
ar
X

iv
:1

31
1.

45
52

v1
 [

cs
.D

S]
 1

8
N

ov
 2

01
3

Efficient algorithms for the longest common

subsequence in k-length substrings

Sebastian Deorowicz† and Szymon Grabowski‡

† Institute of Informatics, Silesian University of Technology,
Akademicka 16, 44–100 Gliwice, Poland

‡ Lodz University of Technology, Institute of Applied Computer Science,
Al. Politechniki 11, 90–924 Lódź, Poland, sgrabow@kis.p.lodz.pl

Abstract. Finding the longest common subsequence in k-length sub-
strings (LCSk) is a recently proposed problem motivated by computa-
tional biology. This is a generalization of the well-known LCS problem
in which matching symbols from two sequences A and B are replaced
with matching non-overlapping substrings of length k from A and B. We
propose several algorithms for LCSk, being non-trivial incarnations of
the major concepts known from LCS research (dynamic programming,
sparse dynamic programming, tabulation). Our algorithms make use of
a linear-time and linear-space preprocessing finding the occurrences of
all the substrings of length k from one sequence in the other sequence.

1 Introduction

In last years the famous longest common subsequence problem [3] gave rise to
many related sequence similarity problems, often motivated by computational
biology. One of them, proposed very recently by Benson et al. [2], is the longest

common subsequence in k-length substrings problem, which can be defined as
follows. Given two sequences, A = a1a2 . . . an and B = b1b2 . . . bn

1 over a com-
mon alphabet Σ, the task is to find the maximal ℓ such that there exist ℓ pairs
of substrings of length k (called k-strings), aie−k+1 . . . aie and bie−k+1 . . . bie ,
1 ≤ e ≤ ℓ, where aie−k+1 . . . aie is equal to bie−k+1 . . . bie and ie + k ≤ ie+1

for any valid e (that is, the strings of length k taken from one of the sequences
are non-overlapping). We will often use an alternative notation for a substring:
instead of ai . . . aj (bi . . . bj) we will write Ai...j (Bi...j).

We begin with a critique of the result from Benson et al. [2]. The authors
claim their time complexity to be O(n2), while in fact it is O(kn2), because com-
paring two k-strings takes (näıvely) O(k) time. In the proof of Theorem 1 they
say: “We assume that k is rather a small constant thus computing kMatch(i, j)
is done in constant time”, which cannot be justified on a theoretical ground (on
the other hand, their space complexity is justly presented as O(nk)).

1 All the algorithms presented in this paper can easily be translated to the case of
sequences of arbitrary lengths n and m, but we use the original problem definition.

http://arxiv.org/abs/1311.4552v1

Table 1. Our results. The last column is the complexity of the extra space
needed to extract a longest common subsequence. The extra time for this
stage is not presented, but its complexity never exceeds the corresponding
time complexity to find the subsequence length. Notation: r is the number of
matches, ℓ ≤ n/k is the solution length.

Algorithm Time complexity Space complexity Extraction space

DP (Sect. 2) O(n2) O(nk) O(n2)
Sparse (Sect. 3) O(n + r log ℓ) O(n + min(r, nℓ))) O(r)

Dense (Sect. 3) O(n2/k + n(k log n)2/3) O(n) O(nℓ)
Dense-vEB (Sect. 3) O(n2 log log n/k) O(n log log n) O(nℓ)
DP-4R (Sect. 4) O(n2/ log n) O(n + nk/ log n) O(n2/ log n)

We first give a (simple) fix to the technique of Benson et al., obtaining the
true O(n2) time complexity, and then show three more advanced algorithms.
The first of them is based on the Hunt–Szymanski [6] approach (originally used
for the LCS problem), applying the sparse dynamic programming paradigm.
The second works better if the number of matches in the dynamic programming
matrix is large and uses the observation that matches forming a longest common
subsequence must be separated with gaps of size at least k. Its variant based
on the van Emde Boas tree [10] is also briefly discussed. Finally, a tabulation-
based algorithm is presented, with a logarithmic speedup over the quadratic-time
dynamic programming algorithm. Our results are summarized in Table 1.

2 The LCSk in O(n2) time

The cornerstone for any dynamic programming (DP) based solution for the LCSk
problem will be the following recurrence. (It is closely related to the one given by
Benson et al. We decided to introduce our own one, with match reporting at the
end rather than start symbol of the k-string, since it simplifies the formulation
of the algorithms in the rest of the paper.)

M(i, j) =

max

{

M(i, j − 1),

M(i− 1, j),
if Ai−k+1...i 6= Bj−k+1...j ,

M(i− k, j − k) + 1, if Ai−k+1...i = Bj−k+1...j ,

(1)

and the boundary conditions: M(i, j) = 0 for all valid i, j when i < k or j < k.
Any location (i, j) in M will be called a match if Ai−k+1...i = Bj−k+1...j .

Efficient computation of the recurrence (1) depends on quick tests if Ai−k+1...i =
Bj−k+1...j . This can be achieved with the longest common extension (LCE)
query, which can be performed in O(1) time after O(n)-time preprocessing.
This procedure builds an augmented suffix tree for solving the lowest common
ancestor (LCA) queries in constant time [1], over the concatenated sequence

A#B, where # is a unique symbol (lexicographically largest) working as a ter-
minator of A. Testing if Ai−k+1...i = Bj−k+1...j translates to the question if
LCEA#B(i− k + 1, n+ 1 + j − k + 1) ≥ k.

We however propose an alternative O(n)-time preprocessing routine letting
us access the successive matches to each k-string Aj−k+1...j in sequence B in con-
stant time, and requiring O(n) words of space. Since one list of matches is never
longer than a row in the DP matrix, we can scan the list of matches when process-
ing each row in a linear time, which results in overall O(n2) time for the matrix
computation. The longest sequence itself may be extracted in a similar manner
as in the DP algorithm for LCS, in O(n) extra time and using O(n2) extra space.

Our preprocessing routine will also be used in the two algorithms described in
Section 3 and the algorithm from Section 4. The procedure makes use of a suffix
array for the concatenated sequence B#A. We also build its longest common
prefix (LCP) table; both operations can be accomplished in linear time and using
linear space (see, e.g., [7,8]). The computed LCP values allow us to partition the
sorted set of suffixes into maximal groups such that the LCP between successive
items is at least k. In other words, suffixes from such groups have a prefix of
length k symbols in common.

These k-string groups are radix-sorted according to the starting position
of the suffix. To make it efficient (O(n) time), the sort is performed once for
all groups; all the suffixes are represented as pairs (group id , start pos), where
group id is 1 for the first group, 2 for the second group, etc., in their position
order. Let us denote the array with such pairs with S. After the sort, suffixes
in the groups are kept together, in starting position order. Note that within a
group all suffixes starting in B are located before any suffix starting in A.

We scan over all the items in S, except for the last one (which must cor-
respond to the suffix starting with #), and we insert related data into another
array, X of length |A| + |B| = 2n. More precisely, for each examined S[i] we
write in X [S[i].start pos] a triple: (fa pos , fb pos , ng pos), where fa pos (fb pos)
is the position in S of the first suffix from this group starting in A (in B) and
ng pos is the position in S of the first suffix from the next group. This operation
also takes linear time and the preprocessing is done.

As stated above, a rowwise scan requires fast access to all matches to succes-
sive Ai−k+1...i k-strings. It is now enough to examine the information stored at
X [S[i].start pos] (which in turn refers to S), to find the match locations in the
row in O(1) time per each.

Below we give two simple properties of the matrix M .

Lemma 1. For each i and j the value M(i, j) is the LCSk of the prefixes A1...i

and B1...j.

The proof is rather straightforward and is very similar to the classic one for
the LCS problem [3]. As a consequence, M(n, n) is the solution of the LCSk
problem. It is also easy to notice that M(i, j + 1)−M(i, j) ∈ {0, 1} and M(i+
1, j) − M(i, j) ∈ {0, 1} for all valid i and j. The following lemma describes a
feature of the matrix M which will be crucial for both algorithms from Section 3.

Lemma 2. Let vector V (i), for any i, describe the changes in ith row of M ,

i.e., V (i) stores the pairs 〈M(i, j), j〉 such that M(i, j− 1)+ 1 = M(i, j). Then,
each 〈h, j〉 ∈ V (i) implies that it is impossible that 〈h + 1, j′〉 ∈ V (i′), for any

i ≤ i′ ≤ i+ k and j′ < j + k.

Proof. Let us assume otherwise, so let 〈h+1, j′〉 ∈ V (i′), for some i ≤ i′ ≤ i+ k
and j′ < j+k. It means thatM(i′, j′) = h+1 = LCSk (A1...i′ , B1...j′). Truncating
both sequences by k symbols does not change their LCSk or reduces it by 1, so
M(i′−k, j′−k) ≥ h. This is, however, impossible as i′−k ≤ i and j′−k < j and
the leftmost cell of M among rows 0, . . . , i containing value h is in column j. ⊓⊔

Simply speaking, the above lemma says that the increments in M are sepa-
rated by at least k cells in both horizontal and vertical directions.

3 Two sparse dynamic programming algorithms

One of the major paradigms for solving LCS-related problems is sparse dynamic

programming (SDP). The overall idea is to visit only those DP matrix cells which
correspond to matches. As the number of matches, r, is usually significantly
smaller than n2, we can often expect a significant speedup over the standard
DP procedure. The first such algorithm for the LCS problem was given by Hunt
and Szymanski [6], with O(r log ℓ) time in its basic variant, where ℓ ≤ n is the
LCS length. While this complexity is superquadratic in the worst case (i.e., for
r = Θ(n2)), there exists a theoretical solution based on the HS approach which
is free of this drawback [5, Sect. 5]. In this section we will present two SDP
algorithms for the LCSk problem, the first of which being an adaptation of the
HS approach. This algorithm, called LCSk-Sparse, is presented in Fig. 1.

Assume that we are going to visit the matches rowwise, each row scanned
from left to right. We start with a simple definition. M(i, j) stores a match of
rank h iff Ai−k+1...i = Bj−k+1...j and LCSk(A1...i, B1...j) = h. In the preprocess-
ing (line 1), lists of successive occurrences of all k-strings from the sequence A
are gathered (in O(n) time), as described in Section 2. The main processing
phase makes use of a persistent red-black tree [4] THRESH for maintaining the
leftmost seen-so-far columns of matches of growing ranks. More precisely, ac-
cessing THRESH [i][h] answers the question about the leftmost column in row i
with a match of rank h. When processing row i, we will often be interested in
accessing THRESH [i− k], i.e., the state of this structure k rows earlier. For the
first k rows of the DP matrix the structure THRESH contains only two sentinel
values, −∞ and +∞ (lines 2–4), the former with rank 0. For each of the follow-
ing rows, the state of THRESH from the previous row is modified only if the
current match on MATCHLIST , of rank h+1, is in column x, which is less than
the column j′′ of the (h+ 1)-th value in THRESH [i − 1] (i.e., also THRESH [i]
so far). This modification (lines 12–13) involves decreasing a value in the struc-
ture, which may be implemented as one delete and one insert operation. Note
that when the decreased value is the +∞ sentinel, the THRESH [i] grows by one
(+∞ is again inserted at its end, in line 15). All operations on THRESH have

LCSk-*(A, B, k)

1 Compute MATCHLIST for A and B
2 THRESH [0]← 〈−∞,+∞〉
3 for i← 1 to k − 1 do

4 THRESH [i]← copy(THRESH [i− 1])
5 for i← k to n do

6 THRESH [i]← copy(THRESH [i− 1])
7 σA ← get k-string(A, i)
{Sparse variant}

8 for each match x in MATCHLIST [σA] do
9 j′ ← THRESH [i− k].pred(x− k + 1)

10 h← THRESH [i− k].rank(j′)
11 j′′ ← THRESH [i].select(h + 1)
12 if x < j′′ then
13 THRESH [i].decrease(j′′, x)
14 if j′′ = +∞ then

15 THRESH [i].insert(+∞)
16 return |THRESH [n]| − 2
{Dense variant}

8 for h← 1 to |THRESH [i− 1]| − 1 do

9 j′ ← THRESH [i− k][h− 1]
10 x← MATCHLIST [σA].succ(j′ + k − 1)
11 j′′ ← THRESH [i][h]
12 if x < j′′ then
13 THRESH [i][h]← x
14 if j′′ = +∞ then

15 THRESH [i].insert(+∞)
16 return |THRESH [n]| − 2

Fig. 1. The sparse and dense DP algorithms for the LCSk problem.

logarithmic cost in the worst case, that is, O(log ℓ), where ℓ ≤ n/k is the LCSk
length. The overall worst case time for the algorithm is thus O(n+ r log ℓ). The
space consumption is usually determined by the number of matches r (we need
O(1) nodes of the persistent RB tree per each match).

The presented code only returns the length of a LCSk. Yet, to obtain the
common subsequence itself we only have to modify the algorithm slightly, and
with each entry in THRESH [i] store a reference to the THRESH value used to
compute the current value. This enables backtracking the solution in O(ℓ) extra
time and using O(r) words of space.

If the number of matches is close to n2, a better solution is to use the al-
gorithm LCSk-Dense (Fig. 1). The first steps (lines 1–4) resemble the previous
variant, but here the data structure THRESH is not persistent (and may be
simply a dynamic array), hence the copy routine, used for each row i, has its
cost linear in the size of THRESH [i − 1]. The main loop, which is run for each
row i, i ≥ k, starts with making a copy of THRESH [i − 1] into THRESH [i].
Then, THRESH [i] is traversed in order, and its h-th value updated based on

the current MATCHLIST and the THRESH in its state k rows earlier. More
precisely, if (h − 1)-th value of THRESH [i − k] is denoted with j′ (line 9) and
the nearest match on the current MATCHLIST in a column greater or equal to
j′ + k, denoted by x (line 10), is less than the current h-th element of THRESH
(line 11), then THRESH [i][h] is updated to x (lines 12–13). As in the previous
algorithm, THRESH [i] may get longer by one (line 15). Finding the LCSk length
needs access to k previous rows of THRESH , and as each of them contains at
most ℓ+2 ≤ n/k+2 items, the overall space is O(n). Also in this algorithm the
desired sequence may be backtracked in O(ℓ) extra time, if backlinks are stored
together with THRESH entries. The memory use, however, is here O(nℓ) words
of space, due to physical copying of the THRESH [i] structures.

Let us analyze the time complexity of this algorithm. It depends on how
efficiently we can handle the successor queries in line 10. Binary search over
MATCHLIST [σA] gives a factor logn. If k is small enough, however, we can
remove the logarithmic factor. Two rows from the DP matrix will be considered
equal (or one called a duplicate of another) if they have matches in the same
set of columns. We start with a simple observation: for any q ≥ 1 there cannot
be more than q distinct rows with at least n/q matches in each of them. Let us
use two thresholds, t1 and t2, where 1 ≤ t2 < t1 < n. We set t1 = k logn and
let the rows with less than n/t1 matches be called “sparse”, those with at least
n/t1 and at most n/t2 matches (the exact value of t2 will be found later) be
called “dense”, and finally those rows with more than n/t2 matches be called
“superdense”. In the sparse rows, we calculate the successor query in O(log n)
time, spending O(n2 logn/t1) = O(n2/k) time in total for them.

For the dense blocks, we partition each row into n/b blocks of size b cells each,
where the exact value of b will be found later. Let us focus on a dense row i. For
each blockM [i][j+1 . . . j+b] we first findMATCHLIST [σA].succ(j+1+k−1) and
MATCHLIST [σA].succ(j+b+k−1) (using a linear scan overMATCHLIST [σA])
and if both values are the same, it means that all the cells in this block have the
same successor used in line 10. If not, we associate with this block a list of all
its b successors, one per each element from the block. These values are stored
as dynamic arrays, one per block, of size 1 or b. The total time spent per a
dense row is O(n/b+ nb/t2). There are at most t1 = k logn distinct dense rows,
and finding the successors for all of them takes O(k logn(n/b + nb/t2)) time,
minimized for b =

√
t2 to O(nk logn/

√
t2) (duplicate rows obtain references to

the already computed answers, in O(n) total time).

Finally, superdense rows are processed näıvely in O(n) time each, with O(nt2)
total time. Overall, we obtain O(n2/k+nk logn/

√
t2 +nt2) time, which is min-

imized for t2 = (k logn)2/3, to yield O(n2/k + n(k log n)2/3) time. This reduces
to simply O(n2/k) as long as k = O((n/(log n)2/3)3/5).

Alternatively, the successor queries may be handled with the famous van
Emde Boas (vEB) tree [10], in O(log logn) time. We need to maintain O(n)
such structures, using a variant with lazy initalization. In this way, the total time
of the insertions (including initializations) is O(n log logn) and so is the space

consumption. The overall time complexity of this variant is O(n2 log logn/k) for
any k.

4 Tabulation-based algorithm

The tabulation (also called “4-Russians”) technique for dynamic programming
algorithms consists in dividing the DP matrix into small blocks (usually 1 × b
or b× b, for some b), such that the number of distinct blocks is small enough to
be precomputed beforehand, e.g., with linear time-space resources. For the LCS
problem this technique was first applied by Masek and Paterson [9].

Let us now present a tabulation-based algorithm for LCSk, called DP-4R;
the reader needs to know the (purpose of the) data structures THRESH and
MATCHLIST used in the previous section. In DP-4R, the current state of the
list THRESH is represented as a bit-vector THRESHbin of length n and simi-
larly the match lists, MATCHLISTbin, for all k-strings from A are built (to avoid
O(n2) bits of space in the worst case, these lists can be built on the fly, one per
row). More precisely, THRESHbin[i][j] = 1 iff M(i, j)−M(i, j − 1) = 1, for any
1 ≤ j ≤ n. Similarly, MATCHLISTbin[σA][j] = 1 iff Bj−k+1...j = σA. For the
current row i, i ≥ k, each snippet THRESHbin[i][j+1 . . . j+ b] depends only on:

– the snippet THRESHbin[i− 1][j + 1 . . . j + b],
– the snippet THRESHbin[i− k][j − k + 1 . . . j − k + b],
– the snippet MATCHLISTbin[σA][j + 1 . . . j + b],
– the difference M(i, j)−M(i− 1, j) ∈ {0, 1},
– the difference M(i, j)−M(i− k, j − k) ∈ {0, 1}.

(Both listed differences can be tracked easily during the rowwise snippet pro-
cessing.)

Now, if b = Θ(log n) with a small enough constant, we can compute the
current snippet of THRESHbin[i] in constant time, with a lookup table built in
the preprocessing (e.g., in O(n) time), obtaining an O(n2/ logn)-time algorithm.
During the computations, the previous k rows of THRESHbin of length n bits
need to be available, which makes the overall space use O(n+ nk/ logn) words.

It remains however to explain howMATCHLISTbin[σA][j+1 . . . j+b] snippets
are prepared. To this end, we note that all snippets from a rowMATCHLISTbin[σA][1 . . . n]
can easily be created from a corresponding match list (found in the linear-
time preprocessing) in O(max(n/ logn, r′)) time, where r′ ≤ n is the number
of matches in this row. This means that all sparse rows, i.e. such for which
r′ = O(n/ logn), pose no problem as the worst-case time of creating their
MATCHLISTbin bit-vectors sums to O(n2/ logn). The number of distinct re-
maining (dense) rows in the matrix is however limited to less than logn (cf.
a similar reasoning in Section 3 for the algorithm LCSk-Dense), hence the
O(n log n+ n2/ logn) time for preparing their snippets, including their first oc-
currences and all duplicates, does not hamper the overall time complexity either.

An LCSk sequence can now be extracted basically like in the plain DP ap-
proach, in O(n + kℓ) = O(n) time. To this end, the last 1 in THRESHbin[n] is

found, with a linear scan from right to left, and its column j is the end position
of the last k-string in the result. After that, we go to the row n− k and column
j − k, and scan left for the nearest 1, which will correspond to the penultimate
k-string, and so on.

It is tempting to devise a similar algorithm based on bit logic rather than a
precomputed table, but we suppose that obtaining O(n2/w) time, where w ≥
logn is the machine word size, may be hard or even impossible for the LCSk
problem.

5 Conclusions

We presented four algorithms, with respectively O(n2), O(n+ r log ℓ), O(n2/k+
n(k logn)2/3) and O(n2/ logn) time complexities, for the recently introduced
problem of finding the longest common subsequence in k-length substrings. We
used several major techniques known from the research on LCS and related prob-
lems: dynamic programming, sparse dynamic programming, tabulation. Their
application to LCSk was, however, non-trivial; for example using the Hunt–
Szymanski approach required a persistent data structure to preserve an attrac-
tive time complexity.

Acknowledgement

The work was supported by the Polish National Science Center upon decision
DEC-2011/03/B/ST6/01588 (first author).

References

1. M. A. Bender and M. Farach-Colton. The LCA problem revisited. In G. H.
Gonnet, D. Panario, and A. Viola, editors, LATIN, volume 1776 of Lecture Notes

in Computer Science, pages 88–94. Springer, 2000.
2. G. Benson, A. Levy, and B. R. Shalom. Longest common subsequence in k length

substrings. In N. R. Brisaboa, O. Pedreira, and P. Zezula, editors, SISAP, volume
8199 of Lecture Notes in Computer Science, pages 257–265. Springer, 2013.

3. M. Crochemore, C. Hancart, and T. Lecroq. Algorithms on Strings. Cambridge
University Press, New York, USA, 2007.

4. J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making data structures
persistent. Journal of Computer and System Sciences, 38(1):86–124, 1989.

5. D. Eppstein, Z. Galil, R. Giancarlo, and G. F. Italiano. Sparse dynamic program-
ming I: Linear cost functions. Journal of the ACM, 39(3):519–545, 1992.

6. J. W. Hunt and T. G. Szymanski. A fast algorithm for computing longest common
subsequences. Communications of the ACM, 20(5):350–353, 1977.

7. J. Kärkkäinen, P. Sanders, and S. Burkhardt. Linear work suffix array construction.
Journal of the ACM, 53(6):918–936, 2006.

8. T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park. Linear-time longest-
common-prefix computation in suffix arrays and its applications. In A. Amir and
G. M. Landau, editors, CPM, volume 2089 of Lecture Notes in Computer Science,
pages 181–192. Springer, 2001.

9. W. Masek and M. Paterson. A faster algorithm computing string edit distances.
Journal of Computer System Science, 20(1):18–31, 1980.

10. P. van Emde Boas. Preserving order in a forest in less than logarithmic time and
linear space. Information Processing Letters, 6(3):80–82, 1977.

	Efficient algorithms for the longest common subsequence in k-length substrings
	Sebastian Deorowicz† and Szymon Grabowski‡

