
ar
X

iv
:1

51
0.

03
56

4v
1

 [
cs

.D
S]

 1
3

O
ct

 2
01

5

Linear-Vertex Kernel for the Problem of Packing

r-Stars into a Graph without Long Induced Paths

Florian Barbero1, Gregory Gutin2, Mark Jones2, Bin Sheng2, and

Anders Yeo3,4

1Laboratoire d’Informatique, Robotique et Microélectronique de

Montpellier, 161 rue Ada, 34095 Montpellier cedex 5, France
2Department of Computer Science, Royal Holloway, University of

London, TW20 0EX, Egham, Surrey, UK
3Engineering Systems and Design, Singapore University of Technology

and Design, Singapore
4Department of Mathematics, University of Johannesburg, Auckland

Park, 2006 South Africa

Abstract

Let integers r ≥ 2 and d ≥ 3 be fixed. Let Gd be the set of graphs
with no induced path on d vertices. We study the problem of packing k
vertex-disjoint copies of K1,r (k ≥ 2) into a graph G from parameterized
preprocessing, i.e., kernelization, point of view. We show that every
graph G ∈ Gd can be reduced, in polynomial time, to a graph G′ ∈ Gd

with O(k) vertices such that G has at least k vertex-disjoint copies of
K1,r if and only if G′ has. Such a result is known for arbitrary graphs G
when r = 2 and we conjecture that it holds for every r ≥ 2.

1 Introduction

For a fixed graph H, the problem of deciding whether a graph G has k vertex-
disjoint copies of H is called H-Packing. The problem has many applications
(see, e.g., [1, 2, 10]), but unfortunately it is almost always intractable. Indeed,
Kirkpatrick and Hell [10] proved that if H contains a component with at
least three vertices then H-Packing is NP-complete. Thus, approximation,
parameterised, and exponential algorithms have been studied for H-Packing

when H is a fixed graph, see, e.g., [1, 6, 7, 13, 14].

1

http://arxiv.org/abs/1510.03564v1

In this note, we will consider H-Packing when H = K1,r and study K1,r-

Packing from parameterized preprocessing, i.e., kernelization, point of view.1

Here k is the parameter. As a parameterized problem, K1,r-Packing was first
considered by Prieto and Sloper [13] who obtained an O(k2)-vertex kernel for
each r ≥ 2 and a kernel with at most 15k vertices for r = 2. (Since the case
r = 1 is polynomial-time solvable, we may restrict ourselves to r ≥ 2.) The
same result for r = 2 was proved by Fellows et al. [6] and it was improved to
7k by Wang et al. [14].

Fellows et al. [6] note that, using their approach, the bound of [13] on
the number of vertices in a kernel for any r ≥ 3 can likely be improved to
subquadratic. We believe that, in fact, there is a linear-vertex kernel for every
r ≥ 3 and we prove Theorem 1 to support our conjecture. A path P in a
graph G, is called induced if it is an induced subgraph of G. For an integer
d ≥ 3, let Gd denote the set of all graphs with no induced path on d vertices.

Theorem 1. Let integers r ≥ 2 and d ≥ 3 be fixed. Then K1,r-Packing

restricted to graphs in Gd, has a kernel with O(k) vertices.

Since d can be an arbitrary integer larger than two, Theorem 1 is on an
ever increasing class of graphs which, in the “limit”, coincides with all graphs.
To show that Theorem 1 is an optimal2 result, in a sense, we prove that K1,r-

Packing restricted to graphs in Gd is NP-hard already for d = 5 and every
fixed r ≥ 3:

Theorem 2. Let r ≥ 3. It is NP-hard to decide if the vertex set of a graph
in G5 can be partitioned into vertex-disjoint copies of K1,r.

We cannot replace G5 by G4 (unless NP = P) due to the following asser-
tion, whose proof is given in the Appendix.

Theorem 3. Let r ≥ 3 and G ∈ G4. We can find the maximal number of
vertex-disjoint copies of K1,r in G in polynomial time.

2 Terminology and Notation

For a graph G, V (G) (E(G), respectively) denotes the vertex set (edge set,
respectively) of G, ∆(G) denotes the maximum degree of G and n its number
of vertices. For a vertex u and a vertex set X in G, N(u) = {v : uv ∈ E(G)},
N [u] = N(u) ∪ {u}, d(u) = |N(u)|, NX(u) = N(u) ∩ X, dX(u) = |NX(u)|

1We provide basic definitions on parameterized algorithms and kernelization in the next
section, for recent monographs, see [4, 5]; [11, 12] are recent survey papers on kernelization.

2If K1,r-Parking was polynomial time solvable, then it would have a kernel with O(1)
vertices.

2

and G[X] is the subgraph of G induced by X. We call K1,r an r-star. We
say a star intersects a vertex set if the star uses a vertex in the set. We use
(G, k, r) to denote an instance of the r-star packing problem. If there are k
vertex-disjoint r-stars in G, we say (G, k, r) is a Yes-instance, and we write
G ∈ ⋆(k, r). Given disjoint vertex sets S, T and integers s, r, we say that S
has s r-stars in T if there are s vertex-disjoint r-stars with centers in S and
leaves in T .

A parameterized problem is a subset L ⊆ Σ∗ × N over a finite alphabet Σ.
A parameterized problem L is fixed-parameter tractable if the membership of
an instance (I, k) in Σ∗ × N can be decided in time f(k)|I|O(1) where f is a
computable function of the parameter k only. Given a parameterized problem
L, a kernelization of L is a polynomial-time algorithm that maps an instance
(x, k) to an instance (x′, k′) (the kernel) such that (x, k) ∈ L if and only if
(x′, k′) ∈ L and k′ + |x′| ≤ g(k) for some function g. It is well-known that a
decidable parameterized problem L is fixed-parameter tractable if and only if
it has a kernel. Kernels of small size are of main interest, due to applications.

3 Proof of Theorem 1

Note that the 1-star packing problem is the classic maximum matching prob-
lem and if k = 1, the r-star packing problem is equivalent to deciding whether
∆(G) ≥ r. Both of these problems can be solved in polynomial time. Hence-
forth, we assume r, k > 1.

A vertex u is called a small vertex if max{d(v) : v ∈ N [u]} < r. A graph
without a small vertex is a simplified graph.

We now give two reduction rules for an instance (G, k, r) of K1,r-Packing.

Reduction Rule 1. If graph G contains a small vertex v, then return the
instance (G− v, k, r).

It is easy to observe that Reduction Rule 1 can be applied in polynomial
time.

Reduction Rule 2. Let G = (V,E) be a graph and let C,L be two vertex-
disjoint subsets of V . The pair (C,L) is called a constellation if G[C ∪ L] ∈
⋆(|C|, r) and there is no star K1,r intersecting L in the graph G[V \ C]. If
(C,L) is a constellation, return the instance (G[V \ (C ∪ L)], k − |C|).

It is easy to observe that Reduction Rule 2 can be applied in polynomial
time, provided we are given a suitable constellation.

Lemma 1. Reduction Rules 1 and 2 are safe.

3

Proof. Clearly, a small vertex v can not appear in any r-star. Therefore Re-
duction Rule 1 is safe as G and G− v will contain the same number of r-stars.

To see that Reduction Rule 2 is safe, it is sufficient to show that G ∈ ⋆(k, r)
if and only if G[V \(C∪L)] ∈ ⋆(k−|C|, r). On the one hand, if G[V \(C∪L)] ∈
⋆(k − |C|, r), the hypothesis G[C ∪ L] ∈ ⋆(|C|, r) implies G ∈ ⋆(k, r). On the
other hand, there are at most |C| vertex-disjoint stars intersecting C. But by
hypothesis, every star intersecting L also intersects C. We deduce that there
are at most |C| stars intersecting C ∪ L, and so if G ∈ ⋆(k, r), there are at
least k − |C| stars in G[V − (C ∪ L)]: G[V \ (C ∪ L)] ∈ ⋆(k − |C|, r).

Note that as both rules modify a graph by deleting vertices, any graph G′

that is derived from a graph G ∈ Gd by an application of Rules 1 or 2 is also
in Gd.

Recall the Expansion Lemma, which is a generalization of the well-known
Hall’s theorem.

Lemma 2. (Expansion Lemma)[8] Let r be a positive integer, and let m be
the size of the maximum matching in a bipartite graph G with vertex bipartition
X ∪ Y . If |Y | > rm, and there are no isolated vertices in Y, then there exist
nonempty vertex sets S ⊆ X,T ⊆ Y such that S has |S| r-stars in T and no
vertex in T has a neighbor outside S. Furthermore, the sets S, T can be found
in polynomial time in the size of G.

Henceforth, we will use the following modified version of the expansion
lemma.

Lemma 3. (Modified Expansion Lemma) Let r be a positive integer, and
let m be the size of the maximum matching in a bipartite graph G with vertex
bipartition X ∪ Y . If |Y | > rm, and there are no isolated vertices in Y, then
there exists a polynomial algorithm(in the size of G) which returns a partition
X = A1∪B1, Y = A2∪B2, such that B1 has |B1| r-stars in B2, E(A1, B2) = ∅,
and |A2| ≤ r|A1|.

Proof. If |Y | ≤ rm, then we may return A1 = X, A2 = Y , B1 = B2 = ∅, as
m ≤ |X| and hence |Y | ≤ r|X|. Otherwise, apply the Expansion Lemma to
get nonempty vertex sets S ⊆ X,T ⊆ Y such that S has |S| r-stars in T and
no vertex in T has a neighbor in Y outside S. Let X ′ = X \S and Y ′ = Y \T .
If G[X ′ ∪ Y ′] has isolated vertices in Y ′, move all of them from Y ′ to T . If
|Y ′| ≤ r|X ′|, we may return A1 = X ′, A2 = Y ′, B1 = S, and B2 = T .

So now assume |Y ′| > r|X ′|. In this case, apply the algorithm recursively
on G[X ′ ∪ Y ′] to get a partition X ′ = A′

1 ∪ B′

1, Y
′ = A′

2 ∪ B′

2, such that
B′

1 has |B′

1| stars in B′

2, E(A′

1, B
′

2) = ∅, and |A′

2| ≤ r|A′

1|. Then return
A1 = A′

1, B1 = B′

1 ∪ S, A2 = A′

2, B2 = B′

2 ∪ T . Observe that B1 has
|B′

1| + |S| = |B1| stars in B2, E(A1, B2) ⊆ E(A′

1, B
′

2) ∪ E(X \ S, T) = ∅, and

4

|A2| = |A′

2| ≤ r|A′

1| = r|A1|, as required. As each iteration reduces |X| by at
least 1, we will have to apply less than |X|+ |Y | iterations, each of which uses
at most one application of the Expansion Lemma, and so the algorithm runs
in polynomial time.

Proof of Theorem 1. By exhaustively applying Reduction Rule 1, we may
assume we have a simplified graph. Let G be a simplified graph in Gd. Now
find a maximal r-star packing of the graph G with q stars. We may assume
q < k as otherwise we have a trivial Yes-instance. Let S be the set of vertices
in this packing, and let D = V (G) \ S.

For any u ∈ D, let D[u] be the set of vertices v ∈ D for which there
is a path from v to u using only vertices in D - that is, D[u] is the the set
of vertices in the component of G[D] containing u. As our star-packing is
maximal, dD(v) < r for every v ∈ D. As G ∈ Gd, every v ∈ D[u] has a path
to u in G[D] with at most d − 1 vertices (as otherwise the shortest path in
G[D] from v to u is an induced path on at least d vertices). It follows that
|D[u]| ≤ 1 + r + r2 + · · ·+ rd−1 ≤ rd.

We will now find a partition of S into Big(S) ∪ Small(S), and D into
B(D) ∪ U(D), such that |B(D)| ≤ rd+1|Small(S)|, and either Big(S) =
U(D) = ∅ or (Big(S), U(D)) is a constellation. As |Small(S)| ≤ |S| ≤ (r+1)k,
it follows that either |V (G)| ≤ (r + 1)k + (r + 1)rd+1k, or we can apply Re-
duction Rule 2 on (Big(S), U(D)).

We will construct Big(S), Small(S), B(D), U(D) algorithmically as de-
scribed below. Throughout, we will preserve the properties that

1. |B(D)| ≤ |Small(S)|rd+1,

2. U(D) has no neighbors in Small(S) ∪B(D).

Initially, set Big(S) = S,U(D) = D,Small(S) = B(D) = ∅.
While |U(D) ∩N(Big(S))| > r|Big(S)|, do the following.
If there is a vertex u ∈ Big(S) such that |N(u) ∩ U(D)| < r, let X =⋃

{D[v] : v ∈ N(u) ∩ U(D)}. Observe that as |D[v]| ≤ rd for all v ∈ D,
|X| < rd+1. Now set Small(S) = Small(S) ∪ {u}, Big(S) = Big(S) \ {u},
B(D) = B(D)∪X, U(D) = U(D)\X. It follows that Property 1 is preserved.
Note that no vertex in the new U(D) has a neighbor in X (as all neighbors
of X in D lie in X). Similarly no vertex in the new U(D) is adjacent to u
(as such a vertex would be in the old U(D) and so would have been added
to X). Therefore there are still no edges between the new U(D) and the new
Small(S) ∪B(D), and so Property 2 is preserved.

Otherwise (if every vertex u ∈ Big(S) has |N(u) ∩ U(D)| ≥ r), let H
denote the maximal bipartite subgraph of G with vertex partition Big(S) ∪
(U(D)∩N(Big(S)), and apply the Modified Expansion Lemma to H. We will

5

get a partition Big(S) = A1 ∪B1 and U(D)∩N(Big(S)) = A2∪B2 such that
E(A1, B2) = ∅, |A2| ≤ r|A1| and B1 has |B1| r-stars in B2.

If the Modified Expansion Lemma returns B1 = Big(S), then we claim
that (Big(S), U(D)) is a constellation. To see this, firstly note that |Big(S)|
has |Big(S)| r-stars in U(D). Secondly, note that since we chose the vertices
of a maximal star packing for S, there is no r-star contained in G[U(D)]. As
U(D) has no neighbors in Small(S) ∪B(D), it follows that there is no r-star
intersecting U(D) in G \Big(S). Thus (Big(S), U(D)) is a constellation, and
the claim is proved. In this case the algorithm stops.

So now assume that the Modified Expansion Lemma returns Big(S) =
A1 ∪ B1 with A1 6= ∅. Let X =

⋃
{D[v] : v ∈ N(A1) ∩ U(D)}. Note that as

E(A1, B2) = ∅ and |A2| ≤ r|A1|, we have |X| ≤ |
⋃
{D[v] : v ∈ A2}| ≤ |A2|r

d ≤
|A1|r

d+1. Then let Small(S) = Small(S)∪A1, Big(S) = Big(S)\A1, B(D) =
B(D) ∪X, U(D) = U(D) \X. Note that after this move, we still have that
|B(D)| ≤ |Small(S)|rd+1, and U(D) has no neighbors in Small(S) ∪B(D).

Note that in either case, |Big(S)| strictly decreases, so the algorithm must
eventually terminate, either because (Big(S), U(D)) is a constellation, or be-
cause |U(D) ∩ N(Big(S))| ≤ r|Big(S)|. If (Big(S), U(D)) is a constella-
tion, apply Reduction Rule 2 using (Big(S), U(D)). This gives us a par-
tition in which Big(S) = U(D) = ∅. Thus in either case, we have that
|U(D)∩N(Big(S))| ≤ r|Big(S)|. Note that every vertex u ∈ U(D) is in D[v]
for some v ∈ N(S) (as otherwise, either max{d(v) : v ∈ N [u]} < r or G[D] con-
tains an r-star, a contradiction in either case). Moreover such a v must be in
U(D)∩N(Big(S)), as there are no edges between U(D) and Small(S)∪B(D).
Thus |U(D)| ≤ rd|U(D)∩N(Big(S))| ≤ rd+1|Big(S)|. Then we have |V (G)| =
|S|+ |U(D)|+ |B(D)| ≤ |S|+rd+1|Big(S)|+rd+1|Small(S)| ≤ (rd+1+1)|S| ≤
(k − 1)(r + 1)(rd+1 + 1) = O(k).

4 Proof of Theorem 2

A split graph is a graph where the vertex set can be partitioned into a clique
and an independent set.

An instance of the well-known NP-hard problem 3-Dimensional Match-

ing contains a vertex set that can be partitioned into three equally large sets
V1, V2, V3 (also called partite sets). Let k denote the size of each of V1, V2, V3.
It furthermore contains a number of 3-sets containing exactly one vertex from
each Vi, i = 1, 2, 3. The problem is to decide if there exists a set of k vertex
disjoint 3-sets (which would then cover all vertices). Such a set of k vertex
disjoint 3-sets is called a perfect matching. The 3-sets are also called edges (or
hyperedges).

6

Theorem 4. Let r ≥ 3. It is NP-hard to decide if the vertex set of a split
graph can be partitioned into vertex disjoint copies of K1,r.

Proof. We will reduce from 3-Dimensional Matching. Let I be an instance
of 3-dimensional matching. Let V1, V2, V3 denote the three partite sets of I
and let E denote the set of edges in I. Let m = |E| and k = |V1| = |V2| = |V3|.
We will build a split graph GI as follows. Let V = V1∪V2∪V3 be the vertices
of I. Let X1 be a set of m vertices and X2 be a set of m− k vertices and let
X = X1 ∪X2. Let Y be a set of (m − k)(r − 1) vertices and let W be a set
of k(r − 3) vertices (if r = 3 then W is empty). Let the vertex set of GI be
V ∪X ∪ Y ∪W .

Add edges such that X becomes a clique in GI . Let each vertex in X1

correspond to a distinct edge in E and connect that vertex with the 3 vertices
in V which belongs to the corresponding edge in E. Furthermore add all edges
from X1 to W . Finally, for each vertex in X2 add r − 1 edges to Y in such a
way that each vertex in Y ends up with degree one in GI . This completes the
construction of GI .

Clearly GI is a split graph as X is a clique and V ∪Y ∪W is an independent
set. We will now show that the vertex set of GI can be partitioned into vertex
disjoint copies of K1,r if and only if I has a perfect matching.

First assume that I has a perfect matching. Let E′ ⊆ E denote the edges
of the perfect matching. For the vertices in X1 that correspond to the edges
in E′ we include the three edges from each such vertex to V as well as r − 3
edges to W . This can be done such that we obtain k vertex disjoint copies
of K1,r covering all of V and W as well as k vertices from X1. Now for each
vertex in X2 include the r − 1 edges to Y as well as one edge to an unused
vertex in X1. This can be done such that we obtain an additional m−k vertex
disjoint copies of K1,r. We have now constructed m vertex disjoint copies of
K1,r which covers all the vertices in GI , as required.

Now assume that the vertex set ofGI can be partitioned into vertex disjoint
copies of K1,r. As |V ∪W ∪Y ∪X| = m(r+1) we note that we have m vertex
disjoint copies of K1,r, which we will denote by K. As all vertices in Y need to
be included in such copies we note that every vertex of X2 is the center vertex
of a K1,r. Let K′ denote these m − k copies of K1,r. Each K1,r in K′ must
include 1 edge from X2 to X1. These m− k edges form a matching, implying
that m−k vertices of X1 also belong to the copies of K1,r in K′. This leaves k
vertices in X1 that are uncovered and rk vertices in V ∪W that are uncovered.
Furthermore, as V ∪W is an independent set, each copy of K1,r in K\K′ must
contain a vertex of X1. As |K \ K′| = k we note that the k copies of K1,r in
K\K′ must include exactly one vertex from X1. Also as each vertex in X1 has
exactly three neighbours in V , each such K1,r also contains 3 vertices from V
(as V needs to be covered) and therefore r−3 vertices form W . Therefore the

7

k vertices in X1 that belong to copies of K1,r in K \K′ correspond to k edges
in E which form a perfect matching in GI .

This completes the proof as we have shown that GI can be partitioned
into vertex disjoint copies of K1,r if and only if I has a perfect matching.

The following lemma is known. We give the simple proof for completeness.

Lemma 4. No split graph contains an induced path on 5 vertices.

Proof. Assume G is a split graph where V (G) is partitioned into an inde-
pendent set I and a clique C. For the sake of contradiction assume that
P = p0p1p2p3p4 is an induced P5 in G. As I is independent we note that
{p0, p1} ∩ C 6= ∅ and {p3, p4} ∩ C 6= ∅. As C is a clique there is therefore an
edge from a vertex in {p0, p1} to a vertex in {p3, p4}. This edge implies that
P is not an induced P5 in G, a contradiction.

Proof of Theorem 2. By Lemma 4, G5 contains all split graphs. The result
now follows immediately from Theorem 4.

Acknowledgment. Research of GG was partially supported by Royal Society
Wolfson Research Merit Award. Research of BS was supported by China
Scholarship Council.

References

[1] R. Bar-Yehuda, M. Halldórsson, J. Naor, H. Shachnai, and I. Shapira,
Scheduling split intervals, in 30th Annu. ACM-SIAM Symp. on Discrete
Algorithms, 2002, pp. 732–741.

[2] R. Bejar, B. Krishnamachari, C. Gomes, and B. Selman, Distributed con-
straint satisfaction in a wireless sensor tracking system, Workshop on Dis-
tributed Constraint Reasoning, Internat. Joint Conf. on Artificial Intelli-
gence, 2001.

[3] A. Brandstädt, V.B. Le, and J.P. Spinrad. Graph Classes: A Survey, SIAM,
1999.

[4] M. Cygan, F.V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh, Parameterized Algorithms, Springer, 2015.

[5] R.G. Downey and M.R. Fellows, Foundations of Parameterized Complex-
ity, Springer, 2013.

[6] M. Fellows, J. Guo, H. Moser, and R. Niedermeier, J. Comput. Syst. Sci.
77:1141–1158, 2011.

8

[7] M. Fellows, P. Heggernes, F. Rosamond, C. Sloper, and J.A. Telle, Find-
ing k Disjoint Triangles in an Arbitrary Graph. In WG’05, Lect. Notes
Comput. Sci. 3353:235–244, 2005

[8] F.V. Fomin, D. Lokshtanov, N. Misra, G. Philip, and S. Saurabh, Hit-
ting forbidden minors: Approximation and Kernelization. In STACS 2011,
LIPIcs 9:189–200, 2011.

[9] J. Guo and R. Niedermeier. Linear problem kernels for NP-hard problems
on planar graphs. In ICALP 2007, Lect. Notes Comput. Sci. 4596:375-386,
2007.

[10] D.G. Kirkpatrick and P. Hell, On the completeness of a generalized match-
ing problem. In 10th STOC, ACM Symposium on Theory of Computing,
240–245, 1978.

[11] S. Kratsch, Recent developments in kernelization: A survey. Bulletin
EATCS, no. 113, 2014.

[12] D. Lokshtanov, N. Misra, and S. Saurabh, Kernelization - preprocessing
with a guarantee. Lect. Notes Comput. Sci. 7370:129-161, 2012.

[13] E. Prieto and C. Sloper, Looking at the stars, Theor. Comput. Sci.
351:437–445, 2006.

[14] J. Wang, D. Ning, Q. Feng, and J. Chen, An improved parameterized
algorithm for a generalized matching problem, In TAMC’08, Lect. Notes
Comput. Sci., 4978:212–222, 2008.

9

A Proof of Theorem 3

Note that G4 is the family of cographs [3]. It is well-known [3] that any non-
trivial (i.e., with at least two vertices) cograph G is either disconnected or its
complement is disconnected. Below let n denote the order of G and let m
denote the size of G. The following lemma is well-known.

Lemma 5. For any graph G, we can in time O(n2) find the connected com-
ponents of G and the connected components of the complement of G.

Lemma 6. For any G ∈ G4 and any s ≥ 1 we can in time O(n2) find a set of
s vertices, say S, in G such that |N [S]| is maximum possible.

Proof. Let C1, C2, . . . , Cl be the connected components of G (l ≥ 1). Assume
first that all the components are non-trivial. As any induced subgraph of
a cograph is also a cograph we note that the complement of each Ci is dis-
connected. Therefore for each i = 1, 2, . . . , l there exists a non-trivial (each
part is non-empty) partition (Xi, Yi) of V (Ci) such that all edges exist be-
tween Xi and Yi in G. Let mi be maximum degree of a vertex in Ci for each
i = 1, 2, . . . , l.

The maximum number of vertices we can add to N [S] by adding one vertex
from Ci is mi + 1 and the maximum number of vertices added to N [S] by
adding two vertices from Ci is |V (Ci)| as we can add a vertex from Xi and one
from Yi. Therefore the maximum possible |N [S]| is the sum of the s largest
numbers in the set m1 +1,m2 + 1, . . . ,ms +1, (|V (C1)| −m1 − 1), (|V (C2)| −
m2 − 1), . . . , (|V (Cl)| −ml − 1). Furthermore it is easy to find the actual set
S.
It is not hard to modify the proof above for the case when some Ci’s are
trivial.

Now we are ready to prove the main result of this appendix.

Proof of Theorem 3: Let G ∈ G4 and let r ≥ 3 be arbitrary. First assume
that G is connected, which implies that the complement of G is disconnected.
Let X and Y partition V (G) such that all edges exist between X and Y in G.
We now consider two cases.

Case 1: |X| > r|Y | or |Y | > r|X|. Without loss of generality, assume
that |X| > r|Y |. In this case we recursively find the maximum number of
r-stars we can pack into G[X]. Let mx be the maximum number of r-stars
in G[X]. If (r + 1)mx + (r + 1)|Y | ≤ n, then the optimal answer is that
we can pack mx + |Y | r-stars into G as we can always find |Y | r-stars with
centers in Y and not touching the mx r-stars we already found in G[X]. If

10

(r+1)mx+(r+1)|Y | > n, then the optimal solution is ⌊n/(r+1)⌋ r-stars as we
can pick |Y | r-stars touching as few of the mx r-stars in G[X] as possible and
then pick as many of the mx r-stars that are left untouched. This completes
this case.

Case 2: |X| ≤ r|Y | and |Y | ≤ r|X|. Let x = |X| and y = |Y | and define a
and b as follows:

a =
ry − x

r2 − 1
and b =

rx− y

r2 − 1

Let a′ = ⌊a⌋ = a − ǫa and b′ = ⌊b⌋ = b − ǫb. We will first show that we
can find a′ + b′ r-stars such that a′ of the r-stars have the center in X and all
leaves in Y and b′ of the r-stars have the center in Y and all leaves in X. This
is possible due to the following:

a′r + b′ = (a− ǫa)r + (b− ǫb)

= r ry−x
r2−1

+ rx−y
r2−1

− (rǫa + ǫb)

= y − (rǫa + ǫb)

And, analogously,

b′r + a′ = x− (rǫb + ǫa)

As 0 ≤ ǫa < 1 and 0 ≤ ǫb < 1 we note that we cover all vertices in G except
rǫa+ǫb+rǫb+ǫa = (r+1)(ǫa+ǫb). Therefore the number of vertices we cannot
cover by the r-stars above is strictly less than 2(r+1). If (r+1)(ǫa+ǫb) < r+1
then we have an optimal solution (covering all vertices except at most r), so
assume that (r + 1)(ǫa + ǫb) ≥ r + 1.

Clearly the optimal solution is either a′ + b′ or a′ + b′ + 1. As we already
have a solution with a′+ b′ r-stars we will now determine if there is a solution
with a′ + b′ + 1 r-stars.

If some vertex, say wx, in X has degree at least r in G[X], then there
is indeed a solution with a′ + b′ + 1 r-stars, because of the following. As
(r+1)(ǫa+ ǫb) ≥ r+1 we must have ǫa > 0 and ǫb > 0, which implies that we
can pick an r-star with center in wx ∈ X and with at most rǫb+ǫa−1 leaves in
X and at most rǫa + ǫb leaves in Y . Once this r-star has been picked it is not
difficult to pick an additional a′ r-stars with centers in X (and leaves in Y)
and b′ r-stars with centers in Y (and leaves in X), due to the above. Therefore
we may assume no vertex in X has degree at least r in G[X]. Analogously we
may assume that no vertex in Y has degree at least r in G[Y].

If there exists a′+1 vertices SX in X such that |N [SX]∩X| ≥ a′+1+ r−
(rǫa + ǫb), then proceed as follows. We can create a′ + 1 stars in G[X] such
that they together have exactly r− (rǫa + ǫb) non-centers. By the above each

11

star has less than r leaves, so we can expand these a′ + 1 stars to r-stars by
adding leaves from Y . This uses up a′+1+ r− (rǫa+ ǫb) vertices from X and
(a′ +1)r− (r− (rǫa+ ǫb)) vertices from Y . Adding an additional b′ stars with
the center in Y and all leaves in X uses up b′ vertices from Y and rb′ vertices
from X. Therefore we have used b′ + a′r+ (rǫa + ǫb) = y vertices from Y and
the following number of vertices from X,

a′+rb′+1+r−(rǫa+ǫb) = x−(rǫb+ǫa)+1+r−(rǫa+ǫb) = x+1+r−(r+1)(ǫa+ǫb)

As (r + 1)(ǫa + ǫb) ≥ r + 1 we note that we use at most x vertices from
X and we have a solution with a′ + b′ + 1 r-stars. Analogously if there exists
b′ + 1 vertices SY in Y such that |N [SY] ∩ Y | ≥ b′ + 1 + r − (rǫb + ǫa), we
obtain a′ + b′ + 1 r-stars. By applying Lemma 6 to G[X] and G[Y] we can
decide the above in polynomial time.

We may therefore assume that no such SX or SY exist. We will now show
that a′ + b′ is the optimal solution. For the sake of contradiction assume that
we have a∗ r-stars with centers in X and b∗ r-stars with centers in Y , such that
they are vertex disjoint and a∗ + b∗ = a′ + b′ + 1. Without loss of generality
we may assume that a∗ ≥ a′ + 1. The a∗ r-stars with centers in X all have at
least one leaf in Y as the maximum degree in G[X] is less than r. Furthermore
by the above (SX does not exist) any a′ + 1 r-stars with centers in X have
more than r(a′ + 1) − (r − (rǫa + ǫb)) leaves in Y . Therefore we use strictly
more than the following number of vertices in Y .

r(a′ + 1)− (r − (rǫa + ǫb)) + (a∗ + b∗ − (a′ + 1)) = ra′ + rǫa + ǫb + b′ = y

This contradiction implies that the optimal solution is a′ + b′ in this case.
This completes the case when G is connected.

Finally assume that G is disconnected. In this case we recursively solve
the problem for each connected component, which can be added together to
get an optimal solution for G. It is not difficult to see that the above can be
done in polynomial time.

12

	1 Introduction
	2 Terminology and Notation
	3 Proof of Theorem 1
	4 Proof of Theorem 2
	A Proof of Theorem 3

