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Abstract

It is known that in some cases a Random Access Machine (RAM) benefits from having
an additional input that is an arbitrary number, satisfying only the criterion of being
sufficiently large. This is known as the ARAM model. We introduce a new type of RAM,
which we refer to as the Arbitrary Sequence RAM (ASRAM), that generalises the ARAM
by allowing the generation of additional arbitrary large numbers at will during execution
time. We characterise the power contribution of this ability under several RAM variants.

In particular, we demonstrate that an arithmetic ASRAM is more powerful than an
arithmetic ARAM, that a sufficiently equipped ASRAM can recognise any language in the
arithmetic hierarchy in constant time (and more, if it is given more time), and that, on
the other hand, in some cases the ASRAM is no more powerful than its underlying RAM.
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1. Introduction

The Random Access Machine, or RAM, (see [1] for a formal definition) is a compu-
tational model that affords all that we expect from a modern computer in terms of flow
control (loops, conditional jump instructions, etc.) and access to variables (direct and
indirect addressing). It is denoted by RAM[op], where op is the set of operations that are
assumed to be executable by the RAM in a single unit of time each. A comparator for
equality is also assumed to be available, and this also executes in a single unit of time.
The variables (or registers) of an integer RAM contain nonnegative integers and are also
indexable by addresses that are nonnegative integers.

To discuss the power of RAMs, let us consider RAMs as calculating functions. We
initialise the RAM by storing the input value, inp, in the RAM’s R[0] register (setting
all other registers to zero), and the output of the function is taken to be the value of
R[0] at termination time. This definition can be extended to functions receiving any fixed
number of inputs. Alternatively, RAMs can be discussed as language acceptors, where inp
is taken to be in the language if and only if the return value is non-zero. Traditionally,
when viewing the RAM as an acceptor, non-termination is taken to mean rejection of the
input. By contrast, when viewing the RAM as a function calculator, non-termination is
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usually taken to mean that the RAM calculates a partial function, rather than a function.
The two frameworks can be unified by arbitrarily taking a non-terminating computation
in a function-calculating RAM to yield an output of zero.1

Ben-Amram and Galil [2] write “The RAM is intended to model what we are used
to in conventional programming, idealized in order to be better accessible for theoretical
study.” However, in practice, the RAM’s ability to manipulate very large numbers in
constant time has been shown to reduce algorithmic complexities beyond what is usually
considered “reasonable”. For example, it was shown regarding many RAMs working with
fairly limited instruction sets that they are able to recognise any PSPACE problem in
deterministic polynomial time [16, 7, 3, 14], and a unit-cost RAM equipped only with
arithmetic operations, Boolean operations and bit shifts can, in fact, recognise in constant
time any language that is recognised by a TM in time and/or space constrained by any
elementary function of the input size [4].

In most cases (e.g., [11, 9, 12, 10, 17, 13]), the large integers to be efficiently manipulated
by the RAM are generated to precise values that are conducive to the computation at hand.
However, in other cases (e.g., [5, 8, 3]) some of the integers manipulated are arbitrary,
subject only to the condition of being sufficiently large. We refer to such arbitrary large
numbers as ALNs.

Recently, in [4], a general framework was proposed for the study of the power contri-
bution of ALNs, this being the ARAM. An ARAM[op] program is defined by a RAM[op]
program, r, in the following way. The ARAM is said to compute the function ρA(inp) if r
computes the function ρ(inp, A), and for all inp

∞

∀Aρ(inp, A) = ρA(inp),

where
∞

∀ denotes “all but a finite number” (usually written as “almost all”). For the purpose
of complexity calculations, the run-time associated with the ARAM is the worst-case run-
time of r with the same inp over any possible choice of A (including the possibilities for
which the results of ρ and of ρA differ). If the run-time for a given inp is unbounded, over
the possible choices of A, the ARAM is said not to terminate.

We now introduce a new computational model which generalises the ARAM, this being
the Arbitrary Sequence RAM (ASRAM). To define the ASRAM, let us first define the
Arbitrary Large Sequence (ALS) set.

Definition 1 (ALS). An Arbitrary Large Sequence (ALS) set is a nonempty set of (infinite)
integer sequences, S, such that for any i and any sequence {Ak} ∈ S there exists a sequence
{Bk} ∈ S such that Bi = Ai + 1, and if j < i, then Bj = Aj .

The definition of the ALS set is such that if any finite list of integers appears as a prefix
of any sequence in S, the last integer can be increased by 1 (and, by induction, can be

1All RAMs discussed in this paper are guaranteed to terminate in finite time, so handling the case of
non-termination is never an issue.
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replaced by any larger number), and the result would still be a prefix of a sequence in S.
This being the case, any finite list of integers appearing as a prefix of any sequence in S
remains a prefix in S if one extends it by another element, given that this element exceeds
some threshold value. Other than being “large enough”, the new element can be chosen
arbitrarily.

Definition 2 (ASRAM). An ASRAM is a computational model that provides the same
functionality as the RAM, but also allows calls to a pseudofunction, “ALN()”, that returns
integers.

An ASRAM is said to compute the function f(inp) if for each inp there exists an ALS
set, S, such that for any {Ai} ∈ S, if the i’th invocation of ALN() is replaced by the
constant Ai then the resulting RAM calculates f(inp).

The run-time of the ASRAM on a given inp is the run-time of the underlying RAM
with the worst-case choice of {Ai}. (The ASRAM is taken to be non-terminating if this
worst-case is unbounded.)

This definition reflects a situation where every application of ALN() returns a number
that is arbitrary other than being sufficiently large with respect to everything that occurred
in earlier steps of the ASRAM’s execution.

The ASRAM can be used to investigate a scenario in which an unbounded number of
ALNs are required. However, we can also use it for the intermediate scenario, where only
a predefined number (e.g. 2) of ALNs are available to the algorithm. This is simply done
by limiting the number of times the ALN() pseudofunction can be executed. The original
ARAM is an ASRAM limited to use ALN() at most once.

2. Arithmetic complexity

At face value, one may believe that multiple arbitrary numbers are no more powerful
than a single arbitrary number. However, this is not so.

In this section we show that the extra power of arbitrary sequences is present already in
the traditional arithmetic complexity model, this being the computational model in which

the basic operations used are the four arithmetic functions, {+, ,×,÷}, where a b
def
=

max(a − b, 0) and “÷” is integer division. We also use “mod” freely in the arithmetic
model, because it is an operation straightforward to simulate using the available operations.

We stress that despite use of the name “arithmetic”, the results presented rely heavily
on the non-arithmetic nature of “÷”. In the literature [8], this operation is, in fact,
sometimes referred to as non-arithmetic division.

Formally stated, what we prove is the following theorem.

Theorem 1. The class of functions that can be computed in polynomial time by an arith-
metic ASRAM is strictly larger than the class of functions that can be computed in poly-
nomial time by an arithmetic ARAM.
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Proof. Consider Algorithm 1. This algorithm utilises the fact that for an ALN, A, and a
polynomial, P , the calculation P (A) mod (A − x) is an algorithm for computing P (x).2

Utilising this property, the algorithm calculates each Pi so that it equals A22
(x−i)

i . After

O(x) steps, it returns the value 22
2x

.

Algorithm 1 An arithmetic ASRAM calculating 22
2x

in O(x) time

1: for i ∈ 1, . . . , x do
2: Ai ⇐ ALN()
3: end for
4: Px ⇐ Ax ×Ax

5: for i ∈ x− 1, . . . , 1 do
6: temp⇐ Pi+1 mod (Ai+1 − Ai)
7: Pi ⇐ Pi+1 mod (Ai+1 − temp)
8: end for
9: temp⇐ P1 mod (A1 − 2)
10: rc⇐ P1 mod (A1 − temp)
11: return rc

From [5], we know that an ARAM[+, ,×,÷] can only calculate 22
x

in Ω(
√
x) time.

The fact that Algorithm 1 calculates it in Θ(log x) time makes this an example that is
polynomial for an ASRAM but not for an ARAM.3

3. ASRAM[+,←,Bool ]

In the remaining sections we consider ASRAMs with instruction sets that are more

powerful than the arithmetic operations. These include left shifting (a ← b
def
= a × 2b)

and bitwise Boolean operations. These ASRAMs will be investigated in terms of their
abilities to accept languages (rather than to calculate functions). We use the notation
f(x)-RAM[op] to denote the class of languages recognisable by a RAM[op] in f(x) time.
(“RAM” can be replaced by “ARAM” or “ASRAM”.) For example, O(1)-ARAM[op] is the
class of languages recognisable by an ARAM[op] in constant time, whereas P-ASRAM[op]
is the class of languages recognisable by an ASRAM[op] in polynomial time.

We begin by examining a case where ASRAMs afford no additional computational
power.

Theorem 2. P-ASRAM[+,←,Bool] = PSPACE, where PSPACE is the class of languages
recognisable by a Turing machine (TM) working on a tape of polynomial size.

2This is evident from the fact that in any ring, R, for any elements x, y ∈ R and any polynomial P
over R, the following holds: x ≡ y (mod R)⇒ P (x) ≡ P (y) (mod R).

3Though not appearing in this description, Algorithm 1 can be modified in a straightforward way to
calculate 22

x

for any x, and not just for x values that are powers of 2.
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Both the RAM and ARAM working with the same operation set have been shown
[18, 4] to be able to recognise PSPACE in polynomial time.

We remark that if it was known that the class of functions recognisable by ARAM[op]
working under some time constraints equals the class of functions recognisable by a RAM[op]
working under the same time constraints, then this result would have been directly also
applicable to ASRAMs, by recursively reducing the number of ALNs required. However,
[4] only proves that ALNs do not add power for ARAMs that are language recognisers. It is
still possible that there are functions that can be calculated by an ARAM[+,←,Bool ] but
not by a RAM[+,←,Bool], and the availability of the pseudofunction “ALN()” may add
more functions still. Theorem 2 shows that for this particular operation set, the fact that
an ARAM does not recognise more languages than a RAM carries over also to ASRAMs.
However, for results regarding language recognition, this is by no means known to hold for
a general operation set.

Proof of Theorem 2. The proof is a direct extension of the proof of Theorem 4 in [4]. In
the original proof, it was shown that a polytime ARAM with said operation set can be
simulated by a PSPACE TM, given that a PSPACE TM can determine which is larger
of a pair of expressions of the form aω + b, where a and b are known nonnegative integer
constants and 2ω is the ARAM’s ALN. Because ω is, by definition, “large enough”, the
answer can be reached by simple lexicographical comparison.

In the ASRAM scenario, we begin by picking our ALNs, A1, A2, . . . so as to be powers
of two: 2ω1 , 2ω2, . . .. We then simulate the ASRAM in exactly the same way as was done
for the ARAM. Utilising exactly the same proof as that of Theorem 4 in [4], we conclude
now that a polytime ASRAM with said operation set can be simulated by a PSPACE TM,
given that a PSPACE TM can determine which is larger of a pair of expressions of the
form a0 +

∑k

i=1
aiωi, where both k and a0, . . . , ak are given nonnegative integers.

Once again, because each ωi is, per assumption, large enough compared to all ωj with
j < i, a simple lexicographic comparison is enough to determine which of two formal
expressions has the larger value.

Thus, the entire simulation of the ASRAM can be performed in PSPACE.

4. ASRAM[+, /,←,Bool ]

In this section we prove two theorems.

Theorem 3. O(1)-ASRAM[+, /,←,Bool] = AH.

Theorem 4. ω(1)-ASRAM[+, /,←,Bool] ⊃ AH.

In the statements of Theorems 3 and 4, “/” is exact division (a weaker form of division,
yielding the same results as integer division, but defined only when the division is without
a remainder). AH refers to the entire arithmetic hierarchy,

⋃
∞

i=0
Σ0

i ∪Π0
i .

In order to prove the above, we utilise Theorem 5 of [4]:

5



Theorem 5 ([4]). Any recursively enumerable (r.e.) set can be recognised in O(1) time by
an ARAM[+, /,←,Bool].

Proof of Theorem 3. Any ASRAM running k steps (and therefore utilising at most k ALNs,
A1, . . . , Ak) can be transformed into an equivalent ASRAM that first generates A1, . . . , Ak

and then performs any other computation. The part of the computation after the genera-
tion of the ALNs is a RAM computation. We consider this RAM as a language acceptor,
and denote the predicate logically-equivalent to it φ(inp, A1, . . . , Ak).

The function computed by the ASRAM is the value of φ for a sufficiently large Ak

given a sufficiently large Ak−1, given a sufficiently large Ak−2, etc.. Technically, given an
appropriate choice of A1, . . . , Ak−1, we say that there exists some threshold, Nk, such that
for any choice of Ak satisfying Ak > Nk, the value of φ(inp, A1, . . . , Ak) is always the same,
and it is taken to be the value of the ASRAM. In particular, the ASRAM accepts if and
only if for any choice of threshold, Nk, there exists a value of Ak larger than the threshold
for which φ(inp, A1, . . . , Ak) is true.

This indicates that the predicate computed by the ASRAM can be formulated as

∀N1∃A1∀N2∃A2 · · · ∀Nk∃Ak(A1 > N1) ∩ (A2 > N2) ∩ · · · ∩ (Ak > Nk) ∩ φ(inp, A1, . . . , Ak).

Because φ is calculated by a RAM, it is known to be in Σ0
1, so the predicate computed

by the ASRAM is, by definition, in Π0
2k.

We have thus established that the formula computed by the ASRAM is in AH. We
now show that any formula, “φ = ∃a1∀a2 · · · ∃akχ(inp, a1, . . . , ak)”, with any k quantifiers,
can be computed by a constant time ASRAM with k ALNs. The way to do this is to
bound every ai except the last by an ALN Ai. The formula φ is logically equivalent to
“∀N1∃A1 · · · ∀Nk−1∃Ak−1∃(a1 < A1)∀(a2 < A2) · · · ∃ak such that (A1 > N1)∩· · ·∩ (Ak−1 >
Nk−1) ∩ χ(inp, a1, . . . , ak)”. (If an ai exists to satisfy some condition, its value can be
bounded by some Ai, whereas if something is true for every ai, it will also be true for every
bounded ai.)

This derivation shows that any formula with k quantifiers can be computed as a formula
with a single quantifier, given k − 1 ALNs.

We now make use of Theorem 5, which is equivalently stated as O(1)-ARAM[+, /,←
,Bool] ⊇ Σ0

1.
Note that an O(1)-ARAM certainly terminates, and therefore its underlying RAM

certainly terminates as well. This means that its return value can be inverted, making it
accept a new language that is the complement of the original accepted language. The set of
complements to Σ0

1 is Π0
1, from which we can conclude that O(1)-ARAM[+, /,←,Bool] ⊇

Σ0
1 ∪ Π0

1, this being the set of all formulae with a single quantifier.
We therefore first generate k − 1 ALNs, in a total of O(k) time. Given the values of

the k − 1 ALNs, the formula to be calculated is in Σ0
1 ∪ Π0

1 (its one remaining unbounded
quantifier being ak), so we know it to be computable in an additional O(1) time by an
ARAM, for which we now use the k’th ALN. In total, the ASRAM runs in O(k)-time.

Any formula in AH is on some level of the hierarchy. To simulate it, we fix k to be that
level. Thus, the simulating ASRAM runs in O(1)-time.

6



Corollary 5.1. An ASRAM restricted to use only k ALNs (regardless of its time complex-
ity) is equivalent to a formula on the Θ(k)-th level of the arithmetical hierarchy.

Proof. This result is a direct corollary of the proof for Theorem 3, which shows that an
ASRAM utilising k ALNs can compute any formula in Σ0

k ∪ Π0
k, and can be computed by

a formula in Π0
2k.

Consider, now, what happens when the ASRAM (not restricted to any fixed number
of ALNs), is allowed to run in ω(1) time.

Proof of Theorem 4. A well-known example of a function that is not in AH is “TRUTH”.
This is a function that takes as input a formula, ψ, suitably encoded as an integer, and
determines whether this formula is true or not.

The inability to describe TRUTH as a formula in AH is known as Tarski’s undefinability
theorem [19]. It is a corollary of Gödel’s incompleteness theorem [6] and, in the formulation
given above, is a direct result of Post’s theorem, stating that the arithmetical hierarchy
does not collapse [see 15].

Consider, first, an ASRAM working in Θ(n) time, where n = |inp| is the bit-length of
its input, inp. As demonstrated in Theorem 3, such an ASRAM can compute, directly,
any formula with Θ(n) quantifiers. Consider a formula, ψ, encoded in the straightforward
manner as an integer with n bits. This formula will necessarily have O(n) quantifiers,
so a Θ(n)-time ASRAM (a linear-time ASRAM) can be used to compute its truth value.
Hence, TRUTH is in O(n)-ASRAM[+, /,←,Bool].

To extend this result from Θ(n)-time execution to ω(1)-time execution, we note simply
that the straightforward formula encoding used above may be, perhaps, the most efficient
encoding possible, but is certainly not the only one. For example, it is possible to encode
the statement less efficiently by re-encoding the original input number, inp, as inp′ =
(2inp + 1) × 2T . An arbitrary choice of T allows constant-time decoding of the original
inp. However, because we measure complexity as a function of the bit-length of the input,
n′ = |inp′|, and because the procedure shown here artificially increases this bit-length by
an arbitrarily-large value, n−n′ = T +1, choosing a large enough T effectively reduces the
run-time complexity arbitrarily. For example, if T is chosen to be n2, we have n′ = Θ(n2),
so the ASRAM’s run-time, which is still Θ(n), is merely Θ(

√
n′) when considered as a

function of the bit-length of its actual input, inp′. With an appropriate choice of T , the
ASRAM’s execution time, though still Θ(n), can be taken to be as low as any ω(1) function
of n′.

Tarski’s undefinability theorem is independent of the exact choice of encoding used to
make the input formula, ψ, into a number. The new, tweaked TRUTH function must,
therefore, also lie outside of AH.

Thus, an ω(1)-time ASRAM can compute functions that are outside of AH.

5. Conclusions and future work

We have fully characterised P-ASRAM[+,←,Bool] and O(1)-ASRAM[+, /,←,Bool].
For ω(1)-ASRAM[+, /,←,Bool], we have not provided a full characterisation, other than
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stating that it is beyond AH, but perhaps this is the best characterisation one can hope for:
stratification beyond AH is traditionally very coarse-grained. If anything, one can say that
ASRAM complexity provides us with a new and effective tool for fine-grained stratification
beyond AH.

Where future research appears most needed is regarding our result on the arithmetic
ASRAM. We have shown that the ASRAM is a more powerful model than the ARAM under
arithmetic complexity, but full quantification of this extra power is still an interesting open
problem.
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