arXiv:1308.1820v2 [cs.DS] 31 Mar 2014

Parameterized Algorithms for Load Coloring Problem

Gregory Gutin and Mark Jones

Department of Computer Science
Royal Holloway, University of London
Egham, Surrey TW20 0EX, UK
gutin|markj@cs.rhul.ac.uk

Abstract

One way to state the Load Coloring Problem (LCP) is as follows. Let G = (V, E)
be graph and let f : V — {red, blue} be a 2-coloring. An edge e € F is called
red (blue) if both end-vertices of e are red (blue). For a 2-coloring f, let ' and
b’ be the number of red and blue edges and let p1f(G) = min{r}, b }. Let u(G)
be the maximum of uz(G) over all 2-colorings.

We introduce the parameterized problem k-LCP of deciding whether p(G) >
k, where k is the parameter. We prove that this problem admits a kernel with
at most 7k. Ahuja et al. (2007) proved that one can find an optimal 2-coloring
on trees in polynomial time. We generalize this by showing that an optimal
2-coloring on graphs with tree decomposition of width ¢ can be found in time
O*(2"). We also show that either G is a Yes-instance of k-LCP or the treewidth
of G is at most 2k. Thus, k-LCP can be solved in time O* (4%).

1 Introduction

For a graph G = (V, E) with n vertices, m edges and maximum vertex degree A,
the load distribution of a 2-coloring f : V' — {red,blue} is a pair (rs,bs), where
ry is the number of edges with at least one end-vertex colored red and by is the
number of edges with at least one end-vertex colored blue. We wish to find a coloring
f such that the function A\;(G) := max{ry,bs} is minimized. We will denote this
minimum by A(G) and call this problem LOAD COLORING PROBLEM (LCP). The
LCP arises in Wavelength Division Multiplexing, the technology used for constructing
optical communication networks [I, [0]. Ahuja et al. [I] proved that the problem is
NP-hard and gave a polynomial time algorithm for optimal colorings of trees. For
graphs G with genus g > 0, Ahuja et al. [I] showed that a 2-coloring f such that
Ar(G) < AMG)(1 + o(1)) can be computed in O(n + glogn)-time, if the maximum
degree satisfies A = 0(77’;—;) and an embedding is given.

For a 2-coloring f : V' — {red,blue}, let r; and b, be the number of edges whose
end-vertices are both red and blue, respectively (we call such edges red and blue,
respectively). Let yi7(G) := min{r’, b’} and let u(G) be the maximum of uy(G) over
all 2-colorings of V. Tt is not hard to see (and it is proved in Remark 1.1 of [I])
that A(G) = m — u(G) and so the LCP is equivalent to maximizing p(G) over all
2-colorings of V.

http://arxiv.org/abs/1308.1820v2

In this paper we introduce and study the following parameterization of LCP.

k-LoAD COLORING PROBLEM (k-LCP)

Input: A graph G = (V, E) and an integer k.
Parameter: k

Question: Is u(G) > k 7 (Equivalently, is A\(G) < m — k?)

We provide basics on parameterized complexity and tree decompositions of graphs
in the next section. In Section [B] we show that k-LCP admits a kernel with at most
Tk vertices. Interestingly, to achieve this linear bound, only two simple reduction
rules are used. In Section Ml we generalise the result of Ahuja et al. [I] on trees by
showing that an optimal 2-coloring for graphs with tree decomposition of width ¢ can
be obtained in time 2:n°™) . We also show that either G is a Yes-instance of k-LCP or
the treewidth of G is at most 2k. As a result, k-LCP can be solved in time 4¥n°M),
We conclude the paper in Section [Bl by stating some open problems.

2 Basics on Fixed-Parameter Tractability, Kernel-
ization and Tree Decompositions

A parameterized problem is a subset L C X* x N over a finite alphabet X. L is
fized-parameter tractable if the membership of an instance (z,k) in ¥* x N can be
decided in time f(k)|z|°M), where f is a function of the parameter k only. It is
customary in parameterized algorithms to often write only the exponential part of
F(k): O*(t(k)) := O(t(k) (kn)OD).

Given a parameterized problem L, a kernelization of L is a polynomial-time al-
gorithm that maps an instance (z,k) to an instance (z',k’) (the kernel) such that
(i) (z,k) € L if and only if (z/, k") € L, (i) k" < g(k), and (iii) |2'| < g(k) for some
function g. The function g(k) is called the size of the kernel.

It is well-known that a parameterized problem L is fixed-parameter tractable if
and only if it is decidable and admits a kernelization. Due to applications, low degree
polynomial size kernels are of main interest. Unfortunately, many fixed-parameter
tractable problems do not have kernels of polynomial size unless the polynomial hier-
archy collapses to the third level, see, e.g., [2,[3,[4]. For further background and termi-
nology on parameterized complexity we refer the reader to the monographs [5, [6] §].

Definition 1. A tree decomposition of a graph G = (V, E) is a pair (X,T), where
T =(I,F)is atree and X = {X; : i € I} is a collection of subsets of V' called bags,
such that:

1. Uie[Xl = V,’
2. For every edge xy € E, there exists i € I such that {z,y} C X;;
3. For every x € V, the set {i: x € X;} induces a connected subgraph of T .

The width of (T, X) is maxey | X;| — 1. The treewidth of a graph G is the minimum
width of all tree decompositions of G.

To distinguish between vertices of G and T, we call vertices of T nodes. We will
often speak of a bag X; interchangeably with the node i to which it corresponds in
T. Thus, for example, we might say two bags are neighbors if they correspond to
nodes in 7 which are neighbors. We define the descendants of a bag X, as follows:
every child of X; is a descendant of X;, and every child of a descendant of X is a
descendant of X;.

Definition 2. A nice tree decomposition of a graph G = (V, E) is a tree decom-
position (X, T) such that T is a rooted tree, and each node i falls under one of the
following classes:

e i is a Leaf node: Then i has no children;

e | is an Introduce node: Then i has a single child j, and there exists a vertex
v ¢ X; such that X; = X; U{v};

e ; is a Forget node: Then ¢ has a single child j, and there exists a vertex
v € X; such that X; = X; \ {v};

e i is a Join node: Then ¢ has two children h and j, and X; = X5, = X;.

It is known that any tree decomposition of a graph can be transformed into a tree
decomposition of the same width.

Lemma 1. [7] Given a tree decomposition with O(n) nodes of a graph G with n
vertices, we can construct, in time O(n), a nice tree decomposition of G of the same
width and with at most 4n nodes.

3 Linear Kernel

For a vertex v of a graph G = (V, E) and set X C V| let degy (v) denote the number
of neighbors of v in X. If X =V, we will write deg(v) instead of degy, (v).

Lemma 2. Let G = (V, E) be a graph with no isolated vertices, with mazimum degree
A >2 andlet V| >5k. If [V| > 4k + A, then (G, k) is a Yes-instance of k-LCP.

Proof. Suppose that |V| > 4k + A, but (G, k) is a No-instance of k-LCP.

Let M be a maximum matching in G and let Y be the set of vertices which are
not end-vertices of edges in M. If M has at least 2k edges, then we may color half of
them blue and half of them red, so we conclude that |M| < 2k.

For an edge e = wv in M, let degy (e) = degy (u) + degy (v), that is the number
of edges between a vertex in Y and a vertex of e.

Claim For any e in M, degy (e) < max{A —1,2}.

Proof of Claim: Suppose that degy () > A and let e = uv. As v and v are adjacent,
dy (u) and dy (v) are each less than A. But as degy (u) + degy (v) = degy (e) > A,
it follows that degy (u) > 1 and degy (v) > 1. Then either u and v have only one
neighbor in Y, which is adjacent to both of them (in which case degy-(¢) = 2), or
there exist vertices # y € Y such that = is adjacent to uw and y is adjacent to v.

Then M is not a maximum matching, as xuvy is an augmenting path, which proves
the claim.

Now let M’ be a subset of edges of M such that

> degy(€) >k — M, (1)
e'eM’

and

[Z degy(e')l —degy (e) < k —|M’'|, for any e € M'. (2)
e’eM’

To see that M’ exists observe first that M’ = M satisfies (). Indeed, suppose it
is not true. Then |V| < |[V(M)|+ k — |M| =k +|M| < 5k, a contradiction with our
assumption that |V| > 5k. Now let M’ be the minimal subset of M that satisfies (),
and observe that by minimality M’ also satisfies (2).

Observe that [M’| < k. Then by the Claim, we have that) ,, degy(e') <
k—|M’| + A. Color M’ and all neighbors of M’ in Y red, and note that there are at
most k — |[M'| + A +2|M’'| = k+ |[M'| + A < 2k + A such vertices. The number of
red edges is at least k — |[M'| + |M'| = k.

Color the remaining vertices of G blue. By assumption there are at least 4k + A —
2k — A > 2k such vertices. As G contains no isolated vertices and M is a maximum
matching, the blue vertices in Y have neighbors in the vertices of M\ M’. Thus, every
blue vertex has a blue neighbor. It follows that there are at least 2k/2 = k blue edges.
Thus, (G, k) is a Yes-instance of k-LCP. O

We will use the following reduction rules for a graph G.
Reduction Rule 1. Delete isolated vertices.

Reduction Rule 2. If there exists a vertex x and set of vertices S such that |S| > k
and every s € S has x as its only neighbor, delete a vertex from S.

Theorem 1. The problem k-LCP has a kernel with at most Tk vertices.

Proof. Assume that G is a graph reduced by Rules[Il and 2l Assume also that G is a
No-instance. We will prove that G has at most 7k vertices.

Claim A. There is no pair x,y of distinct vertices such that deg(x) > 2k and deg(y) >
k.

Proof of Claim: Suppose such a pair z,y exists. Color y and k of its neighbors, not
including z, red. This leaves z and at least k of its neighbors uncolored. Color z and
k of its neighbors blue.

Construct G’ = (V', E’) as follows. Let x be a vertex in G of maximum degree.
Let S be the vertices of G whose only neighbor is 2. Then let G’ = G — (S U {«}).
The next claim follows from the definition of G'.

Claim B. The graph G’ has no isolated vertices.

The next claim follows from the definition of G’ and Claim A.

Claim C. If the mazimum degree in G’ is at least 2k, then G is a Yes-instance of
k-LCP.

The next claim follows from the definition of G’ and Rule
Claim D. We have |V| < |[V'|+k+ 1.

Observe that if G’ was a Yes-instance of k-LCP then so would be G. Thus, G’ is
a No-instance of k-LCP. If the maximum degree in G’ is 1, then we may assume that
|V'| < 4k as otherwise by Claim B G’ is a matching with at least 2k edges and so
(G', k) is a Yes-instance. So, the maximum degree of G’ is at least 2. By Claim C
and Lemma [2, we may assume that |V'| < 4k 4+ 2k — 1 = 6k — 1. Then by Claim D,
VI<6k—1+k+1=Tk. O

Using the 7k kernel of this section we can get a simple algorithm that tries all
2-colourings of vertices of the kernel. The running time is O*(27%) = O*(128%). In
the next section, we obtain an algorithm of running time O*(4%).

4 Load Coloring Parameterized by Treewidth

Theorem 2. Given a tree decomposition of G of width t, we can solve LCP in time
O(2t+1 (k+ 1)4n3).

Proof. Let G = (V, E) be graph and let (X, 7)) be a tree decomposition of G of width
t, where T = (I, F) and X = {X,; : i € I'}. By Lemma[ll we may assume that (X, 7T)
is a nice tree decomposition.

Let 1(X;) denote the set of vertices in V' which appear in either X; or a descendant
of X;. For each ¢ € I, each S C X; and each r,b € {0,1,...,k}, define the boolean-
valued function F(X;,S,r,b) to be true if there exists a 2-coloring f : ¥(X;) —
{red, blue} such that f~!(red) N X; = S and there are at least 7 red edges and at
least b blue edges in G[1(X;)]. We will say such an f satisfies F(X;,S,r,b).

Let X denote the bag which is the root of 7, and observe that G is a YES-
instance if and only if F(Xy,S,k,k) is true for some S C X;. We now show how
to calculate F(X;,S,r,b) for each X;, S,r and b. Assume we have already calculated
F(X;,8,r,) for all descendants j of ¢ and all values of S’,7/,b’. Our calculation of
F(X;,S,r,b) depends on whether i is a Leaf, Introduce, Forget or Join node.

i is a Leaf node: As ¢(X;) = X; there is exactly one 2-coloring f : ¢(X;) —
{red, blue} such that f~!(red)NX; = S. It is sufficient to set F(X;, S,r,b) to be true
if and only if this coloring gives at least r red edges and at least b blue edges.

1 is an Introduce node: Let j be the child of 7 and let v be the vertex such
that X; \ X; = {v}. If v € S, let 7* be the number of neighbors of v in S. Then
for any 2-coloring on t(X;), the number of red edges in G[¢(X;)] is exactly the
number of red edges in G[¢(X;)] plus r*, and the number of blue edges is the same in
G(X;)] and G(X;)]. Therefore we may set F(X;,S,r,b) to be true if and only if
F(X;,S\{v}, max(r—r*,0),b) is true. Similarly if v ¢ S, we may set F'(X;, S, r,b) to
be true if and only if F(X;, S\ {v},r,max(b— b*,0)) is true, where b* is the number
of neighbors of v in X; \ S.

i is a Forget node: Let j be the child of ¢ and let v be the vertex such that X\
X; = {v}. Observe that (X;) = ¥(X;), and so any 2-coloring of 1(X;) has exactly
the same number of red edges or blue edges in G[(X;)] and G[¢(X;)]. Therefore we
may set F'(X;,S,r,b) to be true if and only if F(X;,S,r,b) or F(X;,SU{v},7b) is
true.

1 is a Join node: Let h and j be the children of i. Let r* be the number of red
edges in X;.

Then observe that if there there is a 2-coloring on 1 (X;) consistent with S such
that there are rj, red edges in G[¢)(X},)] and r; red edges in G[¢(X;)], then rp,7; > r*,
and the number of red edges in G[¢(X;)] is rp +1; — r*.

Let ' = min(r*, k). Then if there are at least r < k red edges in G[1)(X;)], there
are at least 7, red edges in G[¢(X})] for some 7, such that ' < rp < k, and there are
at least r —ry, + 7' red edges in G[¢(X;)]. Similarly let b* be the number of blue edges
in X;, and let ¥’ = min(b*, k). Then if there are at least b < k blue edges in G[¢(X;)],
there are at at least by, blue edges in G[1/(X})] for some by, such that b’ < b, <k, and
there are at least b — by, + 0’ blue edges in G[¢(X;)].

Therefore, we may set F(X;, S, r,b) to be true if and only if there exist rp,, b, such
that v’ <7, <k, b < by <k, and both F(Xp,S,r,br) and F(X;, S, max(r — r, +
r’,0), max(b — by, + b',0)) are true.

It remains to analyse the running time of the algorithm.

We first analyse the running time of calculating a single value F(X;, S, r,b) assum-
ing we have already calculated F(X;, S’,r',b’) for all descendants j of ¢ and all values
of 87,7/, b'. In the case of a Leaf node, we can calculate F(X;,S,r b) in O(n + m)
by checking a single 2-coloring. In the case of an Introduce node, we need to check
a single value for the child of i, and in the case of a Forget node we need to check
two values for the child of 4. Thus, these cases can be calculated in O(n + m) time.
Finally, for a Join node, we need to check a value from both children of i for every
possible way of choosing 7y, b, such that v’ < r;, < k and ¥’ < b, < k. There are at
most (k+1)? such choices and so we can calculate F(X;, S,7,b) in O((k+1)%(n+m))
time.

It remains to check how many values need to be calculated. As there are at most
O(n) bags X;, at most 2! choices of S C X;, and at most k + 1 choices for each of
r and b, the number of values F(X;, S, r,b) we need to calculate is O(n2+!(k + 1)2).
As each value can be calculated in polynomial time, overall we have running time
Ok + D*n(n +m)) = Ok + 1)*n?). O

We will combine Theorem 2] with the following lemma to obtain Theorem

Lemma 3. For a graph G, in polynomial time, we can either determine that G is a
Yes-instance of k-LCP, or construct a tree decomposition of G of width at most 2k.

Proof. If every component of G has at most k — 1 edges then we may easily construct
a tree decomposition of G of width at most k — 1 (as each component has at most k
vertices).

Now assume that G has a component with at least k& edges. By starting with a
single vertex in a component with at least k edges, and adding adjacent vertices one
at a time, construct a minimal set of vertices X such that G[X] is connected and
|E(X)| > k, where E(X) is the set of edges with both end-vertices in X. Let v be

the last vertex added to X. Then G[X \ {v}] is connected and |E(X \ {v})| < k. It
follows that |X \ {v}| < k and so | X| < k+ 1.

Now if |[E(V \ X)| > k, then we may obtain a solution for k-LCP by coloring all
of X red and all of V'\ X blue. Otherwise, we may construct a tree decomposition of
G[V'\ X] of width at most k —1. Now add X to every bag in this tree decomposition.
Observe that the result satisfies the conditions of a tree decomposition and has width
at most k — 1+ |X| < 2k. O

Theorem 3. There is an algorithm of running time O*(4%) to solve k-LCP.

5 Open Problems

Our kernel and fixed-parameter algorithm seem to be close to optimal: we do not
believe that k-LCP admits o(k)-vertex kernel or 2°®) running time algorithm unless
the Exponential Time Hypothesis fails. It would be interesting to prove or disprove it.
It would also be interesting to obtain a smaller kernel or faster algorithm for k-LCP.

Acknowledgments We are grateful to the referees for some suggestions that im-
proved results of our paper.

References

[1] N. Ahuja, A. Baltz, B. Doerr, A. Privtivy and A. Srivastav, On the Minimum
Load Coloring Problem. J. Discr. Alg. 5(3): 533-545 (2007).

[2] H.L. Bodlaender, R.G. Downey, M.R. Fellows, and D. Hermelin, On problems
without polynomial kernels. J. Comput. Syst. Sci. 75(8):423-434, 2009.

[3] H.L. Bodlaender, B.M.P. Jansen and S. Kratsch, Cross-Composition: a New
technique for kernelization lower bounds. In STACS 2011, LIPICS 9:165176,
2011.

[4] H.L. Bodlaender, S. Thomassé, and A. Yeo, Kernel bounds for disjoint cycles
and disjoint paths. In ESA 2009, Lect. Notes Comput. Sci. 5757:635-646, 2009.

[5] R.G. Downey and M.R. Fellows, Parameterized Complexity, Springer, 1999.
[6] J. Flum and M. Grohe, Parameterized Complexity Theory, Springer, 2006.

[7] T. Kloks, Treewidth: Computations and Approximations, Lect. Notes Comput.
Sci., vol. 842. Springer, 1994.

[8] R. Niedermeier, Invitation to Fixed-Parameter Algorithms. Oxford UP, 2006.

[9] C. Siva Ram Murthy and M. Guruswamy, WDM Optical Networks, Concepts,
Design, and Algorithms, Prentice Hall, 2001.

	1 Introduction
	2 Basics on Fixed-Parameter Tractability, Kernelization and Tree Decompositions
	3 Linear Kernel
	4 Load Coloring Parameterized by Treewidth
	5 Open Problems

