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Abstract

An IC-plane graph is a topological graph where every edge is crossed
at most once and no two crossed edges share a vertex. We show that every
IC-plane graph has a visibility drawing where every vertex is of the form
{ , , , }, and every edge is either a horizontal or vertical segment.
As a byproduct of our drawing technique, we prove that every IC-plane
graph has a RAC drawing in quadratic area with at most two bends per
edge.

1 Introduction

A visibility drawing Γ of a planar graph G maps the vertices of G into non-
overlapping horizontal segments (bars), and the edges of G into vertical segments
(visibilities), each connecting the two bars corresponding to its two end-vertices.
Visibilities intersect bars only at their extreme points. Γ is a strong visibility
drawing if there exists a visibility between two bars if and only if there exists an
edge in G between the corresponding vertices. Every biconnected planar graph
admits a strong visibility drawing (see, e.g., [15]). Conversely, if a visibility may
not correspond to an edge of the graph, then Γ is a weak visibility drawing.
Since every planar graph can be augmented to a biconnected planar graph by
adding edges, every planar graph admits a weak visibility drawing.

The problem of extending visibility drawings to non-planar graphs has been
first studied by Dean et al. [4]. They introduce bar k-visibility drawings, which
are visibility drawings where each bar can see through at most k distinct bars.
In other words, each visibility segment can intersect at most k bars, while each
bar can be intersected by arbitrary many visibility segments. The graphs that
admit a bar 1-visibility drawing are called 1-visibile. Brandenburg et al. and
independently Evans et al. prove that 1-planar graphs, i.e., those graphs that
can be drawn with at most one crossing per edge, are 1-visible [2, 8]. They focus
on a weak model, where there is a visibility through at most k bars if there is an
edge, while the converse may not be true. In fact, having a strong model would
be too restrictive in the case of bar k-visibility drawings. For example, it is easy
to see that a cycle of length at least four does not admit a strong bar 1-visibility
drawing [2]. In terms of readability, a clear benefit of bar k-visibility drawings
is that the crossings form right angles. Right-angle crossing (RAC) drawings
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Figure 1: (a) An IC-plane graph G. (b) A L-visibility drawing of G. (c) A RAC
drawing of G with at most two bends per edge.

and their advantages in terms of readability have been extensively studied in
the graph drawing literature (see, e.g., [7, 11]). However, in a bar k-visibility
drawing crossings involve bars and visibilities, i.e., vertices and edges. These
crossings are arguably less intuitive than crossings between edges.

Evans et al. introduce a new model of visibility drawings, called L-visibility
drawings [9]. Their aim is to simultaneously represent two plane st-graphs Gr

and Gb (whose union might be non-planar). They assume a strong model, where
each vertex is represented by a horizontal bar and a vertical bar that share an
extreme point, i.e. it is an L-shape in the set { , , , }. Two L-shapes
are connected by a vertical (horizontal) visibility segment if and only if there
exists an edge in Gr (Gb) between the corresponding vertices, no two L-shapes
cross one another, and visibilities intersect bars only at their extreme points.
A clear advantage of this kind of drawing is that the only possible crossings
are between vertical and horizontal visibilites, i.e., between edges of the graph.
Furthermore, similar to bar k-visibilities, these crossings form right angles.

In this paper we initiate the study of weak L-visibility drawings of non-
planar graphs. We focus on the class of graphs that admit a drawing where
each edge is crossed at most once, and no two crossed edges share an end-vertex.
These graphs are called IC-planar graphs (see Fig. 1(a) for an example). Their
chromatic number is at most five [12], and they have at most 13n/4− 6 edges,
which is a tight bound [17]. Recognizing IC-planar graphs is NP-hard [3]. Our
main contribution is summarized by the following theorem, proved in Section 3.
See Fig. 1(b) for an example of a drawing computed by using Theorem 1.

Theorem 1. Every n-vertex IC-plane graph G admits a L-visibility drawing in
O(n2) area, which can be computed in O(n) time.

We remark that Theorem 1 contributes to the rapidly growing literature
devoted to the problem of drawing graphs that are “nearly planar” in some sense,
i.e. graphs where only some types of edge crossings are allowed (for example,
an edge can be crossed at most a constant number of times); see e.g., [13] for
references. In particular, Brandenburg et al. have recently described a cubic-
time algorithm that computes IC-planar drawings with right-angle crossings
and straight-line edges [3]. However these drawings may require exponential
area, which is proved to be worst-case optimal [3]. Brandenburg et al. leave
as an open problem to study techniques that compute IC-planar drawings in
polynomial area and with good crossing resolution [3]. We also recall that every
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graph admits a RAC drawing with at most three bends per edge [6], while
testing whether a graph has a straight-line RAC drawing is NP-hard [1]. The
following corollary follows as a byproduct of Theorem 1 (see also Fig. 1(c)).

Corollary 1. Every n-vertex IC-plane graph G admits a RAC drawing with at
most two bends per edge in O(n2) area, which can be computed in O(n) time.

2 Preliminaries

We assume familiarity with basic graph drawing concepts, see also [5].
Planarity and connectivity. A graph G = (V,E) is simple, if it contains

neither loops nor multiple edges. We consider simple graphs, if not otherwise
specified. A drawing Γ of G maps each vertex of V to a point of the plane and
each edge of E to a Jordan arc between its two end-points. We only consider
simple drawings, i.e., drawings such that the arcs representing two edges have at
most one point in common, which is either a common end-vertex or a common
interior point where the two arcs properly cross. A drawing is planar if no
two arcs representing two edges cross. A planar drawing divides the plane
into topologically connected regions, called faces. The unbounded region is
called the outer face. A planar embedding of a graph is an equivalence class of
planar drawings that define the same set of faces. A graph with a given planar
embedding is a plane graph. For a non-planar drawing, we can still talk about
embedding considering that the boundary of a face may consist of portions of
arcs between vertices and/or crossing points.

A graph is biconnected if it remains connected after removing any one vertex.
A directed graph (a digraph for short) is biconnected if its underlying undirected
graph is biconnected. A topological numbering of a digraph is an assignment,
X, of numbers to its vertices such that X(u) < X(v) for every edge (u, v). A
graph admits a topological numbering if and only if it is acyclic. An acyclic
digraph with a single source s and a single sink t is called an st-graph. A plane
st-graph is an st-graph that is planar and embedded such that s and t are on
the boundary of the outer face. In any st-graph, the presence of the edge (s, t)
guarantees that the graph is biconnected. In the following we consider st-graphs
that contain the edge (s, t), as otherwise it can be added without violating
planarity. Let G be a plane st-graph, then for each vertex v of G the incoming
edges appear consecutively around v, and so do the outgoing edges. Vertex s
only has outgoing edges, while vertex t only has incoming edges. This particular
transversal structure is known as a bipolar orientation [14, 15]. Each face f of G
is bounded by two directed paths with a common origin and destination, called
the left path and right path of f .

IC-planar graphs. We recall some definitions also given in [3]. A drawing
is IC-planar if each edge is crossed at most once, and any two crossed edges
do not share an end-vertex. See Fig. 1(a) for an illustration. An IC-planar
embedding is an embedding derived from an IC-planar drawing. A graph with a
given IC-planar embedding is an IC-plane graph. Thomassen [16] characterized
the possible crossing configurations that occur in a 1-planar drawing, i.e., a
drawing where each edge is crossed at most once. This characterization applied
to IC-planar drawings gives rise to the following property, where an X-crossing
is of the type described in Fig. 2(a), and a B-crossing is of the type described
in Fig. 2(b) (the solid edges only).
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Figure 2: (a) An X-configuration and (b) a B-configuration.

Property 1 ([3]). Every crossing of an IC-plane graph is either an X- or a
B-crossing.

A kite K is a graph isomorphic to K4 together with an embedding such
that all the vertices are on the boundary of the outer face. This implies that
two edges of K cross each other, while the other four edges are not crossed
and belong to the boundary of the outer face; see Fig. 2(a). Consider a pair of
crossing edges of an IC-plane graph G, such that their four end-vertices induce
a kite K. The kite K is empty, if in G there is no other vertex inside the internal
faces of K. The following property is a consequence of the more general Lemma
1 in [3] (in particular of cases c1 and c2 of that lemma).

Property 2 ([3]). Let G = (V,E) be an n-vertex IC-plane graph. It is possible
to augment G to a biconnected IC-plane graph G+ = (V,E+) (with a possibly
different embedding), where E ⊆ E+, such that the end-vertices of each pair of
crossing edges of G+ induce an empty kite. This can be done in O(n) time.

Visibility model. In a L-visibility drawing Γ of a graph G, every vertex
is represented by a horizontal and a vertical segment sharing an end-point,
i.e., by an L-shape in the set { , , , }. Each edge of G is drawn in Γ
as either a horizontal or a vertical visibility segment joining the two L-shapes
corresponding to its two end-vertices. Clearly, horizontal visibilities only cross
vertical visibilities at right angles. Also, no two L-shapes intersect. If G is
an IC-plane graph, then each visibility is crossed at most once and no two
crossed visibilities are incident to the same L-shape. In Fig. 1(b), an L-visibility
representation Γ of an IC-plane graph G is shown. Finally, we adopt a weak
model, where a visibility may not imply the existence of the corresponding edge
in the graph. For example, in Fig. 1(b) the L-shapes of vertices 8 and 10 can be
joined by a horizontal visibility, although the edge (8, 10) does not exist in G.

3 Proof of Theorem 1

The proof of Theorem 1 is constructive and is based on a drawing algorithm
that takes as input an IC-plane graph G and returns a L-visibility drawing Γ
of G. By Property 2, we assume that G is such that each crossing induces
an empty kite (see Section 2). In fact, the output of our drawing algorithm
maintains the IC-planar embedding obtained by applying Property 2. We begin
by removing from G all pairs of crossing edges and orient the resulting graph P
to an st-graph. The computed orientation is such that, when reinserting a pair
of crossing edges in the corresponding planar face of P , one of them is always
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Figure 3: Illustration for the proof of Lemma 1.

incident to the origin and the destination of the face. In other words, each face
of P that corresponds to an empty kite of G, is oriented so that its left and
right paths contain exactly one vertex each. To prove that this is always the
case, we first need to introduce additional notation. Let f be a face of a plane
graph G. Let v1, . . . , vh be the h ≥ 3 vertices that belong to the boundary of
f , and let N(v) be the set of neighbors of a vertex v of G. The contraction
of f is the operation defined as follows. Add to G a vertex vf and connect vf
to the vertices in N(v1) ∪ . . . ∪ N(vh). Then remove v1, . . . , vh from G. The
resulting (multi)graph is still planar. Moreover, the contraction operation can be
performed so to preserve the planar embedding of G. Namely, the circular order
of the edges incident to vf is the same circular order encountered walking along
the boundary of f . See also Fig. 3(a) for an illustration. The original graph G
can be obtained by applying the reverse operation, called the expansion of vf .
Namely, vertices v1, . . . , vh are reinserted along with their original edges and vf
is removed from the graph.

Lemma 1. Let G be an n-vertex IC-plane graph such that the end-vertices of
each pair of crossing edges induce an empty kite. Let C be the set of crossing
edges in G, and consider the plane graph P = G \ C. Graph P can be oriented
to an st-graph such that each pair of crossing edges of C has been removed from
a face of P whose left and right paths contain exactly one vertex each. This
operation can be done in O(n) time.

Proof. Each pair of crossing edges of G induces an empty kite K, and thus
corresponds to a single face fK in P having exactly four vertices on its boundary.
As a first step, we contract each face fK of P (corresponding to a kite K in G).
See also Fig. 3(a) for an illustration. Notice that, since G is an IC-plane graph,
no two faces of P share a vertex, and thus each vertex vK of PC corresponds to
exactly one face of P . Hence, we can contract the faces following an arbitrary
order. The resulting graph PC is a plane (multi)graph. Indeed, observe that if
a face fK of P shares an edge with a triangular face f , then PC will contain two
parallel edges between vK and the vertex v of f not in fK (see also Fig. 3(a)).

As a second step, we orient PC to an st-graph (observe that parallel edges
must receive the same orientation). In the third step, we expand one by one
all the vertices vK corresponding to a contracted face fK . After expanding a
vertex vK , we orient the four reinserted edges of the face fK maintaining the
following invariants: I1. The resulting graph has a single source and a single
sink; I2. The left and right paths of fK contain exactly one vertex each.

Invariants I1 and I2 imply that the graph after expanding vK is still an
st-graph, as it has a single source and a single sink by I1 and is acyclic by I2.

5



Let {a, b, c, d} be the four vertices belonging to the boundary of face fK , en-
countered in this order clockwise around the boundary of the face. To maintain
I2 we need to orient the edges of fK such that the origin and the destination
of fK are two non-adjacent vertices, i.e., either a and c or b and d. In order to
maintain I1, recall that the incoming edges of vK appear consecutive around it
and so do the outgoing edges, unless vK is the source or the sink of the graph.
Thus, if vK is neither the source nor the sink of the graph, then at most two
of the reinserted vertices will have both incoming and outgoing edges incident
to vK , whereas at most three will have only incoming or only outgoing edges
incident to vK . We distinguish the following three cases.

Case 1. No vertex of fK has both incoming and outgoing edges. See Fig. 3(b)
for an illustration. Then we consider the following subcases. Case 1a. There
are three vertices having only outgoing edges, say a, b and c, which implies that
all the edges of d are incoming. In this case, we orient the edges of fK so that b
is the destination and d is the origin of the face, which ensures I2. All vertices
has now both incoming and outgoing edges, and thus I1 is also maintained.
Case 1b. There are three vertices having only incoming edges, say a, b and c,
which implies that all the edges of d are outgoing. In this case, the orientation
that ensures I1 and I2 is the one where d is the destination and b is the origin
of the face. Case 1c. Two (consecutive) vertices only have incoming edges,
say c and d, and two (consecutive) vertices only have outgoing edges, a and b.
Then to maintain I1 and I2 we let a to be the destination and c the origin of
the face. This particular case is shown in Fig. 3(b).

Case 2. Only one vertex of fK , say a, has both incoming and outgoing edges.
Moreover, assume that the incoming edges of a are between the edge (a, d) and
the outgoing edges of a, as in Fig. 3(c), since the case in which the incoming
edges of a are between the outgoing edges of a and the edge (a, b) is symmetric.
We have two subcases. Case 2a. The other three vertices only have incoming
(resp., outgoing) edges. In this case, we orient the edges of fK so that c (resp.,
a) is the origin and a (resp., c) is the destination. This choice ensures both I1
and I2. Case 2b. Two vertices only have incoming edges and the other vertex
only have outgoing edges. Due to the bipolar orientation of vK , the two vertices
having only incoming edges are c and d. Then we choose d as origin of the
face and b as destination, which ensures both I1 and I2. This particular case is
shown in Fig. 3(c). The same orientation works also if two vertices only have
outgoing edges (b and c) and the other vertex only have incoming edges (d).

Case 3. Two vertices of fK have both incoming and outgoing edges. We have
two subcases. Case 3a. Suppose first that these two vertices, say a and b, are
adjacent in P . Moreover, assume that the incoming edges of a are between the
edge (a, d) and the outgoing edges of a, as in Fig. 3(d), since the other case is
symmetric. This implies that the incoming edges of b are between the outgoing
edges of b and the edge (b, c). Moreover, c and d only have incoming edges.
Then, if we let a to be the destination of the face and c the origin, I1 and I2
are maintained. Case 3b. Suppose now that the two vertices, say a and c, are
not adjacent in P . Moreover, assume that the incoming edges of a are between
the edge (a, d) and the outgoing edges of a, as in Fig. 3(d), since the case in
which the incoming edges of a are between the outgoing edges of a and the edge
(a, b) is symmetric. This implies that the incoming edges of c are between the

6



c

d

b

a

fK

(a) fk

sc

sd
sb

sa

(b) Γ′

sc

sd
sb

sa

(c) Γ

Figure 4: Illustration for the proof of Lemma 2.

outgoing edges of c and the edge (c, d). Moreover, b and d only have outgoing
and incoming edges, respectively. Then, if we orient the edges of fK so that b
is the destination of the face and d the origin, then I1 and I2 are ensured.

Finally, suppose that vK is the source (resp., sink) of the graph. Then all
the vertices of fK have either no incident oriented edges, or all outgoing (resp.,
incoming) edges. Also, at least one of them has at least one outgoing (resp.,
incoming) edge, say a. We orient the edges of fK so that a is the destination
(resp., origin) and c the origin (resp., destination) of fK .

The described algorithm works in O(n) time. Namely, the graph PC can
be constructed and oriented to an st-graph in O(n) time (see, e.g., [10]). Fur-
thermore, orienting the edges of an expanded face requires first to analyze the
orientation of the edges incident to each vertex of the face, and then to ori-
ent the edges of the face. Since the faces are vertex-disjoint, this costs at most∑

∀v∈P deg(v) = 2mP , where mP is the number of edges of P , which is O(n).

Let fK be a face of the plane st-graph P which corresponds to an (empty)
kite K in G. By Lemma 1, fK is such that its left and right path have both
length two. This implies that one of the two crossing edges of K is incident to
the origin and to the destination of fK , whereas the other one is incident to the
two vertices belonging one to the left and one to the right path of fK . Let P+

be the biconnected plane graph obtained from P by reinserting, for each pair
of crossing edges of G, the edge incident to the origin and to the destination of
the corresponding face in P . Furthermore, let Γ′ be a strong visibility drawing
of P+ in O(n2) area, which can be computed in O(n) time (see, e.g., [15]).

Lemma 2. Γ′ can be transformed into a L-visibility drawing Γ of G that requires
O(n2) area. This operation can be done in O(n) time.

Proof. Consider a face fK of P corresponding to an empty kite K in G. Let
{a, b, c, d} be the four vertices of fK , encountered in this order clockwise around
the boundary of the face. See also Fig. 4(a). Without loss of generality, let a be
the destination of the face. Then Lemma 1 implies that c is the origin of fK ,
and thus the edge reinserted in P+ for this face is (a, c). In other words, fK
is split in two faces in P+, and these two faces share the edge (a, c). Consider
the subdrawing of Γ′ induced by the four vertices {a, b, c, d} . An illustration is
also shown in Fig. 4(b). Let sv be the bar representing a vertex v in Γ′. Either
sd and sb are drawn at the same y-coordinate, or, one is above the other. Also,
the two bars do not overlap as there is no edge between b and d in P+ (and Γ′
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is a strong visibility drawing). Between the two bars there is actually (at least)
one unit gap needed to draw the visibility from sc to sa. Moreover, sc is below
both sd and sb, while sa is above both of them. In any case, we first extend sd
(resp., sb) by 0.25 units to the right (resp., left). Next, if sb and sd have the
same y-coordinate, then it suffice to draw two vertical bars s′d and s′b, such that
the bottomost end-point of s′d (resp., s′b) coincides with the rightmost end-point
of sd (resp., leftmost end-point of sb), and such that the other end-point is 0.5
units above it. If one is above the other, say sb is above sd, and the difference in
terms of y-coordinates between the two bars is k ≥ 1 units, then we draw two
vertical bars s′d and s′b, such that the end-point of s′d (resp., s′b) coincides with
the rightmost end-point of sd (resp., leftmost end-point of sb), and such that
the other end-point is k/2 units above it (resp., below it). In both cases, the
two resulting L-shapes see each other through a horizontal visibility segment.
See also Fig. 4(c). Since every vertex is adjacent to at most one crossed edge we
have that the final drawing Γ is a L-visibility drawing of G. Since Γ′ contains
O(n) segments which have to be transformed to L-shapes, Γ is computed in
O(n) time. Finally, in order to restore integer coordinates, we scale by a factor
4 the grid of Γ, which thus takes O(n2) area.

Lemmas 1 and 2 imply Theorem 1. To prove Corollary 1, consider a visibility
drawing Γ of an n-vertex IC-plane graph G. By Theorem 1, Γ can be computed
in O(n) time and fits on a grid of O(n2) size. Let ` be an L-shape of Γ. The
representative point r of ` is defined as follows. If both the horizontal and the
vertical segments of ` have non-zero length, then r is the point where they
touch. Otherwise, r is the midpoint of the segment of ` having non-zero length.
Replace each vertical visibility segment with a polyline as follows. Let s be
a visibility segment connecting the two L-shapes `1 and `2. Let r1 and r2
be the representative points of `1 and `2, respectively. Also, let p1 and p2
be the points that s shares with `1 and `2, respectively. Suppose that r1 is
below r2 (and thus p1 is below p2). Replace s with the polyline starting at
r1, bending 0.25 grid units above p1, bending again 0.25 units below p2, and
ending at r2. With a symmetric operation we can also replace each horizontal
visibility segment. Finally, replace each L-shape with its representative point.
The resulting drawing is an IC-plane drawing of G where edges are polylines
with (at most) two bends that cross at right-angles. Finally, scaling by a factor
4 the grid of the drawing we restore integer coordinates. Fig. 1(c) shows a RAC
drawing computed from the L-visibility drawing in Fig. 1(b).

4 Conclusions and Open Problems

We have proved that every IC-plane graph G has a L-visibility drawing which
can be computed in linear time. As a corollary, our result implies that G
has a RAC drawing in quadratic area and at most two bends per edge which
can also be computed in linear time. We conclude the paper with two open
problems: (i) Does every 1-planar graph admit a visibility drawing where the
shape associated with each vertex is either an L-shape, a T-shape, or a +-shape?
(ii) Does every IC-plane graph admit a RAC drawing with at most one bend
per edge in polynomial area?
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