arXiv:1602.07106v1 [cs.DS] 23 Feb 2016

Scalable Generation of Scale-free Graphs

Peter Sanders, Christian Schulz

Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
{sanders,christian.schulz}@kit.edu

Abstract. We explain how massive instances of scale-free graphs fol-
lowing the Barabasi-Albert model can be generated very quickly in an
embarrassingly parallel way. This makes this popular model available for
studying big data graph problems. As a demonstration, we generated a
Petaedge graph in less than an hour.

1 Introduction

Scale-free graphs with a power-law degree distribution seem to be
ubiquitous in complex network analysis. In order to study such net-
works and the algorithms to analyze them, we need simple mod-
els for generating complex networks with user-definable parameters.
Barabasi and Albert [3] define the model that is perhaps most widely
used because of its simplicity and intuitive definition: We start with
an arbitrary seed network consisting of nodes 0..ng — 1 (a..b is used
as a shorthand for {a, ..., b} here). Nodes i € ng..n—1 are added one
at a time. They randomly connect to d neighbors using preferential
attachment, i.e., the probability to connect to node 57 < ¢ is chosen
proportionally to the degree of j. The seed graph, ng, d, and n are
parameters defining the graph family.

With the recent interest in big data, the inherently sequential
definition of these graphs has become a problem however, and other,
less natural models have been considered for generating very large
networks, e.g., for the well known Graph500 benchmark [1].

2 Our Algorithm

Our starting point is the fast, simple, and elegant sequential algo-
rithm by Batagelj and Brandes [4]. For simplicity of exposition, we
first consider the most simple situation with an empty seed graph

and where self-loops and parallel edges are allowed. See Section {4| for
generalizations.

We use an empty seed graph (ng = 0). A generalization only re-
quires a number of straight forward index transformations. Batagelj
and Brandes’ algorithm generates one edge at a time and writes it
into an edge array F[0..2dn — 1] where positions 2i and 2i + 1 store
the node IDs of the end points of edge i. We have E[2i] = |i/d].
The central observation is that one gets the right probability distri-
bution for the other end point by uniformly sampling edges rather
than sampling dynamically weighted nodes, i.e., E[2i + 1] is simply
set to F[z| where x is chosen uniformly and (pseudo)randomly from
0..2i.

The idea behind the parallel algorithm is very simple — compute
edge ¢ independently of all other edges and without even accessing
the array E. On the first glance, this sounds paradoxical because
there are dependencies and accessing F is the whole point behind
Batagelj and Brandes’ algorithm. This paradox is resolved by the
idea to recompute any entry of E that is needed for edge i. How-
ever, this solution raises two concerns. First, doesn’t recomputation
increase the amount of work in an inacceptable way? Second, how
do you reproduce random behavior?

The first concern is resolved by observing that we have a 50 %
chance of looking at an even position which is easy to reproduce.
In the other 50 % of the cases, we have to look at further positions
of E. Overall, the expected number of positions of E considered
is bounded by ;527" = 2 — compared to Batagelj and Brandes’
algorithm, we compute around twice as many random numbers but
in exchange save most of the expensive memory accesses.

What saves the situation with respect to reproducing random
behavior is that practical computer programs usually do not use true
randomness but only pseudorandomness, i.e., if you know the state
of a pseudorandom number generator, you can reproduce its results
deterministically. This is a nontrivial issue in a parallel setting but
becomes easy using another trick. We use a hash function that maps
the array position to a pseudorandom number. For a graph generator
this approach has the additional benefit that the graph only depends
on the hash function but not on the number of processors used to
compute the graph. The pseudo-code below summarizes the resulting

function generateEdge(7) // generate i-th edge
r:=21+1
repeat r:= h(r) until r is even
return (|i/d], |r/2d])

Fig. 1. Pseudocode of generateEdge.

algorithm where h(r) is a hash function mapping an integer r to a
random number in 0..r — 1.

Note that this simple setting allows us a number of interesting
approaches. Using dynamic load balancing, handing out batches of
edge IDs, we can use cheap heterogeneous cloud resources. We do
not even have to store the graph if the analysis uses a distributed
streaming algorithm that processes the edges immediately.

3 Experiments

As a simple example, we have implemented an algorithm finding the
degrees of the first 100K nodes of a graph with n = 10'® nodes and
m = 100n edges on 16 384 cores of the SuperMUC supercomputexﬂ
(see Figure [2). As a hash function we use the CRC32 instruction
available since SSE 4.2 twice with random seeds to obtain 64 bits of
pseudo-random data (see Figure |3). Preliminary experiments indi-
cated that this is slightly faster than using a simple hash function.
In comparison, Batagelj and Brandes algorithm is about 60 % faster
than our algorithm on a single core but slower than any parallel
run. We are about 16 times faster than the parallel RMAT genera-
tor [1] for a graph with 50 - 10° edges. Alam et al. [2] report 123 s
for generating a graph with 50 - 10° edges on 768 processors. They
use an algorithm explicitly tracing dependencies which leads to mas-
sive amounts of fine grained communication. We are about 36 times
faster on a machine with slower cores and using 64 bit node IDs
rather than 32 bits. Meyer and Penschuk [6] can generate a graph
with the same parameters on a single node with 16 cores and a GPU

! The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V.
(www.gauss-centre.eu) for funding this project by providing computing time on
the GCS Supercomputer SuperMUC at Leibniz Supercomputing Centre (LRZ,
www.lrz.de).

www.gauss-centre.eu
www.lrz.de

n=10"3, d=100

108+ 1
D]
o
07
= 10 B

106 L

1 10 102 10° 10* 10°
vertex no

Fig. 2. The degrees of the first 100K nodes of a graph with n = 10'® nodes and
m = 100n edges computed on 16 384 cores of the SuperMUC supercomputer.

using an ingenious external memory algorithm and 6 SSDs in 489 s.
Our streaming generator using just the 16 cores needs about 154 s.
For smaller graphs, using 32 bits instead of 64 bits everywhere in our
code saves about 65% of running time. The largest graph we have
generated is 20000 times larger than the largest Barabasi-Albert
graph we have seen reported.

4 Generalizations

A seed graph with ng nodes and mg edges is incorporated by stop-
ping the repeat loop in the edge generation function when r < my.
For r < mg the node ID is precomputed. Otherwise, we compute
| (r —myg)/d] + ng. Self-loops can be avoided by initializing r to the
first edge of the current node. To avoid parallel edges, we store the
target node IDs generated for a node in a hashtable of size < d and
reject duplicate target nodes. Now consider a situation with indi-
vidual degrees d; for each node. If about >, logd; bits fit into each

4

function hash_cre(x) {
hash = _mm_crc32_u64(0, x);
hash = hash <« 32;
hash += _mm_crc32_u64(1, x);
return hash % x;

}

hashMultiplier=3141592653589793238LL;
function h_simple(x) { return (x*hashMultiplier)*(1.0/Oxf{FFFHFFFILL) * x; }

Fig. 3. Hash functions used in our implementations.

processor, we can replicate a succinct representation of a sparse bit
vector [5] with a one bit for each first edge of a node. Then the target
node of edge r can be computed in constant time using the operation
rank(r). For larger networks, we can defer the computation of node
IDs and first only compute edge IDEH. At the end, we can sort these
edge IDs and merge the result with the prefix sum of the node degree
sequence to obtain the node IDs. Any parallel sorting and merging
algorithm can be used for this purpose.

2 We would like to thank Ulrik Brandes for pointing this out.

References

1. Graph 500 Benchmark www.graph500.org/.

2. Maksudul Alam, Maleq Khan, and Madhav V Marathe. Distributed-memory paral-
lel algorithms for generating massive scale-free networks using preferential attach-
ment model. In Proc. of the Int. Conference on High Performance Computing,
Networking, Storage and Analysis, page 91. ACM, 2013.

3. Albert-Laszlo Barabasi and Reka Albert. Emergence of scaling in random networks.
Science, 286(5439):509-512, 1999.

4. Vladimir Batagelj and Ulrik Brandes. Efficient generation of large random networks.
Physical Review E, 71(3):036113, 2005.

5. Simon Gog and Matthias Petri. Optimized succinct data structures for massive
data. Software: Practice and Experience, 44(11):1287-1314, 2014.

6. Ulrich Meyer and Manuel Penschuk. Generating massive scale free networks under
resource constraints. In Meeting on Algorithm Engineering & Experiments (Alenez),
pages 39-52. SIAM, 2016.

www.graph500.org/

	Scalable Generation of Scale-free Graphs

