree decomposition of width t can
be obtained in time 2tnO(1).We also show that either G is a Yes-instance of k-LCP or
the treewidth of G is at most 2k. As a result, k-LCP can be solved in time 4knO(1).
We conclude the paper in Section 5 by stating some open problems.

2 Basics on Fixed-Parameter Tractability, Kernel-

ization and Tree Decompositions

A parameterized problem is a subset L ⊆ Σ∗ × N over a finite alphabet Σ. L is
fixed-parameter tractable if the membership of an instance (x, k) in Σ∗ × N can be
decided in time f(k)|x|O(1), where f is a function of the parameter k only. It is
customary in parameterized algorithms to often write only the exponential part of
f(k): O∗(t(k)) := O(t(k)(kn)O(1)).

Given a parameterized problem L, a kernelization of L is a polynomial-time al-
gorithm that maps an instance (x, k) to an instance (x′, k′) (the kernel) such that
(i) (x, k) ∈ L if and only if (x′, k′) ∈ L, (ii) k′ ≤ g(k), and (iii) |x′| ≤ g(k) for some
function g. The function g(k) is called the size of the kernel.

It is well-known that a parameterized problem L is fixed-parameter tractable if
and only if it is decidable and admits a kernelization. Due to applications, low degree
polynomial size kernels are of main interest. Unfortunately, many fixed-parameter
tractable problems do not have kernels of polynomial size unless the polynomial hier-
archy collapses to the third level, see, e.g., [2, 3, 4]. For further background and termi-
nology on parameterized complexity we refer the reader to the monographs [5, 6, 8].

Definition 1. A tree decomposition of a graph G = (V,E) is a pair (X , T ), where
T = (I, F ) is a tree and X = {Xi : i ∈ I} is a collection of subsets of V called bags,
such that:

1.
⋃

i∈I Xi = V ;

2. For every edge xy ∈ E, there exists i ∈ I such that {x, y} ⊆ Xi;

3. For every x ∈ V , the set {i : x ∈ Xi} induces a connected subgraph of T .

The width of (T ,X ) is maxi∈I |Xi| − 1. The treewidth of a graph G is the minimum
width of all tree decompositions of G.
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To distinguish between vertices of G and T , we call vertices of T nodes. We will
often speak of a bag Xi interchangeably with the node i to which it corresponds in
T . Thus, for example, we might say two bags are neighbors if they correspond to
nodes in T which are neighbors. We define the descendants of a bag Xi as follows:
every child of Xi is a descendant of Xi, and every child of a descendant of Xi is a
descendant of Xi.

Definition 2. A nice tree decomposition of a graph G = (V,E) is a tree decom-
position (X , T ) such that T is a rooted tree, and each node i falls under one of the
following classes:

• i is a Leaf node: Then i has no children;

• i is an Introduce node: Then i has a single child j, and there exists a vertex
v /∈ Xj such that Xi = Xj ∪ {v};

• i is a Forget node: Then i has a single child j, and there exists a vertex
v ∈ Xj such that Xi = Xj \ {v};

• i is a Join node: Then i has two children h and j, and Xi = Xh = Xj.

It is known that any tree decomposition of a graph can be transformed into a tree
decomposition of the same width.

Lemma 1. [7] Given a tree decomposition with O(n) nodes of a graph G with n
vertices, we can construct, in time O(n), a nice tree decomposition of G of the same
width and with at most 4n nodes.

3 Linear Kernel

For a vertex v of a graph G = (V,E) and set X ⊆ V , let degX(v) denote the number
of neighbors of v in X . If X = V , we will write deg(v) instead of degV (v).

Lemma 2. Let G = (V,E) be a graph with no isolated vertices, with maximum degree
∆ ≥ 2 and let |V | ≥ 5k. If |V | ≥ 4k +∆, then (G, k) is a Yes-instance of k-LCP.

Proof. Suppose that |V | ≥ 4k +∆, but (G, k) is a No-instance of k-LCP.
Let M be a maximum matching in G and let Y be the set of vertices which are

not end-vertices of edges in M. If M has at least 2k edges, then we may color half of
them blue and half of them red, so we conclude that |M | < 2k.

For an edge e = uv in M , let degY (e) = degY (u) + degY (v), that is the number
of edges between a vertex in Y and a vertex of e.

Claim For any e in M, degY (e) ≤ max{∆− 1, 2}.

Proof of Claim: Suppose that degY (e) ≥ ∆ and let e = uv. As u and v are adjacent,
dY (u) and dY (v) are each less than ∆. But as degY (u) + degY (v) = degY (e) ≥ ∆,
it follows that degY (u) ≥ 1 and degY (v) ≥ 1. Then either u and v have only one
neighbor in Y, which is adjacent to both of them (in which case degY (e) = 2), or
there exist vertices x 6= y ∈ Y such that x is adjacent to u and y is adjacent to v.
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Then M is not a maximum matching, as xuvy is an augmenting path, which proves
the claim.

Now let M ′ be a subset of edges of M such that

∑

e′∈M ′

degY (e
′) ≥ k − |M ′|, (1)

and

[

∑

e′∈M ′

degY (e
′)

]

− degY (e) < k − |M ′|, for any e ∈M ′. (2)

To see that M ′ exists observe first that M ′ = M satisfies (1). Indeed, suppose it
is not true. Then |V | < |V (M)|+ k − |M | = k + |M | < 5k, a contradiction with our
assumption that |V | ≥ 5k. Now let M ′ be the minimal subset of M that satisfies (1),
and observe that by minimality M ′ also satisfies (2).

Observe that |M ′| ≤ k. Then by the Claim, we have that
∑

e′∈M ′ degY (e
′) ≤

k− |M ′|+∆. Color M ′ and all neighbors of M ′ in Y red, and note that there are at
most k − |M ′| +∆ + 2|M ′| = k + |M ′| +∆ ≤ 2k +∆ such vertices. The number of
red edges is at least k − |M ′|+ |M ′| = k.

Color the remaining vertices of G blue. By assumption there are at least 4k+∆−
2k −∆ ≥ 2k such vertices. As G contains no isolated vertices and M is a maximum
matching, the blue vertices in Y have neighbors in the vertices ofM \M ′. Thus, every
blue vertex has a blue neighbor. It follows that there are at least 2k/2 = k blue edges.
Thus, (G, k) is a Yes-instance of k-LCP.

We will use the following reduction rules for a graph G.

Reduction Rule 1. Delete isolated vertices.

Reduction Rule 2. If there exists a vertex x and set of vertices S such that |S| > k
and every s ∈ S has x as its only neighbor, delete a vertex from S.

Theorem 1. The problem k-LCP has a kernel with at most 7k vertices.

Proof. Assume that G is a graph reduced by Rules 1 and 2. Assume also that G is a
No-instance. We will prove that G has at most 7k vertices.

Claim A. There is no pair x, y of distinct vertices such that deg(x) > 2k and deg(y) >
k.

Proof of Claim: Suppose such a pair x, y exists. Color y and k of its neighbors, not
including x, red. This leaves x and at least k of its neighbors uncolored. Color x and
k of its neighbors blue.

Construct G′ = (V ′, E′) as follows. Let x be a vertex in G of maximum degree.
Let S be the vertices of G whose only neighbor is x. Then let G′ = G − (S ∪ {x}).
The next claim follows from the definition of G′.

Claim B. The graph G′ has no isolated vertices.
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The next claim follows from the definition of G′ and Claim A.

Claim C. If the maximum degree in G′ is at least 2k, then G is a Yes-instance of
k-LCP.

The next claim follows from the definition of G′ and Rule 2.

Claim D. We have |V | ≤ |V ′|+ k + 1.

Observe that if G′ was a Yes-instance of k-LCP then so would be G. Thus, G′ is
a No-instance of k-LCP. If the maximum degree in G′ is 1, then we may assume that
|V ′| < 4k as otherwise by Claim B G′ is a matching with at least 2k edges and so
(G′, k) is a Yes-instance. So, the maximum degree of G′ is at least 2. By Claim C
and Lemma 2, we may assume that |V ′| ≤ 4k + 2k − 1 = 6k − 1. Then by Claim D,
|V | ≤ 6k − 1 + k + 1 = 7k.

Using the 7k kernel of this section we can get a simple algorithm that tries all
2-colourings of vertices of the kernel. The running time is O∗(27k) = O∗(128k). In
the next section, we obtain an algorithm of running time O∗(4k).

4 Load Coloring Parameterized by Treewidth

Theorem 2. Given a tree decomposition of G of width t, we can solve LCP in time
O(2t+1(k + 1)4n3).

Proof. Let G = (V,E) be graph and let (X , T ) be a tree decomposition of G of width
t, where T = (I, F ) and X = {Xi : i ∈ I}. By Lemma 1, we may assume that (X , T )
is a nice tree decomposition.

Let ψ(Xi) denote the set of vertices in V which appear in eitherXi or a descendant
of Xi. For each i ∈ I, each S ⊆ Xi and each r, b ∈ {0, 1, . . . , k}, define the boolean-
valued function F (Xi, S, r, b) to be true if there exists a 2-coloring f : ψ(Xi) →
{red, blue} such that f−1(red) ∩ Xi = S and there are at least r red edges and at
least b blue edges in G[ψ(Xi)]. We will say such an f satisfies F (Xi, S, r, b).

Let X0 denote the bag which is the root of T , and observe that G is a Yes-
instance if and only if F (X0, S, k, k) is true for some S ⊆ X0. We now show how
to calculate F (Xi, S, r, b) for each Xi, S, r and b. Assume we have already calculated
F (Xj , S

′, r′, b′) for all descendants j of i and all values of S′, r′, b′. Our calculation of
F (Xi, S, r, b) depends on whether i is a Leaf, Introduce, Forget or Join node.

i is a Leaf node: As ψ(Xi) = Xi there is exactly one 2-coloring f : ψ(Xi) →
{red, blue} such that f−1(red)∩Xi = S. It is sufficient to set F (Xi, S, r, b) to be true
if and only if this coloring gives at least r red edges and at least b blue edges.

i is an Introduce node: Let j be the child of i and let v be the vertex such
that Xi \ Xj = {v}. If v ∈ S, let r∗ be the number of neighbors of v in S. Then
for any 2-coloring on ψ(Xi), the number of red edges in G[ψ(Xi)] is exactly the
number of red edges in G[ψ(Xj)] plus r

∗, and the number of blue edges is the same in
G[ψ(Xi)] and G[ψ(Xj)]. Therefore we may set F (Xi, S, r, b) to be true if and only if
F (Xj , S \{v},max(r−r∗, 0), b) is true. Similarly if v /∈ S, we may set F (Xj , S, r, b) to
be true if and only if F (Xj , S \ {v}, r,max(b− b∗, 0)) is true, where b∗ is the number
of neighbors of v in Xi \ S.

5



i is a Forget node: Let j be the child of i and let v be the vertex such that Xj \
Xi = {v}. Observe that ψ(Xi) = ψ(Xj), and so any 2-coloring of ψ(Xi) has exactly
the same number of red edges or blue edges in G[ψ(Xi)] and G[ψ(Xj)]. Therefore we
may set F (Xi, S, r, b) to be true if and only if F (Xj , S, r, b) or F (Xj , S ∪ {v}, r, b) is
true.

i is a Join node: Let h and j be the children of i. Let r∗ be the number of red
edges in Xi.

Then observe that if there there is a 2-coloring on ψ(Xi) consistent with S such
that there are rh red edges in G[ψ(Xh)] and rj red edges in G[ψ(Xj)], then rh, rj ≥ r∗,
and the number of red edges in G[ψ(Xi)] is rh + rj − r∗.

Let r′ = min(r∗, k). Then if there are at least r ≤ k red edges in G[ψ(Xi)], there
are at least rh red edges in G[ψ(Xh)] for some rh such that r′ ≤ rh ≤ k, and there are
at least r−rh+r

′ red edges in G[ψ(Xj)]. Similarly let b∗ be the number of blue edges
in Xi, and let b′ = min(b∗, k). Then if there are at least b ≤ k blue edges in G[ψ(Xi)],
there are at at least bh blue edges in G[ψ(Xj)] for some bh such that b′ ≤ bh ≤ k, and
there are at least b− bh + b′ blue edges in G[ψ(Xj)].

Therefore, we may set F (Xi, S, r, b) to be true if and only if there exist rh, bh such
that r′ ≤ rh ≤ k, b′ ≤ bh ≤ k, and both F (Xh, S, rh, bh) and F (Xj , S,max(r − rh +
r′, 0),max(b− bh + b′, 0)) are true.

It remains to analyse the running time of the algorithm.
We first analyse the running time of calculating a single value F (Xi, S, r, b) assum-

ing we have already calculated F (Xj , S
′, r′, b′) for all descendants j of i and all values

of S′, r′, b′. In the case of a Leaf node, we can calculate F (Xi, S, r, b) in O(n +m)
by checking a single 2-coloring. In the case of an Introduce node, we need to check
a single value for the child of i, and in the case of a Forget node we need to check
two values for the child of i. Thus, these cases can be calculated in O(n +m) time.
Finally, for a Join node, we need to check a value from both children of i for every
possible way of choosing rh, bh such that r′ ≤ rh ≤ k and b′ ≤ bh ≤ k. There are at
most (k+1)2 such choices and so we can calculate F (Xi, S, r, b) in O((k+1)2(n+m))
time.

It remains to check how many values need to be calculated. As there are at most
O(n) bags Xi, at most 2t+1 choices of S ⊆ Xi, and at most k + 1 choices for each of
r and b, the number of values F (Xi, S, r, b) we need to calculate is O(n2t+1(k + 1)2).
As each value can be calculated in polynomial time, overall we have running time
O(2t+1(k + 1)4n(n+m)) = O(2t+1(k + 1)4n3).

We will combine Theorem 2 with the following lemma to obtain Theorem 3.

Lemma 3. For a graph G, in polynomial time, we can either determine that G is a
Yes-instance of k-LCP, or construct a tree decomposition of G of width at most 2k.

Proof. If every component of G has at most k− 1 edges then we may easily construct
a tree decomposition of G of width at most k − 1 (as each component has at most k
vertices).

Now assume that G has a component with at least k edges. By starting with a
single vertex in a component with at least k edges, and adding adjacent vertices one
at a time, construct a minimal set of vertices X such that G[X ] is connected and
|E(X)| ≥ k, where E(X) is the set of edges with both end-vertices in X . Let v be
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the last vertex added to X . Then G[X \ {v}] is connected and |E(X \ {v})| < k. It
follows that |X \ {v}| ≤ k and so |X | ≤ k + 1.

Now if |E(V \X)| ≥ k, then we may obtain a solution for k-LCP by coloring all
of X red and all of V \X blue. Otherwise, we may construct a tree decomposition of
G[V \X ] of width at most k− 1. Now add X to every bag in this tree decomposition.
Observe that the result satisfies the conditions of a tree decomposition and has width
at most k − 1 + |X | ≤ 2k.

Theorem 3. There is an algorithm of running time O∗(4k) to solve k-LCP.

5 Open Problems

Our kernel and fixed-parameter algorithm seem to be close to optimal: we do not
believe that k-LCP admits o(k)-vertex kernel or 2o(k) running time algorithm unless
the Exponential Time Hypothesis fails. It would be interesting to prove or disprove it.
It would also be interesting to obtain a smaller kernel or faster algorithm for k-LCP.

Acknowledgments We are grateful to the referees for some suggestions that im-
proved results of our paper.
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