
Badkobeh, Golnaz and Crochemore, Maxime. 2015. Infinite binary words containing repetitions of
odd period. Information Processing Letters, 115(5), pp. 543-547. ISSN 0020-0190 [Article]

https://research.gold.ac.uk/id/eprint/29109/

The version presented here may differ from the published, performed or presented work. Please
go to the persistent GRO record above for more information.

If you believe that any material held in the repository infringes copyright law, please contact
the Repository Team at Goldsmiths, University of London via the following email address:
gro@gold.ac.uk.

The item will be removed from the repository while any claim is being investigated. For
more information, please contact the GRO team: gro@gold.ac.uk



Infinite Binary Words Containing Repetitions
of Odd Period

Golnaz Badkobeha,c and Maxime Crochemorea,b
aKing’s College London, UK
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Abstract

A square is the concatenation of a nonempty word with itself. A
word has period p if its letters at distance p match. The exponent of
a nonempty word is its length divided by its smallest period. In this
article, we give some new results on the trade-off between the number
of squares and the number of cubes in infinite binary words whose
square factors have odd periods.
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1 Introduction

Enumerating the repetitions in infinite words is a classic problem in combi-
natorics on words that has been studied in depth over the last 100 years (see
for example, [10, 3] and references therein).

A square is the concatenation of a nonempty word with itself. Let g(n)
be the length of a longest binary word containing at most n distinct squares.
Then g(0) = 3 (e.g., 010), g(1) = 7 (e.g., 0001000) and g(2) = 18 (e.g.,
010011000111001101).

In 1974, Entringer, Jackson, and Schatz [5] showed that there exists an
infinite word with 5 distinct squares. Therefore, they proved that g(5) =∞.
Later, Fraenkel and Simpson [6] showed that there exists an infinite binary
word that contains only three squares, 00, 11, and 0101, and thus g(3) =∞.
A somewhat simplified proof of this result was given by Rampersad, Shallit
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and Wang [9]. Later, in 2006, Harju and Nowotka [7] gave another simpler
proof of this result and, eventually, Badkobeh [2] gave yet another proof
exploiting two simple morphisms.

Instead of avoiding all squares, one interesting variation on the problem
is to avoid larger repetitions. Entringer, Jackson, and Schatz [5] showed that
there exist infinite binary words avoiding squares of period at least three.
Later, avoiding large squares was studied by Dekking [4], Rampersad et al.
[9], Shallit [11], Ochem [8], and many others.

In this article, we provide some new results as an outcome of studying
pattern avoidance from a different point of view. We analyse the possibility of
avoiding repetitions of even and odd periods, and further impose a constraint
on their maximal exponent.

We show that there exists no infinite 3+-free binary word avoiding all
squares of odd period. We also show that there exists no infinite binary
word simultaneously avoiding cubes and squares of even period. Moreover,
we show that there exists an infinite 3+-free binary word avoiding squares of
even period.

The trade-off between the maximal period length and the number of
repetitions follows a similar trade-off between the number of cubes and the
number of distinct squares. A similar study was comprehensively carried out
by the first author in [1].

The article is structured as follows. We provide some definitions in Section
2. In Section 3, we present the proof technique that will be used throughout
this article. In addition, we prove that there exists no infinite 3+-free binary
word avoiding all squares of odd period and there exists no infinite binary
word simultaneously avoiding cubes and squares of even period. In Section
4, we show that in fact there exists an infinite 3+-free binary word avoiding
squares of even period. In Section 5, we reduce the number of repetitions
contained in infinite binary words without compromising the constraint on
the parity of the periods of squares. We conclude that the minimal number
of squares in such words is 7 when only 1 cube occurs. The number reduces
to 4 when 2 cubes are allowed in the word. In Section 6, we give a summary
of our results.

2 Preliminaries

An alphabet is any non-empty set, the members of which are called letters.
A word, or a string, is a sequence of letters drawn from the alphabet. The
empty word ε is a string of length 0 that is considered to be a word over
every alphabet. The length of the word w, denoted by |w|, is the number of
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occurrences of letters in w. For example, |abaca| =5.
We consider the ternary alphabet A = {a, b, c}, the binary alphabet B =

{0, 1}, and the n-ary alphabet Σn for n > 3.
The word v is called a factor of x if there exist words u and w such that

x = uvw. In the case u = ε (resp., w = ε), v is a prefix (resp., a suffix)
of x. A nonempty word x has period p if x[i] = x[i + p] for all i for which
the equation is meaningful. The exponent of x is its length divided by its
smallest period.

The maximum exponent of a word w is the supremum of E(x), where
E(x) is the set of exponents of all finite factors of x.

A square is a word of the form xx, where x is a non-empty word. Cubes
and k-th powers are defined accordingly. A word is overlap-free if it does not
contain any factor of the form xyxyx for a non-empty x. In general, a word
is said to be α-free if it contains no factor of the form uβ for any rational
number β ≥ α. It is α+-free if it contains no factor of the form uβ for any
rational number β > α.

A morphism is a map h : Σ∗n → Σ∗m such that h(uv) = h(u)h(v) for
all u, v ∈ Σ∗n. This implies that h(ε) = ε. In addition, the morphism h is
completely defined by the pairs (a, h(a)) for a ∈ Σn. We refer to images
of letters as codewords. If h(a) = ax for some letter a ∈ Σn, then we say
that h is prolongable on a, and we can then iterate h infinitely often to get
the fixed point h∞(a) := axh(x)h2(x)h3(x) · · · . For q ≥ 2 a morphism h is
said to be q-uniform if |h(a)| = q for all a ∈ Σn. A uniform morphism h
is synchronising when h(ab) = vh(c)w implies that either v = ε and a = c
or w = ε and b = c, for any a, b, c ∈ Σn and v, w ∈ Σ∗m. Notice that a
synchronising morphism h is always injective (actually it is injective on the
set Σn of monoid generators). Moreover, if it is q-uniform then, for each
factor u of a word in h(Σ∗n) such that |u| ≥ 2q − 1, there exists a unique
factorisation u = xh(u′)y where u′ ∈ Σ∗n and 0 ≤ |x|, |y| < q.

3 Words containing only repetitions of odd

period

Here, we study further the infinite binary words and the squares they con-
tain. Looking at the parity of the periods of the squares reveals interesting
properties.

Note that the only infinite binary words omitting 00 and 11 are (01)∞ and
(10)∞, both of which contain 3+-powers. This proves the following proposi-
tion.

3



Proposition 1. There exists no infinite 3+-free binary word avoiding all
squares of odd period.

Proposition 2. There exists no infinite binary word, simultaneously avoid-
ing cubes and squares xx with |x| = 2k for k > 0. The length of a cube-free
binary word containing only squares of odd period does not exceed 23.

Proof. Here, we try to build a binary word that avoids cubes and squares of
even period. The following list contains all possible strings with prefix 00,
avoiding cubes and squares of even period:

00100100 00110010010 0011011001001100

001001100 0011001001100 0011011001001101100

00100110110010010 001100100110110010010 0011011001001101101

0010011011001001100 001100100110110010011 00110110011

0010011011001001101 001100100110110011 001101101

00100110110011 0011001001101101

001001101101 00110110010010

The maximum length of these words is 21. This is also true for words
starting with 11. Now the only binary words avoiding 00, 11, cubes, and
squares of even period are: {0, 1, 01, 10, 010, 101}. Concatenating these two
sets will not produce a word complying with the properties whose length
exceeds 23.

The remainder of this section is dedicated to demonstrating that if the
constraint on the maximal exponent is relaxed so that the word may contain
cubes, then avoiding squares of even period becomes possible.

The same technique is used to prove each of the theorems in this article.
The technique is stated below. To demonstrate how this technique works, a
step-by-step proof is given for Proposition 3, as an example.

Proof Technique. Let g be a synchronising morphism g : A∗ → B∗, and
let s be an infinite square-free word in A∗. Notice that the only squares
occurring in g(s) also occur in the images of square-free factors of s of length
3. Therefore, to study the squares contained in g(s) it is enough to look at all
the images of triplets in A∗ (a triplet is a word of length 3). This set is finite
and therefore it is possible to count all the squares contained in the images of
the set. In order to prove the theorems presented in this article, it is sufficient
to show that the given morphisms are synchronising. To demonstrate this we
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look at the images of all the doublets (words of length 2) in A∗ to investigate
if they comply with the definition of synchronising morphisms.

In this section, s is any infinite square-free ternary word.

Theorem 1. There exists an infinite 3+-free binary word avoiding squares
of even period.

The proof relies on the following synchronising 8-uniform morphism g1
from A∗ to B∗ defined by:

g1(a) = 11011001,
g1(b) = 11001001,
g1(c) = 00011000.

Let Sq = {00, 11, (001)2, (010)2, (011)2, (100)2, (110)2, (00011)2,
(00110)2, (01100)2, (10001)2, (11001)2} and C = {000, 111, (100)3}.

Proposition 3. The infinite word g1 = g1(s) contains no repetition with
exponent greater than 3 and no square uu with |u| = 2k for k > 0.
Furthermore, g1 contains only 12 squares, all of which are in Sq. And g1

contains only 3 cubes, all of which belong to set C.

Here, for the interest of the reader, we demonstrate how the proof tech-
nique works for Proposition 3.

Proof. Let us assume that g1(s) contains a square uu /∈ Sq. There are two
possibilities: either |u| > 16 or |u| ≤ 16 (uu is a factor of the image of w ∈ s
for w ≤ 3).

• Case |u| > 16:

uu =
︷ ︸︸ ︷
u1 · · ·︸︷︷︸ v1 ︷ ︸︸ ︷

u1 · · ·︸︷︷︸ v1
where v1u1 is a codeword. Then v1 is not longer than the longest com-
mon prefix between two different codewords, that is, |v1| ≤ 3. Symmet-
rically, u1 is not longer than the longest common suffix of two different
codewords, that is, |u1| ≤ 4. But then |v1u1| ≤ 7 and cannot be a
complete codeword: a contradiction.

• Case |u| ≤ 16: Here, it is enough to look at images of all w ∈ s
for w ≤ 3. A simple computer check verifies the fact that all squares
contained in these images are in Sq. A cube is an extension of a square,
therefore one can easily verify that the number of cubes is 3.
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The proof of Theorem 1 is a direct consequence of Proposition 3, since
the set Sq only contains squares of odd period (1, 3 and 5).

4 Avoiding long repetitions

Looking at the length of periods of squares contained in g1 (Section 3),
one may ask if it is possible to reduce the length of the longest squares in
an infinite word without compromising the other conditions imposed on the
word. It is trivial to show that there exists no infinite binary word containing
only squares of period 1. However, the next theorem shows that we can
reduce the longest period to 3.

Theorem 2. There exists an infinite 3+-free binary word containing only
squares of period either 1 or 3.

The proof relies on the following synchronising 11-uniform morphism g2
from A∗ to B∗ defined by:

g2(a) = 11001001101,
g2(b) = 11001001110,
g2(c) = 11001001000.

Proposition 4. The infinite word g2 = g2(s) contains no repetition with
exponent greater than 3 and no square uu with |u| = 2k for k > 0. Further-
more, g2 contains only 7 squares: 00, 11, (001)2, (010)2, (011)2, (100)2 and
(110)2, and 3 cubes: 000, 111 and (100)3.

The proof of Proposition 4 is very similar to the proof of Proposition 3,
therefore we have omitted it from this paper. Theorem 2 follows.

The following synchronising morphism g3 also generates an infinite 3+-
free binary word containing squares of period 1 and 3 only. Furthermore,
the infinite binary word generated by g3 omits the third cube in g2. Thus it
contains fewer cubes.

The word with 7 squares and 2 cubes. To generate an infinite word
with these properties we use the following synchronising 12-uniform mor-

6



phism g3 from A∗ to B∗ defined by:

g3(a) = 110110001110,
g3(b) = 110111000100,
g3(c) = 110111001000.

Proposition 5. The infinite word g3 = g3(s) contains no repetition with
exponent greater than 3 and no square uu with |u| = 2k for k > 0. Further-
more, g3 contains only 7 squares: 00, 11, (001)2, (011)2, (100)2, (101)2 and
(110)2, and 2 cubes: 000 and 111.

As explained in the proof technique, in order to prove Proposition 5 it is
sufficient to show that g3 is synchronising.

5 Reducing the number of repetitions

It is natural to ask if there exists an infinite binary word avoiding squares of
even period and containing less than 7 squares or 2 cubes.

Proposition 6. A binary word avoiding squares of even period that contains
at most 6 squares and only one cube has length at most 57.

Proof. We can build a binary word complying with the desired property using
backtracking, meaning that every time we cannot extend the word, we find
the rightmost zero and change it to 1. Here is a word of length 57 containing
one cube and 6 squares whose period is not even:
001101110011011001001101110010011101100100110110011101100

Although Proposition 6 shows that simultaneously reducing the number
of squares and cubes is not possible, the following two theorems show that
there exist infinite binary words avoiding squares of even periods which either
contain only 1 cube and 7 squares, or 2 cubes and less than 7 squares.

Theorem 3. There exists an infinite 3+-free binary word with at most one
cube, avoiding squares of even period and containing only 7 squares.

The proof relies on the following synchronising 73-uniform morphism g4
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from A∗ to B∗ defined by:

g4(a) = 110110001001101100100011011000100100011

01100100110001001000110010011011001000,
g4(b) = 110110001001101100100110001001000110010

01101100010010001101100100110001001000,
g4(c) = 110110001001101100100110001001000110110

01001101100010010001100100110001001000.

Proposition 7. The infinite word g4 = g4(s) contains no repetition with
exponent greater than 3 and no square uu with |u| = 2k, for k > 0.
Furthermore, g4 contains only 7 squares: 00, 11, (001)2, (010)2, (011)2,
(100)2, and (110)2, and only one cube 000.

Theorem 4. There exists an infinite 3+-free binary word with at most two
cubes, avoiding squares of even period and containing only 4 squares.

The proof relies on the following synchronising 39-uniform morphism g5
from A∗ to B∗ defined by:

g5(a) = 111000100110001110010001100100111001000,
g5(b) = 111000100111001000110010011100011001000,
g5(c) = 111000100111001001100010011100011001000.

Proposition 8. The infinite word g5 = g5(s) contains no repetition with
exponent greater than 3 and no square uu with |u| = 2k for k > 0.
Furthermore, g5 contains only 4 squares: 00, 11, (001)2, and (100)2, and
only two cubes: 000 and 111.

The following result is verified by computer check:

Fact 1. A binary word avoiding squares of even period that contains at most
3 squares has length at most 29.

Here, it is worth mentioning that if the constraint on the parity of the
squares period is removed, then the following results were shown by the first
author in [1]:

• There exists a 3+-free infinite binary word with only one cube that
contains no more than 4 squares.

• There exists a 3-free infinite binary word with at most 8 squares.

In [1] the first author also demonstrates that these numbers are minimal.
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6 Conclusion

In this article, we studied the infinite binary words whose square factors have
odd periods. The tables below summarise these results.

Longest allowed Number of Number of Length of the
period cubes squares morphism

Proposition 3 5 3 12 8
Proposition 4 3 3 7 11
Proposition 5 3 2 7 12
Proposition 7 3 1 7 73
Proposition 8 3 2 4 39

Note that all the infinite binary words considered in these proofs are
3+-free and avoid squares of even period. Therefore all of the propositions
mentioned above can prove Theorem 1. The morphisms in Propositions 4, 5
and 7 generate binary words containing 7 squares of periods 1 or 3. The only
differences between them are the number of cubes they contain and their
codeword lengths. The morphism whose codeword length is longer contains
fewer cubes.

A similar comparison was made between two morphisms used in Propo-
sitions 5 and 8. Both morphisms generate binary words with only 2 cubes,
however, the one with longer codewords (of length 39) contains fewer squares
than the one with shorter codewords (of length 12).

Allowed number Minimum number
of cubes of squares

Theorem 4 2 4
Theorem 3 1 7
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