
ar
X

iv
:1

40
6.

11
58

v2
 [

cs
.D

S]
 1

1
Ja

n
20

15

Kernelization lower bound for Permutation Pattern

Matching∗

Ivan Bliznets†, Marek Cygan‡, Pawe l Komosa§, Lukáš Mach¶

May 10, 2018

Abstract

A permutation π contains a permutation σ as a pattern if it contains a sub-
sequence of length |σ| whose elements are in the same relative order as in the
permutation σ. This notion plays a major role in enumerative combinatorics.
We prove that the problem does not have a polynomial kernel (under the widely
believed complexity assumption NP 6⊆ co-NP/poly) by introducing a new poly-
nomial reduction from the clique problem to permutation pattern matching.

1 Introduction

Counting permutations of size n avoiding a fixed pattern is an established and active
area of enumerative combinatorics. Knuth [12] has shown that the number of per-
mutations avoiding (2, 3, 1) is the nth Catalan number. Various choices of prohibited
patterns have been studied among others by Lovász [13], Rotem [15], and Simion and
Schmid [17]. This culminated in the Stanley-Wilf conjecture stating that for every
fixed prohibited pattern, the number of permutations of length n avoiding it can be
bounded by cn for some constant c. Klazar [11] reduced the question to the Füredi-
Hajnal conjecture, which was ultimately proved by Marcus and Tardos in 2004 [14].

Wilf [18] also posed the algorithmic question of whether detecting a given pattern
(of length ℓ) in a given permutation (of length n) can be done in subexponential time.
Subsequently, the problem was shown to be NP-hard in [6]. Ahal and Rabinovich have
obtained an O(n0.47ℓ+o(ℓ)) time algorithm [1]. Fast algorithms have been found for
certain restricted versions of the problem [10, 16].

∗Partially supported by Warsaw Center of Mathematics and Computer Science.
†St. Petersburg Department of Steklov Institute of Mathematics. E-mail: iabliznets@gmail.com.

Partially supported by the Government of the Russian Federation (grant 14.Z50.31.0030).
‡Institute of Informatics, University of Warsaw, Poland. E-mail: cygan@mimuw.edu.pl. Partially

supported by NCN grant DEC-2012/05/D/ST6/03214.
§Institute of Informatics, University of Warsaw, Poland. E-mail: kompaw01@gmail.com.
¶DIMAP and Department of Computer Science, University of Warwick, United Kingdom. E-mail:

lukas.mach@gmail.com. This author has also recieved funding from the European Research Council
under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement
no. 259385.

1

http://arxiv.org/abs/1406.1158v2

Pattern matching has also received interest in the context of parameterized com-
plexity. Several groups of researchers have obtained W[1]-hardness results for gen-
eralizations of the problem [4, 9]. In [5] it was shown that the problem is in FPT

when parameterized by the number of runs (maximal monotonic consecutive subse-
quences) in the target permutation. The authors of [5] raise the issue of whether their
problem has a polynomial size kernel as an open problem. The central question of
whether the problem is in FPT when parameterized by ℓ has been resolved by Guille-
mot and Marx [9], who obtained an algorithm with runtime of 2O(ℓ2 log ℓ) · n. This
implies the existence of a kernel for the problem. Obtaining kernel size lower bounds
was posed as an open question during a plenary talk at Permutation Patterns 2013 by
Stéphane Vialette.

We prove that the permutation pattern problem under the standard parameteriza-
tion by ℓ does not have a polynomial size kernel, assuming NP 6⊆ co-NP/poly.

2 Preliminaries

The set {i, i + 1, . . . , j − 1, j} is denoted by [i, j]. We set [n] := [1, n]. A permutation
π is a bijection from [n] to [n]. The value π(i) is called the entry of π at position

i. We use |π| to denote the size of the domain of π. Two common representations
of a permutation π are used: the vector (π(1), π(2), . . . , π(n)) and the corresponding
permutation matrix. The latter is a |π| × |π| binary matrix with 1-entries precisely
on coordinates (π(i), i). A vector obtained from the vector representation by omitting
some entries is a subsequence of the permutation. Such subsequence is a consecutive

subsequence if it contains precisely the entries with indexes from [i, j] for some i, j ∈ N.
We use π[i, j] to denote the set of entries {π(i), π(i + 1), . . . , π(j)}. A monotonic

subsequence is a subsequence whose entries form a monotonic sequence. A run is a
maximal monotonic consecutive subsequence. For example, (4, 5, 3, 1, 2) contains a
(decreasing) run of length 3.

The key notion of a permutation pattern is introduced below:

Definition 1. A permutation σ on the set [l] is a pattern of a permutation π on the

set [n] if there exists an increasing function φ : [l] → [n] such that

∀x, y ∈ [l] : σ(x) < σ(y) if and only if π(φ(x)) < π(φ(y)).

We say that the function φ certifies the pattern.

A parameterized problem is a language Q ⊆ Σ∗ ×N, where Σ is a fixed alphabet.
The value k of the instance (x, k) ∈ Q is its parameter. Permutation Pattern

Matching is the following parameterized algorithmic problem:

Input: a permutation σ on [ℓ], a permutation π on [n].
Parameter: ℓ.
Question: is σ a pattern of π?

A parameterized problem Q is in FPT if there is an algorithm deciding (x, k) ∈ Q
in time f(k)|x|O(1), where f is a computable function.

2

Definition 2. A kernelization algorithm for a parameterized problem Q is an algo-

rithm that given an instance (x, k) ∈ Σ∗ ×N produces in p(|x| + k) steps an instance

(x′, k′) such that

1. (x, k) ∈ Q ⇔ (x′, k′) ∈ Q and

2. |x′|, k′ ≤ f(k),

where p(·) is a polynomial and f(·) a computable function.

If there is a kernelization algorithm for Q, we say that Q has a kernel. If the
function f(·) in the above definition can be bounded by a polynomial, we say that Q
has a polynomial kernel.

We utilize the standard machinery of Bodlaender et al. [3], which builds on [2, 7],
to derive kernelization lower-bounds under the widely believed complexity assumption
NP 6⊆ co-NP/poly. A failure of this assumption would imply that the polynomial
hierarchy collapses to the third level. Some basic definitions are necessary:

Definition 3 (Bodlaender et al. [3]). An equivalence relation R on Σ∗ is called a
polynomial equivalence relation if the following two conditions hold:

1. There is an algorithm that given two strings x, y ∈ Σ∗ decides whether x and y
belong to the same equivalence class in (|x| + |y|)O(1) time.

2. For any finite set S ∈ Σ∗ the equivalence relation R partitions the elements of S
into at most (maxx∈S |x|)

O(1) equivalence classes.

An example of such a relation is the grouping of instances of the same size.

Definition 4 (Bodlaender et al. [3]). Let L ⊆ Σ∗ be a language and let Q ⊆ Σ∗×N be

a parameterized problem. We say that L cross-composes into Q if there is a polynomial

equivalence relation R and an algorithm which, given t strings x1, x2, . . . , xt belonging

to the same equivalence class of R, computes an instance (x∗, k∗) ∈ Σ∗ × N in time

polynomial in
∑t

i=1 |xi| such that:

1. (x∗, k∗) ∈ Q ⇔ xi ∈ L for some 1 ≤ i ≤ t,

2. k∗ is bounded by a polynomial in maxt
i=1 |xi| + log t.

Theorem 5 (Bodlaender et al. [3]). Let L ⊆ Σ∗ be an NP-hard language. If L cross-

composes into a parameterized problem Q and Q has a polynomial kernel then NP ⊆
co-NP/poly.

3 Kernelization lower bound for Permutation Pat-

tern Matching

We show that the Permutation Pattern Matching problem is unlikely to have
a polynomial kernel:

3

Theorem 6. Unless NP ⊆ co-NP/poly, the Permutation Pattern Matching

problem does not have a polynomial kernel.

We prove Theorem 6 using Theorem 5. However, this requires a polynomial-time
reduction that allows cross-composition without significantly increasing the parameter
value. Reductions described in the literature [4,6] have resisted our attempts to apply
the framework. Therefore, we introduce a new NP-hardness proof that directly leads
to a cross-composition. The new reduction is from the well known Clique problem.

Let us first define encoding πz(G) taking a graph G and z ∈ N and producing a
permutation. The key property of the encoding is that for any G,H we have G ⊆ H
if and only if πz(G) is a pattern of πz(H) for a particular choice of z. This allows
us to express the Clique problem in terms of Permutation Pattern Matching.
The encoding permutation itself consists of two types of entries: encoding entries
and separating entries. The former ones encode the edges of G. The latter form
decreasing runs used to separate encoding entries corresponding to different vertices.
The mapping πz(·) can be seen as an embedding of the upper-triangular submatrix of
the adjacency matrix of the input graph into a permutation. The separating runs mark
where each row and column begins and ends; the encoding entries determine where
the 1-entries of the matrix are. This mapping, along with some notation introduced
below, is illustrated in Figure 1.

We start constructing πz(G) by imposing a total order on V (G) placing vertices
from the same connected component of G consecutively. Thus, we can assume that
V (G) = [n] and set

N+
G (v) := {u : u > v ∧ {u, v} ∈ E(G)},

N−

G (v) := {u : u < v ∧ {u, v} ∈ E(G)},

deg+
G(v) := |N+

G (v)|,

deg−

G(v) := |N−

G (v)|.

We call the vertices from N+
G (v) and N−

G (v) the right-neighbours and left-neighbours
of v, respectively. The overall structure of the permutation πz(G) is as follows. It starts
with a decreasing run of length z, continues with the entries encoding the vertex 1
(i.e., encoding N+

G (1)), which is then followed by another decreasing run of length z.
This finishes the part of the permutation dedicated to the vertex 1 and the segment
for the vertex 2 begins. Again, it starts with another decreasing run of length z,
continues with the encoding entries of N+

G (2), and is finished by a decreasing run of
length z. This continues for all vertices of G. Note that for each vertex v there is
a pair of decreasing runs immediately surrounding the entries encoding N+

G (v), one
from left and one from right. These are called the left and right separating runs of v,
respectively.

To facilitate the formal definition of πz(G), we begin by introducing a notation for
important positions and values of the resulting permutation’s entries. This includes
the positions where the abovementioned runs start, the values with which they start,
or the positions where the parts encoding N+

G (v), for individual choices of v, start.
We use pL(v) and pR(v) as a shorthand for the positions on which the left and

right separating run of v starts, respectively. The first position of the segment encoding

4

N+
G (v) is denoted by pM(v). This is illustrated in Figure 1. Specifically, we set pL(1) :=

1, pM(1) := z + 1, and pR(1) := z + 1 + deg+
G(1). For v ≥ 2, we have:

pL(v) := pR(v − 1) + z,

pM(v) := pL(v) + z,

pR(v) := pM(v) + deg+
G(v).

We also introduce notation for the values used by the separating runs. The left separat-
ing run of v starts at the position pL(v) with the value qL(v). The right separating run
starts at pR(v) with the value qR(v). Finally, qM(v) is the least value used by the en-
coding entries of vertices from N−

G (v) to determine their connection to v. (Specifically,
vertices of N−

G (v) use the values [qM(v), qM(v)+deg−

G(v)−1] to encode this. If deg−

G(v)
is zero, the value qM (v) is actually not used.) We set qL(1) := 2z, qM(1) := z + 1, and

pL(1)

pM (1)

pR(1)

pL(2)

pM (2) · · ·

0 1 1 0

0 1 0

1 0

0

Figure 1: Left part shows the upper triangular submatrix of the adjacency matrix
of a graph G =

(

{1, 2, 3, 4},
{

{1, 2}, {2, 3}, {2, 4}, {3, 4}
})

. The right part shows the
permutation matrix representation of its encoding permutation π3(G). The columns of
both matrices are indexed from left to right, the rows from bottom to top. Thus, the
(1, 1) entry of the matrix is in the bottom-left corner. White positions of the grid on
the right correspond to 0-entries of the permutation matrix, non-white positions are
1-entries. Separating runs are colored in light gray, encoding entries in dark red. Note
the one-to-one correspondence between the 1-entries of the matrix on the left with
the encoding entries of the permutation matrix. Horizontal red lines represent values

attained at positions L(4) and R(4). Vertical red lines denote indexes L(2) and R(2).
Note that these four red lines induce a rectangle with a single 1-entry. This encodes
the 1-entry in the top-most position of the second column of the adjacency matrix.
Arrows below the permutation matrix illustrate the notation pL(·), pM(·), and pR(·).

5

qR(1) := z. For v ≥ 2, let

qR(v) := qL(v − 1) + z,

qM(v) := qR(v) + 1,

qL(v) := qM(v) + z + deg−

G(v) − 1.

We now define the values of π = πz(G). For each v, we introduce a decreasing run of
length z starting at the position pL(v):

π(pL(v)) := qL(v),

π(pL(v) + 1) := qL(v) − 1,

π(pL(v) + 2) := qL(v) − 2,

. . .

π(pL(v) + z − 1) := qL(v) − (z − 1).

We also insert a decreasing run which starts at the position pR(v) with the value qR(v):

π(pR(v)) := qR(v),

π(pR(v) + 1) := qR(v) − 1,

π(pR(v) + 2) := qR(v) − 2,

. . .

π(pR(v) + z − 1) := qR(v) − (z − 1).

This establishes the entries represented by gray squares in Figure 1.
The remaining values are used to encode the edges of G. The neighbourhood N+

G (v)
is encoded by an increasing run on positions pM(v), pM(v)+1, . . . , pM(v)+ |N+

G (v)|−1.
We fix a vertex v ∈ V (G) and iterate through the neighbours {u1, u2, . . . , uk} = N+

G (v).
Assume u1 < u2 < . . . < uk. For i ∈ [k], we set:

π(pM(v) + i− 1) := qM(ui) + ℓ(v, ui), (1)

where ℓ(v, ui) = |{w : w < v ∧ {w, ui} ∈ E(G)}|. The term ℓ(v, ui) ensures that no
value in π is repeated.

The above procedure is carried out for each v ∈ V (G). This finishes the construc-
tion of πz(G). We now provide two observations.

Observation 7. For any graph G and z ∈ N the function πz(G) is a permutation.

Proof. Let π := πz(G). It is straightforward to verify that π is a mapping from [p]
to [p], for p = 2zn + |E(G)|. It remains to show that π is injective, i.e. that there
is no pair of distinct indexes i, j such that π(i) = π(j). It is easily seen that such
i and j cannot both be an index of an entry forming a separating run, since the
separating runs are explicitly constructed so that the sets of their values are disjoint.
For each vertex v there are exactly deg−

G(v) values between the values of its left and
right separating run. These values are used to encode the deg−

G(v) edges connecting v
to its left-neighbours. The left-most neighbour is using the least value, the subsequent
vertices are using values that increase by 1 with each neighbour (cf. the term ℓ(v, ui)

6

in equation (1)). Therefore, we have neither a collision between a separating entry and
an encoding entry nor a collision between two entries encoding N−

G (v) for the same
v. Finally, it can be easily seen that the sets of values encoding N−

G (v) are pairwise
disjoint for different choices of v.

Observation 8. For any choice of z ∈ N and any choice of u, v ∈ V (G), there

is at most one 1-entry of πz(G) with an index in [pM(u), pR(u) − 1] and value in

[qM(v), qM(v) + deg−

G(v) − 1]. Furthermore, there is an edge between vertices u, v ∈
V (G), u < v if and only if there is exactly one such 1-entry.

Proof. The entries of π := πz(G) with indexes from [pM(u), pR(u) − 1] encode the
neighbourhood of the vertex u, i.e., N+

G (u). For each neighbour v from N+
G (u), we

insert a single entry with value from [qM (v), qM(v) + deg−

G(v) − 1]. This is because in
equation (1) the term ℓ(v, ui) is always strictly less than deg−

G(v). This implies both
parts of the observation.

For the purpose of the proof of the lemma below, we define the following:

C(v) := [pM(v), pR(v) − 1],

L(v) := pL(v) + ⌊z
2
⌋,

R(v) := pR(v) + ⌊z
2
⌋.

Therefore, C(v) is the set of entries of π encoding the vertex v, L(v) denotes the
middle entry of the left separating run of v, and R(v) is the middle entry of the right
separating run of v. Once more, Figure 1 illustrates the notation.

The following lemma implies NP-hardness of Permutation Pattern Matching:

Lemma 9. For every graph G without isolated vertices, Kl is a subgraph of G if and

only if πz(Kl) is a pattern of πz(G), for z = 4n′ + 4, where n′ is the number of vertices

in the largest connected component of G.

Proof. We let σ := πz(Kl) and π := πz(G).
If G contains a clique Kl of size l as a subgraph, then π contains the pattern σ by

construction. This is because if we consider the permutation matrix representation of
π and delete all columns except the ones that correspond to separating and encoding
entries for vertices of Kl ⊆ G, we get a matrix that differs from the permutation
matrix of σ only by the additional presence of columns that encode the connection of
the vertices of Kl to the vertices outside of Kl. By deleting these columns (and the
empty rows resulting from the above deletions) we arrive at the permutation matrix
representation of σ, implying σ is a pattern of π.

For the other direction, assume there is a function φ : [|σ|] → [|π|] certifying the
pattern. We start by noting that there are no decreasing subsequences of length 1

4
z in π

avoiding all separating runs. This is because such a sequence contains at most one entry
from C(v) for each v ∈ V (G). At the same time, it cannot simultaneously contain an
entry from C(u) and C(v) for u, v chosen from different connected components. This
is because the construction of the encoding permutation places vertices from the same
component consecutively and the entries encoding a component placed earlier in the
ordering have strictly smaller values than those from a later component. This bounds
the length of the subsequence by n′ < 1

4
z.

7

Furthermore, any decreasing subsequence of π contains entries from at most one
pair of separating runs. This is because once the sequence hits a separating run of a
vertex v, all its subsequent entries can only be from the pair of separating runs of v.
Any decreasing subsequence therefore starts with less than 1

4
z encoding entries, which

are then followed by entries of a pair of separating runs of some vertex.
We now show that the certifying function φ naturally leads to a mapping from

V (Kl) to V (G). Consider any vertex v ∈ V (Kl). The function φ maps the subsequence
of σ formed by the pair of separating runs of v to a decreasing subsequence of π of
the same length. As argued, such a long decreasing subsequence starts with less than
1
4
z encoding entries of π, which are then followed by at least 7

4
z entries from a pair of

separating runs of some vertex u ∈ V (G). This implies that the middle entry L(v) of
the left separating run of v in σ needs to be mapped by φ to the left separating run of
u ∈ G. Additionally, the middle entry R(v) of the right separating run of v in σ needs
to be mapped by φ somewhere in the right separating run of the same vertex u. The
above establishes a mapping from V (Kl) to V (G) denoted by fφ.

We claim fφ to be a graph homomorphism. Fix any pair of vertices v1, v2 of Kl

such that v1 < v2. We show that fφ(v1), fφ(v2) are connected by an edge in G. Since
there is an edge between v1 and v2 in Kl, Observation 8 implies that the set of values
σ[L(v1), R(v1)] contains precisely one number p with σ(R(v2)) ≤ p ≤ σ(L(v2)). Since
φ certifies the pattern σ in π, there needs to be an entry of π with an index between
φ(L(v1)) and φ(R(v1)) and value between π(φ(R(v2))) and π(φ(L(v2))). Observation 8
then implies there is an edge between fφ(v1) and fφ(v2). Thus, fφ is a homomorphism
and G contains a clique of size l.

The above reduction can be directly used within the cross-composition framework
to show our result:

Proof of Theorem 6. We set L to be the set of all pairs (Kl, G), where Kl is a clique,
G is a connected graph containing Kl as a subgraph. It is widely known that deciding
x ∈ L is NP-complete.

We introduce a cross-composition of L into Permutation Pattern Matching.
Let R be an equivalence relation on {0, 1}∗ with the following properties: the binary
sequences that are not representing a pair (Kl, G), where Kl is a clique and G a graph,
are placed in a single equivalence class designated for malformed input sequences; a
pair of strings representing instances (K1, G1) and (K2, G2), respectively, is related in
R if and only if |V (K1)| = |V (K2)|, |V (G1)| = |V (G2)|. Clearly, R is a polynomial
equivalence relation. For instances (Kl, G1), (Kl, G2), (Kl, G3), . . . , (Kl, Gt) from the
same equivalence class of R, we produce an instance of the Permutation Pattern

Matching problem where we ask if πz(Kl) is in πz(G), where G is a disjoint union
of graphs G1, . . . , Gt and z is set to 4 · |V (G1)| + 4. Lemma 9 shows that the answer
to this problem is YES if and only if at least one of the instances (Kl, Gi) belongs
to L. Since the parameter of the pattern matching instance is |πz(Kl)|, which can be
bounded by |V (Gi)| · 2z + |V (Gi)|

2 for any i, we can apply Theorem 5.

8

4 Conclusion

Guillemot and Marx [9] have shown that the Permutation Pattern Matching

problem can be solved in 2O(ℓ2 log ℓ) · n time. They raised the question of whether a
faster FPT algorithm could be obtained and outlined a strategy for achieving this
using their notion of decompositions of permutations. This relied on the bound from
the Stanley-Wilf conjecture not being tight. Fox [8] has shown this is not the case.
(Still, [8] gives an improved 2O(ℓ2) · n algorithm.) The non-existence of a polynomial
kernel is a further indication of the difficulty of the problem.

References

[1] S. Ahal, Y. Rabinovich: On Complexity of the Subpattern Problem, SIAM J.
Discrete Math., 22(2), 629-649, 2008.

[2] H. L. Bodlaender, R. G. Downey, M. R. Fellows, D. Hermelin: On problems
without polynomial kernels, J. Comput. Syst. Sci., 75(8), 423-434, 2009.

[3] H. L. Bodlaender, B. M. P. Jansen, S. Kratsch: Cross-Composition: A New
Technique for Kernelization Lower Bounds, Proc. 28th STACS, 165–176, 2011.

[4] M.-L. Bruner, M. Lackner: The computational landscape of permutation patterns,
Pure Mathematics and Applications, 24 (2), 83-101, 2013.

[5] M.-L. Bruner, M. Lackner: A fast algorithm for permutation pattern matching
based on alternating runs, F. V. Fomin and P. Kaski, editors, SWAT, 7357, Lec-
ture Notes in Computer Science, 261-270, Springer, 2012.

[6] P. Bose, J. F. Buss, A. Lubiw: Pattern Matching for Permutations, Inf. Process.
Lett., 65(5), 277-283, 1998.

[7] L. Fortnow, R. Santhanam: Infeasibility of instance compression and succinct
PCPs for NP, J. Comput. Syst. Sci., 77(1), 91-106, 2011.

[8] J. Fox: Stanley-Wilf limits are typically exponential, arXiv:1310.8378, 2014, to
appear in Advances in Mathematics.

[9] S. Guillemot, D. Marx: Finding Small Patterns in Permutations in Linear Time,
Proc. SODA 2014, 2014.

[10] L. Ibarra: Finding pattern matchings for permutations, Information Processing
Letters, 61(6), 293–295, 1997.

[11] M. Klazar: The Füredi-Hajnal conjecture implies the Stanley-Wilf conjecture,
Formal Power Series and Algebraic Combinatorics, 250-255, 2000.

[12] D. E. Knuth: The Art of Computer Programming, Vol. 1: Fundamental Algo-
rithms, 2nd edition, Addison-Wesley, 1973.

[13] L. Lovász: Combinatorial Problems and Exercises, North-Holland, 1979.

9

http://arxiv.org/abs/1310.8378

[14] A. Marcus, G. Tardos: Excluded permutation matrices and the Stanley-Wilf con-
jecture, J. Comb. Theory, Ser. A, 107(1), 153-160, 2004.

[15] D. Rotem: Stack-sortable permutations, Discrete Math, 33, 185-196, 1981.

[16] C. Schensted: Longest increasing and decreasing subsequences, Classic Papers in
Combinatorics, 299–311, 1987.

[17] R. Simion, F. W. Schmidt: Restricted permutations, European J. Combinatorics,
6, 383-405, 1985.

[18] H. Wilf’s address to the SIAM meeting on Discrete Mathematics in 1992.

10

	1 Introduction
	2 Preliminaries
	3 Kernelization lower bound for Permutation Pattern Matching
	4 Conclusion

