1503.01192v1 [cs.DS] 4 Mar 2015

arxXiv

Counting Inversions Adaptively

Amr Elmasry

Department of Computer Engineering and Systems
Alexandria University, Egypt
elmasry@alexu.edu.eg

Abstract. We give a simple and efficient algorithm for adaptively count-
ing inversions in a sequence of n integers. Our algorithm runs in O(n +
ny/lg (Inv/n)) time in the word-RAM model of computation, where Inv
is the number of inversions.

1 Introduction

Consider a sequence X of n elements drawn from a totally ordered set. The
number of inversions in X is defined as the number of element pairs in wrong
order, i.e., Inv(X) = [{(4,5) | 1 <i < j < nand X; > X;}| [II]. Obviously,
Inv(X) = 0 if X is sorted and can grow up to n(n — 1)/2 if X is inversely
sorted. A folk algorithm for counting inversions is to embed a subroutine that
keeps track of the number of inversions within the Merge-sort algorithm. It is
thus well known that one can optimally count the inversions for a sequence of n
elements in O(nlgn) time in the comparison-based model of computation.

Sorting algorithms can benefit from the presortedness in the input. In the
comparison-based model, an adaptive sorting algorithm is optimal with respect
to the number of inversions when it runs in O(n + nlog(Inv/n)) time [8]. There
are plenty of adaptive sorting algorithms that achieve this bound [TUBI4I5I6ITIT2IT3].
It is almost always possible to augment the underlying data structures of those
adaptive sorting algorithms with counters to keep track of the number of inver-
sions as a byproduct. It then follows that inversions counting can be adaptively
performed in O(n + nlog(Inv/n)) time.

When it comes to the word-RAM model, there exist integer sorting and
inversions-counting algorithms that are asymptotically faster. The best known
deterministic integer sorting algorithm runs in O(nlglgn) time [9], and the best
known randomized integer sorting algorithm runs in O(n+/Iglgn) expected time
[10]. The inversions counting problem is apparently more difficult than sorting
in this model; the running time of the best known inversions-counting algorithm
is O(n+/1gn) [2]. For sorting, adaptive counterparts run in O(n+nlglg(Inv/n))
worst-case time and O(n + n+/lglg(Inv/n)) expected time [14].

In this paper we give an adaptive algorithm that counts inversions in O(n +
ny/lg(Inv/n)) time in the word-RAM model of computation. More generally,
for any function f(.), deploying an O(n - f(n))-time subroutine for inversions
counting, our algorithm runs in O(n +n - f(Inv/n)) time.

http://arxiv.org/abs/1503.01192v1

2 The algorithm

Our algorithm maintains a data structure comprising a list of lists. The elements
of each list are smaller than or equal to the elements of the subsequent lists;
the elements within a list are not necessarily sorted though. We maintain at the
header of each list the count of elements in the list and the value of its maximum
element. For a global non-decreasing parameter ¢ initialized to one, the number
of elements in each list is between ¢ and 2q, except possibly for the last list that
may have fewer elements. We also keep track of an inversions count that is kept
in a global variable initialized to zero.

Handling the input sequence in reverse order, in each iteration a new element
is inserted into the list of lists. The insertion is done by scanning the headers of
the lists sequentially, and comparing the current element with the maximum of
each list. The current element is inserted at the beginning of the first list whose
maximum is not smaller than the element. Otherwise, if the current element is
larger than all the already inserted elements, it is inserted at the beginning of the
last list, whose maximum is accordingly updated. While passing by the header
of a list, the count of its elements is added to the inversions count.

If, following the insertion, the number of elements in one list becomes 2¢ + 1,
the list is split in two almost equal lists. This is done by applying a median-
finding algorithm, keeping the ¢+ 1 elements smaller than or equal to the median
in the same old order in the current list, forming a new list from the other ¢
elements in the same old order, and inserting the new list next to the other one.
At this point, we need to account for the found inversions as a result of this split.
One way to do that efficiently is to keep track of the priori position p of each
element in the list before the partitioning and its position 7(p) in the resulting
list partitioned around the median just before the split. We then add the sum
Zﬂ(pbp(w(p) — p) to the accumulated inversions count.

The key point for making the algorithm adaptive is controlling the parameter
q. The algorithm works in phases, where in the ¢th phase the value of ¢ is set to
gi = 21, Let t; be the number of elements inserted in the ith phase. Once the
number of comparisons performed in the ith phase, for comparing the inserted
elements in this phase with the headers of the lists, exceeds n/\/q; + t;, we
conclude that our estimate for the number of inversions is smaller than what it
should be. In accordance, we interrupt the current insertion, double the value
of ¢, and begin a new phase. For that, we reorganize the data structure by
combining every other list with the following list, appending the latter at the
tail of the former, and updating the header information for each combined list.
If the number of lists was initially odd, we leave the last list alone.

By inserting all the elements in the data structure, we have accounted for the
inversions across the current lists but not for the inversions within the lists. Recall
that the elements within each list are not yet sorted. Our algorithm concludes
by calling the algorithm of Chan and Patragcu [2] for counting inversions within
each list, and adding these counts to the accumulated inversions count.

3 Analysis

First, we argue that the algorithm terminates by guaranteeing that all the ele-
ments are inserted in the data structure. The number of lists in the ith phase is
at most [n/2°71]. Hence, unless all the elements are inserted beforehand, there
will only be one list after at most [lgn] + 1 phases. In such case, only one com-
parison is need to insert each element in the list. The condition for terminating
a phase will then not be fulfilled until all the elements are inserted.

To demonstrate the correctness of the algorithm we need to show that it
counts the inversions correctly. We adopt the strategy of counting inversions
while fixing them. In other words, whenever the inversions accompanying an
element are fixed, putting the element in order, the number of inversions that
this element is involved in are added to the accumulated inversions count.

While inserting an element, as the elements are inserted in reverse order,
all the elements in the lists, whose headers are passed by, count towards the
number of inversions. Indeed, we add the number of elements of these lists to
the total number of inversions. Every element is then inserted at the beginning
of the list where it belongs. The next action that may affect the order of the
elements is when a list is partitioned around its median. We explicitly account
for the inversions revealed in this partitioning by subtracting the old position of
each element from its new position, if the latter is larger than the former. To
illustrate the correctness of this calculation, denote the elements that land in the
second half as big and those in the first as small. Note that the order among big
elements and the order among small elements is not altered by the partitioning.
The difference between the new position of a big element and its old position is
precisely the number of small elements that appeared after this big element in
the original list, and are naturally moved before it after the partitioning. These
are precisely the number of inversions that this big element is involved in. The
sum of these counts is indeed the total number of the revealed inversions. On the
other hand, for all the small elements 7(p) is less than or equal to p, and hence
are not accounted for in the formula. At the end of this part of the algorithm,
all the inversions across the lists must have been accounted for.

To analyze the running time, we separately consider four basic actions:

1. the work done during the insertions to compare the inserted elements with
the headers of the lists,

2. the work done for splitting the lists using the median-finding subroutine,

. the work done at the end of each phase for combining pairs of lists, and

4. the work done by the Chan-Pé&trascu algorithm.

w

For the first type, the total number of comparisons performed in the ith
phase is at most n/\/q; + t; + 1. Since in the ith phase ¢; = 2°~!, the first-type
work is proportional to S8 (n/v/27=T 4 ¢, + 1) = O(n). In words, the work
to compare the inserted elements with the headers of the lists is linear in n.

For the second type, we use the accounting method to amortize the work
done. We charge a constant number of credits to every inserted element. We

maintain on each list a number of credits that is equal to its number of elements
minus g. When a new element is inserted into a list, the credits on the element
are moved to the list. When the size of the list is 2¢, the credits on the list
are ©(q) and are enough to pay for the work done in the median-finding and
splitting process. Consider the case when a new phase is in action. The value
of g then doubles becoming ¢’ = 2¢. Consider any two lists of lengths ¢; and £
that are combined in this phase. There must have been ¢; — ¢ and {5 — q credits
on the two lists respectively. The combined list now has length ¢; 4+ ¢2 and the
number of credits on it is {1 + fo — 2q = £1 + {5 — ¢’, fulfilling the accounting
requirement. In conclusion, the amount of work done during splitting the lists
and calling the median-finding subroutine is also linear in n.

For the third type, we note that the work done to combine two lists is a
constant. Also, there are at most [lgn] 4+ 1 phases, and the number of lists in
the ith phase is at most [n/2!~!]. Hence, the work done in combining the lists
is at most !5 [n /20717 = O(n).

For the fourth type, we need to bound the final value, ¢, of ¢ in terms of
the total number of inversions, Inv. Consider the phase just before the last
phase, where ¢ is equal to ¢/2. Since in this phase the number of comparisons
performed for comparing the inserted elements with the headers of the lists
exceeds n/ m + t;, and since the number of elements per list is at least /2,

then Inv > n4/q/2. Hence, ¢ < 2 - (Inv/n)?. The size of each list in the last
phase is at most 2g, which is then O((Inv/n)?). Applying Chan and Patrascu’s
algorithm on one list requires O(g/Ig q) time. It follows that the total work done
to count the inversions within all the lists is O(n/1g ¢) = O(n+/1g(Inv/n)).

Our main theorem follows

Theorem 1. The number of inversions, Inv, in a sequence of n integers, can be
counted in O(n + ny/lg(Inv/n)) time in the word-RAM model of computation.

References

1. M. Brown and R. Tarjan. Design and analysis of data structures for representing
sorted lists, STAM Journal on Computing 9 (1980), 594-614.

2. T. M. Chan and M. Patragcu, Counting inversions, offline orthogonal range count-
ing, and related problems, 21st Annual ACM-SIAM Symposium on Discrete Algo-
rithms (2010), 161-173.

3. A. Elmasry and M. Fredman, Adaptive sorting: an information theoretic perspec-
tive, Acta Informatica 45,1 (2008), 33-42.

4. A. Elmasry, A priority queue with the working-set property, International Journal
of Foundations of Computer Science 17,6 (2006), 1455-1465.

5. A. Elmasry, Adaptive sorting with AVL trees, IFIP World Computer Congress, 3rd
International Conference on Theoretical Computer Science (2004), 315-324.

6. A. Elmasry, Priority queues, pairing and adaptive sorting, 29th International Col-
loquium for Automata, Languages and Programming, LNCS 2380 (2002), 183-194.

7. V. Estivill-Castro and D. Wood, A survey of adaptive sorting algorithms, ACM
Computing Surveys 24(4) (1992), 441-476.

10.

11.

12.

13.

14.

L. Guibas, E. McCreight, M. Plass and J. Roberts. A new representation of linear
lists, 9th ACM Symposium on Theory of Computing (1977), 49-60.

Y. Han, Deterministic sorting in O(nloglogn) time and linear space, Journal of
Algorithms 50 (2004), 96-105.

Y. Han and M. Thorup, Integer sorting in O(n+/loglogn) expected time and linear
space, 43rd IEEE Annual Symposium on Foundations of Computer Science (2002),
135-144.

D. Knuth. The art of computer programming. Vol III: Sorting and Searching,
Addison-wesley, second edition (1998).

C. Levcopoulos and O. Petersson. Ezploiting few inversions when sorting: sequen-
tial and parallel algorithms, Theoretical Computer Science 163 (1996), 211-238.
K. Mehlhorn. Sorting presorted files. 4th GI Conference on Theory of Computer
Science, LNCS 67 (1979), 199-212.

A. Pagh, R. Pagh and M. Thorup, On adaptive integer sorting, 12th European
Symposium on Algorithms (2004), 556-579.

	Counting Inversions Adaptively

