
ar
X

iv
:1

41
2.

16
39

v2
 [

cs
.D

S]
 2

 M
ar

 2
01

5

On testing single connectedness in directed graphs and

some related problems

Department of Computer Science and Automation, Technische Universität Ilmenau,

98693 Ilmenau, Germany

Martin Dietzfelbinger, Raed Jaberi

Abstract

Let G = (V,E) be a directed graph with n vertices and m edges. The graph
G is called singly-connected if for each pair of vertices v,w ∈ V there is at
most one simple path from v to w in G. Buchsbaum and Carlisle (1993) gave
an algorithm for testing whether G is singly-connected in O(n2) time. In
this paper we describe a refined version of this algorithm with running time
O(s·t+m), where s and t are the number of sources and sinks, respectively, in
the reduced graph Gr obtained by first contracting each strongly connected
component of G into one vertex and then eliminating vertices of indegree or
outdegree 1 by a contraction operation. Moreover, we show that the problem
of finding a minimum cardinality edge subset C ⊆ E (respectively, vertex
subset F ⊆ V) whose removal from G leaves a singly-connected graph is
NP-hard.

Keywords: Algorithms, depth first search, unique paths, directed graphs,
connectivity, NP-complete

1. Introduction

Let G = (V,E) be a directed graph with n vertices and m edges. The
graph G is called singly-connected if for every pair of vertices v,w ∈ V

there is at most one simple path from v to w in G. The problem of testing
whether or not G is singly-connected was introduced by Cormen et al. in
[3, Ex. 23.3-10] and [4, Ex. 22.3-13]. In [1, 2], Buchsbaum and Carlisle

Email addresses: martin.dietzfelbinger@tu-ilmenau.de (Martin Dietzfelbinger),
raed.jaberi@tu-ilmenau.de (Raed Jaberi)

Preprint submitted to arXiv September 10, 2018

http://arxiv.org/abs/1412.1639v2

presented an algorithm for solving this problem in O(n2) time. Khuller
described in [5] a similar approach for solving the same problem in O(n2)
time. Karlin [7] (also see [6]) also presented a simple O(n2) algorithm for
solving the problem.

Let G = (V,E) be a directed graph. By Gc = (V c, Ec) we denote the
directed graph which is obtained by contracting every strongly connected
component of G into a single vertex. The algorithms from [1] and [5] are
based on reducing the problem on G to the same problem on the acyclic
graph Gc. We use Gr to denote the graph obtained from Gc by eliminating
all vertices of indegree or outdegree 1 by contraction operations. A vertex
x of Gr is called a source if its indegree is 0 and a vertex y of Gr is called a
sink if its outdegree is 0. By s and t we denote the number of sources and
sinks in Gr, respectively. In this paper we improve the running time of the
algorithms from [1],[5] from O(n2) to O(s · t+m). We also give an example
for a graph where s ·t is much bigger than m. The question posed by Khuller
[5] whether the problem of testing single connectedness in directed graphs
is solvable in linear time remains open.

As mentioned in [2], it is clear that a singly-connected graph can be
obtained from a directed graph which is not singly-connected by removing
edges, but the property of singly-connectivity can be ruined by adding edges.
We also show that the problem of finding a minimum cardinality edge subset
C ⊆ E (respectively, vertex subset F ⊆ V) whose removal from G leaves a
singly-connected graph is NP-hard.

Papers [1] and [5] show the existence of a procedure which has the fol-
lowing behavior:

Procedure 1.1.

Input: A directed graph G = (V,E).
Output:

“not singly-connected”
or

“Test whether Gc is singly-connected”.

Procedure 1.1 without testing of Gc has running time O(m). Paper [1]
shows that the acyclic graph Gc is singly-connected if and only if for every
vertex w ∈ V c the vertex set of the DFS tree rooted at w has neither cross
edges nor forward edges. Testing single connectedness of Gc in this way
takes O(n2) time [1, 5] since there are n calls to DFS, one for each vertex
of Gc, and one can stop as soon as a forward edge or cross edge appears.

2

The procedure leads to the situation that we only have to consider acyclic
graphs. We give another reduction to be applied after Procedure 1.1 (which
can be carried out in time O(m)) to a reduced graph Gr, so that G is singly-
connected if and only if Gr is. In Gr no vertex has indegree or outdegree
1.

2. Improved handling of acyclic graphs

Assume that the input graph G = (V,E) is acyclic. We propose two
types of improvement over the algorithms in [1, 5] for acyclic graphs:

1. eliminating vertices with indegree or outdegree 1.

2. starting DFS only from sources.

In the first step, called preprocessing step, we modify G as follows. We con-
sider the vertices in bottom-up order. For each vertex v ∈ V with indegree
1 we shrink u, v, where (u, v) ∈ E, by replacing each edge (v,w) ∈ E by
(u,w) and removing the vertex v and the edge (u, v) from G (see Figure 1
for one such contraction). Of course, if v has outdegree 0, it can simply be

0

1

2

3

4 5

67

(a) Gc

0

1

3

4 5

67

(b)

Figure 1: (a) G = (V,E), vertex 2 has indegree 1. (b) The remaining graph after con-
tracting edge (1, 2).

deleted. Let G′ be the resulting graph. To G′ we apply a similar procedure
top down to eliminate all nodes of outdegree 1. The resulting graph is called
Gr.

Lemma 2.1.

(a) Gr can be computed in time O(m).

3

(b) G is singly-connected if and only if Gr is singly-connected.

Proof (a) We represent the acyclic graph G by adjacency lists in which each
vertex v ∈ V has a circular doubly linked list Lv containing all the successors
of v in G. Eliminate all vertices of indegree 1, as follows:

(i) Treat vertices v “bottom up” (in the partial order given by G) as
follows: If v has indegree 1, merge v with its predecessor u by linking
Lv into Lu in constant time and deleting v. It is clear this can be
done in time O(m). (Actually, the merging itself takes time O(n),
only finding vertices with indegree 1 needs O(m) time.)

(ii) Eliminate all vertices of outdegree 1. This is done exactly as in (i),
just using the reversed graph of G′.

(b) Each step preserves the property of single connectedness. �

Note that if multiple edges arise in the preprocessing step, then G is not
singly-connected. Check once at the very end if Gr has multiple edges. If
so, return “ not singly-connected”.

From here on we only consider the reduced graph Gr, in which all non-
sources have indegree at least 2 and all non-sinks have outdegree at least
2. In the second step we perform a DFS only for the sources of Gr. The
correctness of this step is based on the following lemma.

Lemma 2.2. Let G = (V,E) be a directed acyclic graph such that G does
not have any multiple edges. Then G is singly-connected if and only if for
every source v ∈ V the vertex set of the DFS tree Tv with root v has only
tree edges.

Proof “⇐”: Assume that G is not singly-connected. Then by definition,
there are two vertices v,w ∈ V such that there exist at least two simple
paths p1, p2 from v to w in G. Then there is a vertex u that lies on both
paths p1, p2 and has two different incoming edges in p1 ∪ p2. There is some
source s such that there is a path from s to v in G. Hence the vertex u and
all the vertices on p1 ∪ p2 are in Ts. Of course, it is impossible that both
edges entering u are tree edges.
“⇒”: Any forward or cross edge in a DFS from any vertex immediately
proves that G is not singly-connected (see [1]). �

Theorem 2.3. It can be tested in O(s·t+m) time if Gr is singly-connected.

Proof As we have ssen, the transformation from G to Gr takes time O(m).
In Gr, each DFS tree T has at most 2t− 1 vertices since each vertex which

4

is not a leaf in T has outdegree at least 2 and all leaves of T are sinks so
there cannot be more than t leaves. Each DFS requires Θ(t) time because
the algorithm stops as soon as a cross edge or a forward edge appears. The
total number of DFS-trees is at most s. Therefore, the total running time
is O(s · t+m). �

One may ask whether there are singly-connected graphs in which s · t is
much bigger than m and in which our algorithm takes much longer than
O(m) time. Actually, a well known graph family, the butterfly graphs (or
FFT graphs) Bd (see, e.g., [9]), give an example. They have n = 2d(d + 1)
vertices and m = 2d+1d edges, are singly-connected, and we have s = t = 2d

and hence s · t = t2 = 22d ≫ m.
It is well known that the butterfly graph is singly-connected (see Figure

2). Actually, every source is connected to every sink via a unique path. This
implies that all DFS calls on sources need time Θ(t), hence the total time is
Θ(t2), much bigger than m. (but still smaller than n2 = 22d(d+ 1)2).

Figure 2: Butterfly graph B3.

On Butterfly graphs our algorithm takes much more than O(m) time. It
remains open to find an algorithm that breaks the O(s · t) bound.

3. Optimization problems related to uni-connectivity

In this section we study two optimization problems related to single
connectivity. The first problem is defined as follows. Given a directed graph

5

G = (V,E), find an edge set C ⊆ E of minimum size such that the directed
graph (V,E \C) is singly-connected. This problem is denoted by ESC. The
second problem is defined as follows. Given a directed graph G = (V,E),
find a minimum cardinality vertex set F ⊆ V such that the directed graph
G \ F obtained from G by removing all the vertices in F and their incident
edges is singly-connected. We denote this problem by VSC. We show that
VSC and ESC are NP-hard by reducing the vertex cover problem to each of
them.

The decision version of the vertex cover problem is NP-complete [8]. It
is defined as follows. Given an undirected graph G = (V,E) and an integer
l. Is there a vertex set U ⊆ V with |U | ≤ l such that for every edge
e = (v,w) ∈ E we have {v,w} ∩ U 6= ∅?

We define the decision version of ESC as follows: Given a directed graph
G = (V,E) and an integer r. Does there exist an edge set C ⊆ E of size at
most r such that the directed graph (V,E \ C) is singly-connected?

Lemma 3.1. The decision version of ESC is NP-complete.

Proof : It is obvious that ESC is in NP. Let (G = (V,E), l) be an instance
of the vertex cover problem. We construct an instance (G′ = (V ′, E′), r)
of ESC as follows. For each vertex v ∈ V , we add two new vertices v′, v′′

to V ′ and a directed edge (v′, v′′) to E′. Furthermore, for every undirected
edge e = (v,w) ∈ E we add two vertices e′, e′′ to V ′ and four directed edges
(e′, v′), (e′, w′), (v′′, e′′), (w′′, e′′) to E′. An example is illustrated in Figure 3.
Clearly, the directed graph G′ has 2|V |+2|E| vertices and |V |+4|E| edges.
Therefore, G′ can be constructed from G in polynomial time. Now we prove
that G has a vertex cover of size at most l if and only if G′ has an edge set
C ⊆ E′ of size at most r = l such that (V ′, E′ \ C) is singly-connected.
“⇒”: Let U be a vertex cover of G such that |U | ≤ l. Let C = {(v′, v′′) |
(v′, v′′) ∈ E′ and v ∈ U}. Obviously, |C| ≤ l. For every pair of vertices
e′, e′′ ∈ V ′ which correspond to undirected edge e = (u,w) in G, there exist
two simple paths (e′, u′, u′′, e′′), (e′, w′, w′′, e′′) from e′ to e′′ in G′. Since
{u,w} ∩ U 6= ∅, we have {(u′, u′′), (w′, w′′)} ∩ C 6= ∅. Therefore, there is at
most one simple path from e′ to e′′ in (V ′, E′\C). Moreover, for any distinct
vertices x, y with x 6= e′ or y 6= e′′, there is at most one simple path from x

to y in G′. Consequently, the directed graph (V ′, E′ \C) is singly-connected.
“⇐”: Let C be a subset of E′ with |C| ≤ l such that (V ′, E′ \ C) is singly-
connected. Let U = {v | {(e′, v′), (v′, v′′), (v′′, e′′)}∩C 6= ∅ and v ∈ V }. It is
easy to see that |U | ≤ l. Assume for a contradiction that U is not a vertex
cover of G. Then there are two vertices u,w in G such that {u,w} ∩U = ∅.
This implies that {(e′, u′), (u′, u′′), (u′′, e′′), (e′, w′), (w′, w′′), (w′′, e′′)} ∩ C =

6

v0

v1

v2

v3

e0

e1

e2

e3

(a) G = (V,E), U =
{v1, v2}.

v′0

v′1

v′2

v′3

v′′0

v′′1

v′′2

v′′3

e′0

e′1

e′2

e′3

e′′0

e′′1

e′′2

e′′3

(b) G′ = (V ′, E′), C = {(v′1, v
′′

1), (v
′

2, v
′′

2)}, the graph
(V ′, E′ \ C) is singly-connected.

Figure 3: Reducing vertex cover to ESC.

∅. Thus, there are two simple paths (e′, u′, u′′, e′′) and (e′, w′, w′′, e′′) from
e′ to e′′ in the directed graph (V ′, E′ \ C), a contradiction.

Now we define the decision version of VSC. Given a directed graph G =
(V,E) and an integer r. Is there a vertex set F ⊆ V of size at most r such
that the directed graph G \ F is singly-connected. We have the following.

Lemma 3.2. The decision version of VSC is NP-complete.

Proof : The proof is similar to the proof of Lemma 3.1 (see Figure 4).

4. Open Problems

We leave as an open problem whether Karlin’s solution [7] (also see [6])
for the decision problem can be improved. Another open problem is whether
there are approximation algorithms for the problems described in Section 3.

References

[1] A.L. Buchsbaum, M.C. Carlisle, Determining uni-connectivity in di-
rected graphs, Information Processing Letters 48(1)(1993) 9–12.

[2] A.L. Buchsbaum, M.C. Carlisle, Determining single-connectivity in di-
rected graphs, Research Report CS-TR-390-92, 1992.

7

v0

v1

v2

v3

e0

e1

e2

e3

(a) G = (V,E), U = {v1, v2} is a
vertex cover of G.

v′0

v′1

v′2

v′3

e′0

e′1

e′2

e′3

e′′0

e′′1

e′′2

e′′3

(b) G′ = (V ′, E′), F = {v′1, v
′

2}, the graph
G′ \ F is singly-connected.

Figure 4: Reducing vertex cover to VSC.

[3] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms,
The MIT Electrical Engineering and Computer Science Series, MIT
Press, Cambridge, MA, 1991.

[4] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to
Algorithms, MIT Press, third edition, 2009.

[5] S. Khuller, An O(|V |2) algorithm for single connectedness, Information
Processing Letters, 72(3–4)(1999) 105–107.

[6] S. Khuller, Addendum to ”An O(|V |2) algorithm for single connected-
ness”, Information Processing Letters, 74(5–6) (2000) 263.

[7] A. Karlin, Solution to homework 7, CS 421, Winter 1995, Department
of Computer Science, University of Washington, 1995.

[8] R.M. Karp, Reducibility Among Combinatorial Problems, Complexity
of Computer Computations, 1972, 85–103.

[9] F. Thomson Leighton, Introduction to Parallel Algorithms and Architec-
tures: Arrays, Trees, Hypercubes, Morgan Kaufmann, San Mateo, CA,
1992, page 441.

8

	1 Introduction
	2 Improved handling of acyclic graphs
	3 Optimization problems related to uni-connectivity
	4 Open Problems
	References

