
ar
X

iv
:1

40
7.

42
25

v2
 [

cs
.C

R
]

 1
 S

ep
 2

01
4

Probabilistic Opacity for Markov Decision Processes

Béatrice Bérarda,b, Krishnendu Chatterjeec, Nathalie Sznajdera,b

aSorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France
bCNRS, UMR 7606, LIP6, F-75005, Paris, France

cIST Austria (Institute of Science and Technology, Austria)

Abstract

Opacity is a generic security property, that has been defined on (non probabilistic) transition systems and
later on Markov chains with labels. For a secret predicate, given as a subset of runs, and a function describing
the view of an external observer, the value of interest for opacity is a measure of the set of runs disclosing
the secret. We extend this definition to the richer framework of Markov decision processes, where non
deterministic choice is combined with probabilistic transitions, and we study related decidability problems
with partial or complete observation hypotheses for the schedulers. We prove that all questions are decidable
with complete observation and ω-regular secrets. With partial observation, we prove that all quantitative
questions are undecidable but the question whether a system is almost surely non opaque becomes decidable
for a restricted class of ω-regular secrets, as well as for all ω-regular secrets under finite-memory schedulers.

1. Introduction

Due to the tremendous increase in network com-
munications in the last thirty years, a large amount
of work was devoted to the study of security prop-
erties, to ensure the preservation of secret data dur-
ing these communications. Information flow char-
acterizes the (possibly illegal and indirect) trans-
mission of such data from a high level user to a
low level one. Already in the eighties, a basic ver-
sion of non-interference was defined in [20], stating
that a system is secure if high level actions can-
not be detected by low level observations. Among
all the subsequent studies, opacity was introduced
in [24, 7] as a general framework where a wide range
of security properties can be specified, for a system
interacting with a passive attacker. For a system S,
opacity is parameterized by a secret predicate ϕ de-
scribed as a subset of executions and an observation
function over executions. The system is opaque if,
for any secret run in ϕ, there is another run not in
ϕ with the same observation. When this property
is satisfied, the passive attacker cannot learn from
the observation if the execution is secret. Ensuring
opacity by controller synthesis was further studied
in [18, 9] while relations with two-player games were
established in [23].

Deciding opacity, however, only provides a

yes/no answer, but no evaluation of the amount
of information gained by a passive attacker. Since
more and more security protocols make use of ran-
domization to reach some security objectives [16,
29], it becomes important to extend specification
frameworks in order to handle measures of infor-
mation leaks. For this reason, quantitative ap-
proaches for security properties were already ad-
vocated in [25, 34], mostly based on information
theory. From this point on, numerous studies were
devoted to the computation of (covert) channel ca-
pacity in various cases (see e.g. [22]) or more gen-
erally information leakage.

To provide quantitative measures of opacity, sev-
eral definitions have been proposed in a probabilis-
tic setting [21, 2, 5, 8, 3, 31]. They were, however,
restricted to purely probabilistic models, based on
Markov chains equipped with labels, to permit ob-
servations on runs. We show here how to extend
some measures of [3] to Markov decision processes
(MDPs) with infinite runs. The simplest one com-
putes what we call here the probabilistic disclosure,
providing a probabilistic measure for the set of runs
whose observation reveals that a secret run has been
executed. With the richer model of MDPs, where
non determinism is combined with probabilities, a
scheduler can cooperate with the passive external
observer to break the system opacity. We focus

Preprint submitted to Elsevier October 15, 2018

http://arxiv.org/abs/1407.4225v2

on ω-regular secrets and morphisms for the obser-
vation functions, and prove that the probabilistic
disclosure can be computed when the scheduler can
distinguish the states of the model. The class of
ω-regular languages provides a robust specification
language [32], extending classical regular languages
from finite words to infinite words. Such ω-regular
languages are often needed to express opacity in the
non probabilistic as well as the probabilistic set-
ting. With partial observation for the schedulers,
the question whether a system is almost surely non
opaque remains decidable for a restricted class of
ω-regular secrets, as well as for all ω-regular secrets
under finite-memory schedulers, whereas all quanti-
tative problems become undecidable. Moreover, for
all decidable results we present optimal complexity
results: for complete observation (where the sched-
uler can distinguish states of the model) we present
polynomial-time results with respect to the size of
the model, whereas for partial observation, for all
decidable results we show EXPTIME-completeness.
We recall some definitions for probabilistic mod-

els in Section 2. Opacity and disclosure are de-
fined for Markov decision processes in Section 3 and
proofs for the (un)decidability results are given in
Section 4. We conclude in Section 5.

2. Preliminaries

For a finite alphabet Z, we denote by Z∗ the set
of finite words over Z, by Zω the set of infinite
words over Z, with Z∞ = Z∗ ∪ Zω.
We first recall some classical notions on au-

tomata.

2.1. Automata

Definition 1. A (deterministic) automaton is a
tuple A = (Q,Σ, δ, q0, F), where Q is a finite set
of states, Σ is an input alphabet, δ : Q × Σ → Q
is a transition function, q0 ∈ Q is the initial state,
and F is either a subset of Q, or a mapping from Q
to a finite subset of natural numbers.

Accepting conditions defined from F will be de-
scribed hereafter.
A run of the automaton A on a word w =

a1a2 · · · ∈ Σω is an infinite sequence ρ = q0q1 · · ·
such that for all i ≥ 0, qi+1 = δ(qi, ai+1). The ac-
cepting runs of an automaton are defined according
to the acceptance condition. In the sequel, we con-
sider Büchi, co-Büchi and parity acceptance condi-
tions.

For a run ρ = q0q1 · · · ∈ Qω, we let Inf(ρ) be
the set of states appearing infinitely often in the
sequence. When F ⊆ Q, we note Büchi(F) = {ρ ∈
Qω | Inf(ρ) ∩ F 6= ∅} and co-Büchi(F) = {ρ ∈ Qω |
Inf(ρ) ∩ F = ∅}. When F : Q → {1, . . . , k}, with
k ∈ N, the acceptance condition is a parity condi-
tion. We note Parity(F) = {ρ ∈ Qω | min{F (q) |
q ∈ Inf(ρ)} is even}. For an acceptance condition
Acc ∈ {Büchi(F), co-Büchi(F),Parity(F)}, we say
that a run ρ over a word w is accepting if it is in
Acc. The word w is then said to be accepted by ρ.
We denote respectively by LB(A), LC(A) and

LP (A) the set of words accepted by the runs of A
in Büchi(F), co-Büchi(F) and Parity(F). A subset
L of Σω is ω-regular if there is an automaton A
such that L = LP (A).
In the sequel, we write DBA for deterministic

Büchi automata, DCA for deterministic co-Büchi
automata and DPA for deterministic parity au-
tomata, according to the choice of acceptance con-
dition.

2.2. Probabilistic systems

We consider systems modeled by Markov decision
processes, that generalize Markov chains by com-
bining non deterministic actions with probabilistic
transitions. To define opacity measures on Markov
chains, the probabilistic transitions are equipped
with labels that may be used to define an observa-
tion function on runs. In the setting of Markov de-
cision processes, labels are also added on the prob-
abilistic transitions. They may be observed by a
passive attacker while non deterministic actions are
chosen by a scheduler, as explained below.
Given a countable set S, a discrete distribution is

a mapping µ : S → [0, 1] such that
∑

s∈S µ(s) = 1.
The set of all discrete distributions on S is denoted
by D(S).

Definition 2 (Markov Decision Process).
A Markov decision process (MDP) is a tuple
A = (Q,Σ,Act ,∆, q0) where:

• Q is a finite set of states,

• Act is a finite set of actions,

• Σ is a finite alphabet for the labeling of tran-
sitions,

• ∆ : Q×Act → D(Σ×Q) is a (partial) transi-
tion function that associates with a state and
an action from Act a probability distribution

2

over the possible transition labels and succes-
sor states,

• q0 is the initial state.

Figure 1 shows an MDP with four actions. Ac-
tions α1 and α2 bear two different distributions for
labels a and b. They start either from state q0 or
from state q′0, and lead to either q1 or q2. Actions β1

and β2 start from q1 and q2 respectively and return
to q0 or q′0 with probability 1

2
.

q0

q′0

q1 q2

a, 3
4

b, 1
4

a, 1
4

b, 3
4

o1,
1
2

o1,
1
2

a, 1
4

b, 3
4

a, 3
4

b, 1
4

o2,
1
2

o2,
1
2

α1 α2

α1α2

β1 β2

Figure 1: A Markov Decision process.

The definition could be extended with an initial
distribution instead of an initial state, but we re-
strict to this one for the sake of simplicity. When
∆(q, α) is defined, α is said to be enabled in state
q. Intuitively, in an execution of an MDP, from a
given state q, an action α ∈ Act enabled in q is cho-
sen non deterministically, and then the next label
in Σ and the next state are chosen according to the
probability distribution ∆(q, α). Formally, a (finite
or infinite) run of an MDP is a sequence ρ = q0 ·
(α0, a0)·q1 ·(α1, a1)·q2 ·. . . ∈ Q·((Act×Σ)·Q)∞, also

written q0
α0,a0

−−−→ q1
α1,a1

−−−→ q2 . . . such that, for all
i ≥ 0, αi is enabled in qi and ∆(qi, αi)(ai, qi+1) > 0.
The trace of ρ is the word (α0, a0)(α1, a1) . . . over
Act × Σ labelling the run, obtained by projecting
away the visited states. The length of ρ, denoted
by |ρ|, is the length of its trace in N ∪ {∞}. The
set of infinite (resp. finite) runs of an MDP A is
denoted by Runs(A) (resp. Runsf (A)). The set
of traces of infinite runs of A is denoted by T (A)
and tr : Runs(A) → T (A) is the mapping that as-
sociates with each run its trace. For a run ρ, and
i < |ρ|, we denote by ρi the finite run consisting of

its first i transitions, and we say that ρi is a prefix
of ρ.

The non determinism of MDPs is resolved by a
scheduler, that gives a probability distribution over
the different actions in Act along each finite run.

Definition 3 (Scheduler). A scheduler on A =
(Q,Σ,Act ,∆, q0) is a function σ : Runsf (A) →

D(Act) such that, for any finite run ρ = q0
α0,a0

−−−→

. . .
αn−1,an−1

−−−−−−−→ qn of A, for all α ∈ Act , if σ(ρ)(α) >
0 then α is enabled in qn.

A scheduler is deterministic if σ : Runsf (A) →
Act . We say that a scheduler has finite memory if
its decision only depends on a finite set of so-called
memory states. Similarly, a scheduler ismemoryless
if its decision depends only on the last state of the
run. Formally, they are defined as follows.

Definition 4 (Finite-Memory Schedulers). A
finite-memory scheduler on A = (Q,Σ,Act,∆, q0)
is given by a tuple (M,m0, σ, σup) where M is
a finite set of memory states, m0 is the initial
memory state, σ : M × Q → D(Act) is a mapping
such that, for all m ∈ M , for all q ∈ Q, and for all
α ∈ Act , if σ(m, q)(α) > 0 then α is enabled in q.
Finally, σup : M × Act × Σ × Q → D(M) is the
memory update function.
If |M | = 1, then the scheduler, reduced to σ :

Q → D(Act) is memoryless.

In some systems, the underlying state is only par-
tially observable. Those are modeled by Partially
Observable MDPs, in which some sets of states are
undistinguishable for external observers (including
the scheduler):

Definition 5. A partially observable Markov de-
cision process (POMDP) is an MDP A =
(Q,Σ,Act ,∆, q0) equipped with an equivalence re-
lation ∼ over Q such that if p ∼ q then the set of
actions from Act enabled in p and q are the same.

In that case, given two sequences of states p0 · · · pn
and q0 · · · qn, we say that p0 · · · pn ∼ q0 · · · qn if and
only if pi ∼ qi for all 0 ≤ i ≤ n. In a POMDP,
the scheduler cannot distinguish between equivalent
states. The scheduler definition is then modified:

Definition 6. Let A = (Q,Σ,Act,∆, q0) be a
POMDP with equivalence relation ∼⊆ Q ×Q. An
observation-based scheduler (or ∼-scheduler) is a
scheduler σ : Runsf (A) → D(Act) such that for any

3

two finite runs ρ = q0
α0,a0

−−−→ . . .
αn−1,an−1

−−−−−−−→ qn and

ρ′ = p0
α0,b0
−−−→ . . .

αn−1,bn−1

−−−−−−−→ pn with same length,
if p0 · · · pn ∼ q0 · · · qn, then σ(ρ) = σ(ρ′).

For instance, associating with the MDP of Fig-
ure 1 the three equivalence classes {q0, q′0}, {q1}
and {q2}, produces a POMDP. In this case, the
scheduler cannot know if it is in q0 or in q′0 when it
chooses action α1 or α2.

Recall that, given a POMDP A and a sched-
uler σ, a probability measure Pσ can be defined
on Runs(A)[4]: first it is defined on cones, where
the cone Cρ associated with a finite run ρ is the
subset of infinite runs in Runs(A) having ρ as pre-
fix; and then it is extended to measurable sets of

infinite runs. If ρ = q0
α0,a0

−−−→ . . .
αn−1,an−1

−−−−−−−→ qn, the
probability of Cρ is defined by:

Pσ(Cρ) = σ(ρ0)(α0)×∆(q0, α0)(a0, q1)× . . .×

σ(ρn−1)(αn−1)×∆(qn−1, αn−1)(an−1, qn)

3. Opacity and disclosure

The notion of opacity was originally defined
in [7] for a (non probabilistic) transition system,
with respect to some external observation func-
tion and some predicate (the secret) on the runs
of the system. It extends trivially to probabilis-
tic transition systems. In this case, given an MDP
A = (Q,Σ,Act ,∆, q0), we consider a predicate
ϕ ⊆ Runs(A), given as an ω-regular language
(the secret). The observation the attacker has of
the runs of the MDP is defined by a morphism
O : Runs(A) → Γ∞ obtained from a given appli-
cation π : Q ∪ (Act × Σ) → Γ ∪ {ε}, where Γ is a
finite alphabet. The morphism O is the observation
function, and the elements of Obs = O(Runs(A))
are the observables. For a given run ρ, every run
in O−1(O(ρ)) – its observation class – is undistin-
guishable from ρ. The predicate is opaque in A for
O if each time a run satisfies the predicate, another
run in the same observation class does not. For-
mally, we let ϕ = Runs(A) \ ϕ, and define opacity
as follows.

Definition 7 (Opacity). Let A be an MDP, with
observation function O : Runs(A) → Obs. A pred-
icate ϕ ⊆ Runs(A) is said to be opaque in A for O
if ϕ ⊆ O−1(O(ϕ)).

Variants of opacity have been defined, by modify-
ing the observation function or the predicate, or by

requiring symmetry: the predicate ϕ is symmetri-
cally opaque in A for O if both ϕ and ϕ are opaque.
Note that ϕ is opaque if and only if for any o ∈

Obs , O−1(o) 6⊆ ϕ. By extension, we say that an ob-
servation class O−1(o), for o ∈ Obs, is itself opaque
if O−1(o) 6⊆ ϕ, and we define Obsopaque as the
set of corresponding observations, with Obs leak =
Obs \Obsopaque = {o ∈ Obs | O−1(o) ⊆ ϕ}.

For instance, for the POMDP in Figure 1 above,
we can define:

• an observation function O from the projection
π such that π(q) = ε for any q ∈ Q, π(α, o1) =
o1, π(α, o2) = o2 and π(α, a) = π(α, b) = ε, for
any α ∈ Act,

• a predicate ϕ as the set of all runs with trace
in (ab)ω, where the labels as and bs strictly
alternate.

When a probabilistic system is non opaque, we
are interested in quantifying the security hole. One
of the measures proposed in [3] for Markov chains,
is the probability of the set of runs violating opacity.
With this measure of non opacity, called here Prob-
abilistic Disclosure and extended to MDPs with
infinite runs, it becomes possible to compare non
opaque systems. The measure, computed in a worst
case scenario, corresponds to the maximal probabil-
ity of disclosure over all possible schedulers. More
precisely:

Definition 8 (Probabilistic Disclosure).
Let A be an MDP, with observation function
O : Runs(A) → Obs, let ϕ ⊆ Runs(A) be a pred-
icate and let σ be a scheduler. The probabilistic
disclosure of ϕ in A scheduled by σ is:

PDσ(ϕ,A,O) = Pσ(ϕ \ O−1(O(ϕ)))

=
∑

o∈Obsleak

Pσ(O
−1(o)).

The probabilistic disclosure of ϕ in A is
PD(ϕ,A,O) = supσ{PDσ(ϕ,A,O)}.

Remark 9. Note that the probabilistic disclosure
is well defined, since, when ϕ is ω-regular, and O
is a morphism as assumed above, the set of runs
ϕ \ O−1(O(ϕ)) is measurable. Indeed, the class of
ω-regular languages is closed by complement, inter-
section, morphism and inverse morphism. Hence,
the set ϕ \ O−1(O(ϕ)) is ω-regular, thus measur-
able [33].

4

Questions we aim to address are the following:

1. The value problem: What is the value of the
probabilistic disclosure of the system?

2. The general disclosure problem:
Is the value of the probabilistic disclosure of
the system greater than some given threshold
(i.e. for δ ∈ [0, 1], PD(ϕ,A,O) > δ)?

3. The almost-sure opacity problem:
Is the system almost surely opaque
(i.e. PD(ϕ,A,O) = 0)?

4. The limit disclosure problem:
Is PD(ϕ,A,O) = 1?

5. The almost-sure disclosure problem:
Does there exist a scheduler σ such that
PDσ(ϕ,A,O) = 1?

All these problems can be considered with a restric-
tion to finite-memory schedulers. The last three
questions refer to qualitative aspects of the prob-
lem, while the two first ones concern quantitative
properties. In the next section, we show that recent
results on MDPs (with partial or perfect observa-
tion) allow us to answer such questions on proba-
bilistic disclosure of the systems. More precisely,
we prove that all these questions are decidable un-
der perfect observation, while they are undecidable
under partial observation. However, we identify re-
strictions that allow to decide the last problem.

4. Results

4.1. MDPs and Schedulers with Perfect Observa-
tion

Theorem 10. Given an MDP A, an ω-regular se-
cret ϕ given as a DPA (deterministic parity au-
tomaton), and observation function O as a mor-
phism, the value is computable, in polynomial time
in the size of A, and exponential in the size of ϕ.

Proof. Immediate, since ϕ \ O−1(O(ϕ)) is ω-
regular and can be described as a DPA, and from
the results of [17, 15, 14] for solving MDPs with
parity conditions. �

From this theorem, it follows that:

Corollary 11. The general disclosure, the limit
disclosure problem, and the almost-sure opacity
problem are decidable.

Moreover, since it is sufficient to consider memo-
ryless deterministic schedulers for MDPs with par-
ity conditions [15], supσ{PDσ(ϕ,A,O)} = 1 if and
only if there exists a memoryless scheduler σ such
that PDσ(ϕ,A,O) = 1. The following result is then
obtained.

Corollary 12. The almost-sure disclosure problem
is decidable.

Note that this result can be applied to symmetri-
cal opacity. It can also be extended to the case con-
sidered in [3] with an observation function O (not
necessarily a morphism) producing a finite number
of observation classes such that for each o ∈ Obs ,
O−1(o) is ω-regular.

4.2. POMDPs and Observation-based Schedulers

Theorem 13. Given a POMDP A, and a mor-
phism O for the observation function,

1. the almost-sure disclosure problem is undecid-
able for secrets given as DCA, DPA.

2. the almost-sure opacity problem is undecidable
for secrets given as DBA, DPA.

3. the limit disclosure problem, the general disclo-
sure problem, and the value problem are unde-
cidable, for secrets given as DBA, DCA, DPA,
both with general and finite memory sched-
ulers.

qι

F1
A1 F2

A2

a1,
1
2

a2,
1
2αι

Figure 2: MDP A′ from two copies A1 and A2 of A.

Proof. We describe a reduction from qualitative
problems on POMDP to the opacity problems ad-
dressed in this paper. Let A = (Q,Σ,Act ,∆, q0) be
a POMDP, with equivalence relation ∼ on states.
Given a set of accepting states F ⊆ Q, we let
Acc(F) be either Büchi(F), or co-Büchi(F) (for the
underlying non probabilistic runs of A). We build
a POMDP A′ = (Q′,Act ′,Σ′,∆′, qι), observation
function O : Runs(A′) → Obs, and an ω-regular

5

secret ϕ such that schedulers for A and A′ are in
correspondance (explained in more details below).

The POMDP A′ is obtained as follows: we con-
sider two copies A1 and A2 of A with the same
alphabets Act and Σ, denoting their disjoint set of
states byQ1 and Q2, their initial states by q10 and q20
and their target states by F1 and F2, respectively.
We add a new state qι not in Q1∪Q2, a new action
αι not in Act and two new letters a1 and a2 not
in Σ, for which the transition function is defined
by ∆′(qι, αι)(a1, q

1
0) = ∆′(qι, αι)(a2, q

2
0) = 1/2, as

depicted in Figure 2. The equivalence relation on
states ∼′ is given by q ∼′ q′ if q, q′ ∈ Qi and q ∼i q

′

for i = 1, 2, or q ∈ Q1, q
′ ∈ Q2 are the copies of the

same state in Q. The secret ϕ is the union of two

sets of runs: those starting with qι
αι,a1

−−−→ q10 meet-
ing the acceptance condition Acc(F1) (through A1)

and all the runs starting with qι
αι,a2

−−−→ q20 (going
into A2). Formally:

ϕ =
(

qι ·(αι, a1)·Acc(F1)
)

∪
(

qι ·(αι, a2)·Runs(A2)
)

Then, ϕ can be easily given by an automaton
whose acceptance condition depends on Acc(F1).

Finally, we define the observation function as fol-
lows: for i = 1, 2, for all ρi ∈ Runs(Ai),

O(qι · (αι, ai) · ρi) = ρ,

where ρ is the corresponding run in A.

Given a ∼′-scheduler σ′ : Runsf (A′) → D(Act),
the probabilistic disclosure is thus:

PDσ′(ϕ,A′,O) = Pσ′ (ϕ \ O−1(O(ϕ))) =

Pσ′

(

(

qι.(αι, a1).Acc(F1)
)

∪
(

qι.(αι, a2).Acc(F2)
)

)

.

Since σ′ is a ∼′-scheduler, it is easy to see that
Pσ′

(

qι · (αι, a1) · Acc(F1)
)

= Pσ′

(

qι · (αι, a2) ·

Acc(F2)
)

. Hence we get that PDσ′(ϕ,A′,O) =

2 ·Pσ′

(

qι · (αι, a1) · Acc(F1)
)

We build the ∼-scheduler σ for A as follows: for
each ρ ∈ Runsf (A), we let ρ = qι · (αι, a1) · ρ1 and
we define σ(ρ) = σ′(ρ). Then for the corresponding
cones, we have: Pσ(Cρ) = 2 ·Pσ′ (Cρ). We deduce
that Pσ(Acc(F)) = 2 ·Pσ′(qι · (αι, a1) ·Acc(F1)) =
PDσ′(ϕ,A′,O).

Conversely, given a ∼-scheduler σ : Runsf (A) →
D(Act), we define a ∼′-scheduler σ′ : Runsf (A′) →
D(Act) as follows:

σ′(qι) = (αι 7→ 1)

and, for all runs qι · (αι, ai) · ρi ∈ Runsf (A′), for
i = 1, 2,

σ′(qι · (αι, ai) · ρi) = σ(ρ).

Since σ is a ∼-scheduler, σ′ is a ∼′-scheduler,
and for i = 1, 2, we obtain that Pσ′ (qι ·
(αι, ai) · Acc(Fi)) = 1

2
Pσ(Acc(F)). Hence,

PDσ′(ϕ,A′,O) = Pσ(Acc(F)).

Then, there exists a ∼-scheduler σ for A
such that Pσ(Acc(F)) > 0 if and only if
there exists a ∼′-scheduler σ′ for A′ such that
PDσ′(ϕ,A′,O) > 0. Also, there exists a ∼-
scheduler σ for A such that Pσ(Acc(F)) = 1
if and only if there exists a ∼′-scheduler σ′ for
A′ such that PDσ′(ϕ,A′,O) = 1. Moreover,
sup{Pσ(Acc(F)), σ ∼-scheduler for A} = 1 if and
only if PD(ϕ,A′,O) = 1.

By [1, 11], we obtain that the almost-sure dis-
closure problem is undecidable for DCA (and thus
for DPA), and that the almost sure opacity is un-
decidable for DBA, and limit disclosure problem is
undecidable for DBA, DCA, hence for DPA that
are more expressive. From this result, we get unde-
cidability for the general disclosure problem and the
value problems for DBA, DCA and DPA. Note that
in the case of limit disclosure, general disclosure and
value problems, the undecidability holds also when
restricted to finite-memory strategies. Indeed, un-
decidability results for quantitative questions about
probabilistic finite automata [28, 27] and for value
1 problem [19] carry over POMDPs restricted to
finite-memory schedulers. �

We now show that, under some natural restric-
tions, one can recover decidability for the almost-
sure disclosure and almost-sure opacity problems.
First, if the secret is given as a Deterministic Büchi
Automaton (DBA), then the almost-sure disclosure
problem is decidable. Although deterministic Büchi
automata are strictly less expressive than non de-
terministic ones, they can still be used to describe
realistic predicates. For instance, a secret which
is always recognized after a finite run would corre-
spond to a set of runs that reach some sink state
and remain there forever. The corresponding set of
traces would be of the form LΣ′ω for some language
L of finite words and a subset Σ′ of the alphabet Σ.

Theorem 14. Given a DBA Aϕ describing the
secret, the almost-sure disclosure problem for
POMDP is EXPTIME-complete.

6

Proof. Let A = (Q,Σ,Act ,∆, q0,∼) be the
POMDP modeling the system, and Aϕ be the
(complete) deterministic Büchi automaton over Q∪
(Act ×Σ) that recognizes the runs of A that are in
ϕ. We show how to obtain a deterministic automa-
ton Adiscl = (Q′, Q ∪ (Act × Σ), δ, q′0, F) such that
LB(Adiscl) = ϕ \ O−1(O(ϕ)).
Indeed, with a co-Büchi acceptance condition for
Aϕ, we get that LC(Aϕ) = LB(Aϕ). Then, it is
possible to obtain a deterministic co-Büchi automa-
ton B such that LC(B) = O−1(O(ϕ)) (recall that
non-deterministic co-Büchi automata are as expres-
sive as deterministic co-Büchi automata [26]). Then
LB(B) = LC(B), and Adiscl is the (complete) Büchi
automaton obtained by intersecting the two deter-
ministic Büchi automata Aϕ and B.
We build a new POMDP that will jointly sim-

ulate A and Adiscl. Since the automaton Adiscl

runs over runs of A, we have to make explicit
the transitions of Adiscl on states of A. For that
we introduce a copy of each state of A in the
product POMDP, from which we will allow Adiscl

to take the corresponding transition. Formally,
we consider the product POMDP A ⊗ Adiscl =
(Q×Q′,Σ∪{αι},Act∪{a0},∆′, (q0?, q

′
0),∼

′) where
Q = Q ∪ {q? | q ∈ Q} is the set of states of A aug-
mented with a copy of these states, αι and a0 are
new symbols, and ∆′ is defined as follows: for all
q1, q2 ∈ Q, q′1, q

′
2 ∈ Q′, α ∈ Act and a ∈ Σ,

∆′((q1, q
′
1), α)(a, (q2?, q

′
2)) =











∆(q1, α)(a, q2)

if q′2 = δ(q′1, (α, a))

0 otherwise.

∆′((q1?, q
′
1), αι)(a0, (q1, q

′
2)) =

{

1 if q′2 = δ(q′1, q1)

0 otherwise.

The new equivalence ∼′ is defined by: (q1, q
′
1) ∼′

(q2, q
′
2) and (q1?, q

′
1) ∼

′ (q2?, q
′
2) if q1 ∼ q2. Let ρ′

be a run of A⊗Adiscl. To define the projection of
ρ′ on A, we use the following mapping ΠA: for all
q ∈ Q, q′ ∈ Q′, α ∈ Act , a ∈ Σ,

ΠA((q, q
′)) = q

ΠA((α, a)) = (α, a)

ΠA((αι, a0)) = ΠA((q?, q
′)) = ε

which is extended to finite or infinite runs of A ⊗
Adiscl in the natural way.
Similarly, the projection of ρ′ onto Adiscl uses the
following mapping:

Πdiscl : Runsf (A⊗Adiscl) → Runsf (Adiscl)

defined by induction on the length of ρ′: For all q′1 ∈
Q′, we let Πdiscl((q0?, q

′
0)(αι, a0)(q0, q

′
1)) = q′0 ·q0 ·q

′
1.

Then, for all ρ′ ∈ Runsf (A⊗Adiscl), for all q1 ∈ Q,
q′1, q

′
2 ∈ Q′, α ∈ Act , a ∈ Σ, we define:

Πdiscl(ρ
′ · (α, a) · (q1?, q

′
1) · (αι, a0) · (q1, q

′
2))

= Πdiscl(ρ
′) · (α, a) · q′1 · q2 · q

′
2

The mapping Πdiscl is increasing, hence for ρ′ an
infinite run of A⊗Adiscl, we can define Πdiscl(ρ

′) =
⊔

r finite prefix of ρ′ Πdiscl(r).
It is easy to see that ρ = ΠA(ρ

′) is a run of A,
and that Πdiscl(ρ

′) is a run of Adiscl over ρ. Then,
ρ ∈ ϕ \ O−1(O(ϕ)) if and only if ρ ∈ LB(Adiscl),
if and only if Πdiscl(ρ

′) ∈ Büchi(F) if and only if
ρ′ ∈ Büchi(Q × F).
Let σ′ be a ∼′-scheduler of A⊗Adiscl, and let ρ

be a finite run of A. Observe that there is a unique
run ρ′ ∈ Runsf (A ⊗ Adiscl) such that ΠA(ρ

′) = ρ.
We then let σ(ρ) = σ′(ρ′), which is clearly a ∼-
scheduler for A. Moreover, for all finite runs ρ of
A, we have Pσ(Cρ) = Pσ′(Cρ′). Hence Pσ(ϕ \
O−1(O(ϕ))) = Pσ′ (Büchi(Q× F)).
Conversely, let σ be a ∼-scheduler of A. We define
a ∼′-scheduler σ′ as follows. For ρ′ ∈ Runsf (A ⊗
Adiscl), for all q ∈ Q, q′ ∈ Q′,

σ′(ρ′ · (q?, q)) = (αι 7→ 1)

σ′(ρ′ · (q, q′)) = σ(ΠA(ρ
′ · (q, q′)))

In that case again,Pσ(ΠA(ρ
′)) = Pσ′ (ρ′), soPσ(ϕ\

O−1(O(ϕ))) = Pσ′ (Büchi(Q× F)).
Now, the almost-sure disclosure problem is equiv-

alent to deciding whether there is a ∼′-scheduler σ′

for A ⊗ Adiscl such that Pσ′ (Büchi(Q × F)) = 1.
From [1, 13, 12], this last problem is in EXPTIME.
To solve the problem on a given POMDP, one builds
an MDP in which each state is enriched with the
belief of the scheduler at this point, hence with a
size exponentially larger than the original model. A
naive application of this algorithm to the POMDP
A ⊗Adiscl would yield a POMDP of size exponen-
tially larger than the original A and Aϕ, hence
would provide an algorithm in 2-EXPTIME. We
then need a more careful and less costly construc-
tion: it consists in computing the belief only on the
POMDP A part, and not on the component coming
fromAdiscl, which is simply a deterministic automa-
ton. Hence, the obtained MDP is only exponential
in the size of A and Aϕ, and the overall algorithm
is in EXPTIME.
Moreover, proof of Theorem 13 provides a re-

duction from qualitative problems on POMDP

7

to almost-sure opacity and almost sure disclosure
problems. Given a run ρ, we let Appear(ρ) be the
set of states appearing (at least once) in the run,
and consider the acceptance condition Reach(F)
defined, for F ⊆ Q, by Reach(F) = {ρ ∈ Qω |
Appear(ρ) ∩ F 6= ∅}. Then, we have shown that
given a POMDP A, and a set of states F , one
can build a POMDP A′ (which is the POMDP of
Figure 2, in which the set F1 is made absorbing),
an observation function O, and a secret ϕ given
by a DBA, such that there exists a ∼-scheduler
for A such that Pσ(Reach(F)) = 1 if and only
if there exists a ∼′-scheduler σ′ for A′ such that
PDσ′(A′,O, ϕ) = 1. The EXPTIME-hardness for
our problem follows from the EXPTIME-hardness
of the almost-sure problem for POMDP with reach-
ability conditions [12]. �

Finally, we show that if we restrict to finite-
memory schedulers, then both the almost-sure dis-
closure and almost-sure opacity problems become
decidable for secrets given as DPA. Since finite-
memory schedulers are the only schedulers of prac-
tical interest, and DPA allow to describe any ω-
regular predicate, this restriction is of great inter-
est.

Theorem 15. Given a POMDP A, a morphism
O as observation function, and a secret given as a
DPA, the finite-memory almost-sure opacity prob-
lem and the finite-memory almost-sure disclosure
problem are EXPTIME-complete.

Proof. The proof follows the same lines than the
proof of Theorem 14. Given a POMDP A =
(Q,Σ,Act,∆, q0,∼) modeling the system and a
DPAAϕ describing the secret ϕ, one can obtained a
DPA Adiscl = (Q′, Q∪ (Act ×Σ), δ, q′0, F) such that
LP (Adiscl) = ϕ \ O−1(O(ϕ)), since this language is
ω-regular.
As in the previous proof, we build a new POMDP

as a product of A and Adiscl, A ⊗ Adiscl =
(Q × Q′,Σ ∪ {αι},∆

′, (q0?, q
′
0),∼

′). If F : Q′ →
{1, · · · , k}, we let F ′ : Q × Q′ → {1, . . . , k},
where, for all q ∈ Q, q′ ∈ Q′, F ′(q, q′) = F (q′).
Then, the finite-memory almost-sure disclosure
problem is equivalent to deciding whether there is
a finite-memory ∼′-scheduler σ′ for A⊗Adiscl such
that Pσ′ (Parity(F ′)) = 1, and the finite-memory
almost-sure opacity problem is equivalent to decid-
ing whether there is a finite-memory scheduler σ′

for A⊗Adiscl such that Pσ′ (Parity(F ′)) = 0. From
[10], when restricting to finite-memory schedulers,

these two problems are in EXPTIME. As in the
proof of Theorem 14, to maintain the procedure
within exponential time, the powerset construction
on the POMDP will only be made on the A com-
ponent of the product.

Also, the proof of EXPTIME-hardness follows
the same lines than the proof of Theorem 14. �

5. Conclusion

Extending the definition of probabilistic opacity
to MDPs (with infinite runs), we solve decidability
questions raised in [3]. More elaborate measures
could be studied in this context, and are left for
future work. Another interesting issue would be to
investigate disclosure before some given delay, ei-
ther as a number of steps in the spirit of [30] for
discrete event systems, or for probabilistic timed
system with an explicit time bound. In the latter
case, decidability results could be obtained by com-
bining our results with recent ones like [6].

Acknowledgements. We thank anonymous ref-
erees for their comments and suggestions. The re-
search was partly supported by Austrian Science
Fund (FWF) Grant No P 23499- N23, FWF NFN
Grant No S11407-N23, ERC Start grant (279307:
Graph Games), Microsoft faculty fellows award,
Coopération France-Québec, Service Coopération
et Action Culturelle 2012/26/SCAC, and project
ImpRo ANR-2010-BLAN-0317.

References

References

[1] Christel Baier, Marcus Größer, and Nathalie Bertrand.
Probabilistic ω-automata. J. ACM, 59(1):1, 2012.

[2] Béatrice Bérard, John Mullins, and Mathieu Sasso-
las. Quantifying opacity. In Gianfranco Ciardo and
Roberto Segala, editors, Proceedings of the 7th Inter-
national Conference on Quantitative Evaluation of Sys-
tems (QEST’10), pages 263–272. IEEE Computer So-
ciety, September 2010.

[3] Béatrice Bérard, John Mullins, and Mathieu Sassolas.
Quantifying opacity. CoRR, abs/1301.6799, 2013. ex-
tended version.

[4] Patrick Billingsley. Probability and Measure. Wiley,
New York, NY, 3rd edition, 1995.

[5] Michele Boreale, Francesca Pampaloni, and Michela
Paolini. Quantitative information flow, with a view.
In Vijay Atluri and Claudia Dı́az, editors, Proc. of 16th
European Symposium on Research in Computer Secu-
rity (ESORICS 2011), volume 6879 of Lecture Notes in
Computer Science, pages 588–606. Springer, 2011.

8

[6] Thomas Brihaye, Laurent Doyen, Gilles Geeraerts, Joël
Ouaknine, Jean-François Raskin, and James Worrell.
Time-bounded reachability for monotonic hybrid au-
tomata: Complexity and fixed points. In Dang Van
Hung and Mizuhito Ogawa, editors, Proc. of 11th In-
ternational Symposium on Automated Technology for
Verification and Analysis, ATVA 2013, volume 8172
of Lecture Notes in Computer Science, pages 55–70.
Springer, 2013.

[7] Jeremy W. Bryans, Maciej Koutny, Laurent Mazaré,
and Peter Y. A. Ryan. Opacity generalised to transition
systems. Intl. Jour. of Information Security, 7(6):421–
435, 2008.

[8] Jeremy W. Bryans, Maciej Koutny, and Chunyan
Mu. Towards quantitative analysis of opacity. In
Catuscia Palamidessi and Mark Dermot Ryan, editors,
Proc. 7th Int. Symp. on Trustworthy Global Comput-
ing (TGC’12), Revised Selected Papers, volume 8191
of Lecture Notes in Computer Science, pages 145–163.
Springer, 2013.

[9] Franck Cassez, Jeremy Dubreil, and Hervé Marchand.
Synthesis of opaque systems with static and dynamic
masks. Formal Methods in System design, 40(1):88 –
115, 2012.

[10] Krishnendu Chatterjee, Martin Chmelik, and Mathieu
Tracol. What is decidable about partially observable
Markov decision processes with omega-regular objec-
tives. In CSL, pages 165–180, 2013.

[11] Krishnendu Chatterjee, Laurent Doyen, Hugo Gimbert,
and Thomas A. Henzinger. Randomness for free. In
Proceedings of MFCS 2010: Mathematical Foundations
of Computer Science, Lecture Notes in Computer Sci-
ence 6281, pages 246–257. Springer-Verlag, 2010.

[12] Krishnendu Chatterjee, Laurent Doyen, and Thomas A.
Henzinger. Qualitative analysis of partially-observable
Markov decision processes. In Petr Hliněný and Antońın
Kučera, editors, Proceedings of the 35th International
Symposium on Mathematical Foundations of Computer
Science (MFCS’10), volume 6281 of Lecture Notes in
Computer Science, pages 258–269, Brno, Czech Repub-
lic, August 2010. Springer.

[13] Krishnendu Chatterjee, Laurent Doyen, Thomas A.
Henzinger, and Jean-François Raskin. Algorithms for
omega-regular games with imperfect information. Log-
ical Methods in Computer Science, 3(3), 2007.

[14] Krishnendu Chatterjee and Monika Henzinger. Faster
and dynamic algorithms for maximal end-component
decomposition and related graph problems in proba-
bilistic verification. In SODA, pages 1318–1336, 2011.

[15] Krishnendu Chatterjee, Marcin Jurdzinski, and
Thomas A. Henzinger. Quantitative stochastic parity
games. In SODA, pages 121–130, 2004.

[16] David Chaum. The dining cryptographers problem: un-
conditional sender and recipient untraceability. Journal
of Cryptology, 1:65–75, 1988.

[17] Costas Courcoubetis and Mihalis Yannakakis. The
complexity of probabilistic verification. Journal of the
ACM, 42(4):857–907, 1995.

[18] Jeremy Dubreil, Philippe Darondeau, and Hervé Marc-
hand. Supervisory Control for Opacity. IEEE Trans-
actions on Automatic Control, 55(5):1089 –1100, may
2010.

[19] Hugo Gimbert and Youssouf Oualhadj. Probabilistic
automata on finite words: Decidability and undecidabil-
ity results. In Samson Abramsky, Cyril Gavoille, Claude

Kirchner, Friedhelm Meyer auf der Heide, and Paul G.
Spirakis, editors, Proceedings of ICALP 2010, volume
6199 of Lecture Notes in Computer Science, pages 527–
538. Springer, 2010.

[20] Joseph A. Goguen and José Meseguer. Security pol-
icy and security models. In Proc. of IEEE Symposium
on Security and Privacy, pages 11–20. IEEE Computer
Society Press, 1982.

[21] Yassine Lakhnech and Laurent Mazaré. Probabilistic
opacity for a passive adversary and its application to
Chaum’s voting scheme. Technical Report 4, Verimag,
2 2005.

[22] Heiko Mantel and Henning Sudbrock. Information-
theoretic modeling and analysis of interrupt-related
covert channels. In P. Degano, J. Guttman, and F. Mar-
tinelli, editors, Proceedings of the Workshop on Formal
Aspects in Security and Trust, FAST 2008, Springer,
LNCS 5491, pages 67–81, 2009.

[23] Bastien Maubert, Sophie Pinchinat, and Laura Bozzelli.
Opacity issues in games with imperfect information. In
2nd Int. Symp. on Games, Automata, Logics and For-
mal Verification (GandALF’11), pages 87–101, 2011.

[24] Laurent Mazaré. Decidability of opacity with non-
atomic keys. In Proc. 2nd Workshop on Formal As-
pects in Security and Trust (FAST’04), volume 173 of
Intl. Federation for Information Processing, pages 71–
84. Springer, 2005.

[25] Jonathan K. Millen. Covert Channel Capacity. In Proc.
of IEEE Symposium on Research in Computer Security
and Privacy, pages 144–161, 1987.

[26] Satoru Miyano and Takeshi Hayashi. Alternating fi-
nite automata on omega-words. Theor. Comput. Sci.,
32:321–330, 1984.

[27] A. Paz. Introduction to probabilistic automata (Com-
puter science and applied mathematics). Academic
Press, 1971.

[28] Michael O. Rabin. Probabilistic automata. Information
and Control, 6(3):230–245, 1963.

[29] Michael K. Reiter and Aviel D. Rubin. Crowds:
anonymity for web transactions. ACM Transactions
on Information and System Security, 1(1):66–92, 1998.

[30] Anooshiravan Saboori and Christoforos N. Hadjicostis.
Verification of k-step opacity and analysis of its com-
plexity. IEEE T. Automation Science and Engineering,
8(3):549–559, 2011.

[31] Anooshiravan Saboori and Christoforos N. Hadji-
costis. Current-state opacity formulations in proba-
bilistic finite automata. IEEE Trans. Automat. Contr.,
59(1):120–133, 2014.

[32] Wolfgang Thomas. Languages, automata, and logic.
In Handbook of Formal Languages, pages 389–455.
Springer, 1997.

[33] Moshe Y. Vardi. Automatic verification of probabilistic
concurrent finite-state programs. In Proceedings of 26th
Annual Symposium on Foundations of Computer Sci-
ence (FOCS), pages 327–338. IEEE Computer Society,
1985.

[34] John T. Wittbold and Dale M. Johnson. Information
flow in nondeterministic systems. In Proc. of IEEE
Symposium on Research in Computer Security and Pri-
vacy, pages 144–161, 1990.

9

	1 Introduction
	2 Preliminaries
	2.1 Automata
	2.2 Probabilistic systems

	3 Opacity and disclosure
	4 Results
	4.1 MDPs and Schedulers with Perfect Observation
	4.2 POMDPs and Observation-based Schedulers

	5 Conclusion

