
Faster Algorithms for Single Machine Scheduling

with Release Dates and Rejection

Jinwen Ou

Department of Administrative Management

Jinan University

Guangzhou, 510632, People’s Republic of China

Phone: +86-20-8522-3243

Email: toujinwen@jnu.edu.cn

Xueling Zhong

Department of Internet Finance and Information Engineering

Guangdong University of Finance

Guangzhou 510520, People’s Republic of China

Phone: +86-20-3820-2796

Email: zhongxuel@hotmail.com

Chung-Lun Li∗

Department of Logistics and Maritime Studies

The Hong Kong Polytechnic University

Hung Hom, Kowloon, Hong Kong

Phone: +852-2766-7410

Email: chung-lun.li@polyu.edu.hk

9 March 2015

Revised 23 February 2016

∗Corresponding author

This is the Pre-Published Version.https://doi.org/10.1016/j.ipl.2016.02.008

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/

Abstract

We consider the single machine scheduling problem with release dates and job rejection with

an objective of minimizing the makespan of the job schedule plus the total rejection penalty of

the rejected jobs. Zhang et al. [6] have presented a 2-approximation algorithm with an O(n2)

complexity for this problem and an exact algorithm with an O(n3) complexity for the special case

with identical job processing times. In this note, we show that the 2-approximation algorithm

developed by Zhang et al. [6] can be implemented in O(n logn) time. We also develop a new

exact algorithm with an improved complexity of O(n2 logn) for the special case with identical

job processing times. The second algorithm can be easily extended to solve the parallel-machine

case with the same running time complexity, which answers an open question recently raised by

Zhang and Lu [5].

Keywords: Scheduling; release dates; rejection penalty; algorithms; worst-case analysis

1 Introduction

In this note, we consider the following single-machine scheduling problem with release dates and

job rejection decisions: There are a single machine and a set of n jobs J = {J1, J2, . . . , Jn}. Each

job Jj ∈ J has a processing time pj ≥ 0, a release date rj ≥ 0, and a rejection penalty wj > 0. Job

Jj is either rejected, which incurs a rejection penalty wj, or accepted and processed by the machine

at or after its release date rj. The machine can process at most one job at a time, and preemption

is not allowed during job processing. The objective is to determine a subset of jobs to be accepted

and processed on the machine, so as to minimize the makespan of the job schedule plus the total

rejection penalty of all rejected jobs. This problem was introduced by Zhang et al. [6]. Following

their notation, this problem is denoted as 1|rj, reject|Cmax +
∑

Jj∈R wj, and the special case with

identical job processing times is denoted as 1|rj, pj = p, reject|Cmax +
∑

Jj∈R wj, where R is the set

of rejected jobs.

Zhang et al. [6] have shown the NP-hardness of problem 1|rj, reject|Cmax +
∑

Jj∈R wj and

provided several exact and approximation algorithms for the problem. One of their main results is

a 2-approximation algorithm with an O(n2) running time for this problem. Another main result is

an exact algorithm with a running time of O(n(rmax+P)), where rmax = maxj{rj} and P =
∑

j pj,

and this exact algorithm has an O(n3) running time when applied to the special case 1|rj, pj =

p, reject|Cmax +
∑

Jj∈R wj. Although a lot of studies on related topics have been published recently

(see [3] and [4] for recent reviews), to the best of our knowledge, no improved algorithms for these

two specific problems have appeared in the literature, except for the recent work by He et al. [1]

(see Remark 1 below). In the following sections, we first show that the 2-approximation algorithm

developed by Zhang et al. [6] for problem 1|rj, reject|Cmax +
∑

Jj∈R wj can be implemented in

O(n logn) time. We then develop a new exact algorithm with a reduced complexity of O(n2 logn)

for problem 1|rj, pj = p, reject|Cmax +
∑

Jj∈R wj. This algorithm can be extended to solve the

parallel machine problem P |rj, pj = p, reject|Cmax +
∑

Jj∈R wj, which answers an open question

recently raised by Zhang and Lu [5].

1

2 Faster Approximation Algorithm for 1|rj , reject|Cmax +
∑

Jj∈R wj

Zhang et al. [6] have developed an approximation algorithm with an O(n2) complexity for problem

1|rj, reject|Cmax +
∑

Jj∈R wj. Denoting p(S) =
∑

Jj∈S pj for any job subset S, their algorithm is

given as follows:

Algorithm A (Zhang et al. [6])

Step 1. For each t ∈ {rj | j = 1, 2, . . . , n}, we divide the jobs into three sets such that S1(t) = {Jj |

rj ≤ t and pj ≤ wj}, S2(t) = {Jj | rj ≤ t and pj > wj}, and S3(t) = {Jj | rj > t}.

Step 2. Accept all jobs in S1(t) and reject the jobs in S2(t) ∪S3(t). Assign the accepted jobs to be

processed in time interval [t, t+p(S1(t))] on the machine. The resulting schedule is denoted

by π(t).

Step 3. Let Z(t) be the value of the objective function for each π(t). Among all the schedules

obtained above, select the one with the minimum Z(t) value.

Zhang et al. [6, Thm. 4.1] have shown that Algorithm A has a performance ratio of 2. In

their proof, they have implicitly assumed that at least one job must be accepted. If we allow the

solution to reject all jobs, then Algorithm A does not have a constant performance ratio. To see

this, consider an example with n = 1, p1 = 1, w1 = 2, and r1 = M , where M is a large number. In

this example, S1(M) = {J1} and S2(M) = S3(M) = ∅. The only schedule generated by Steps 1–2

is π(M), which processes job J1 in the time interval [M, M +1]. The objective value of this solution

is M + 1. On the other hand, the optimal solution is to reject J1, and has an objective value of 2.

Thus, the performance ratio of the solution generated by Algorithm A is M+1
2 , which approaches

infinity as M → ∞. To ensure that the algorithm can also handle the case where all jobs are

rejected, we consider a modified version of Algorithm A by adding the following step.

Step 4. Compute W =
∑n

j=1 wj. If the minimum Z(t) value obtained by Step 3 is greater than W ,

then reject all jobs.

We denote this modified algorithm as Algorithm A1. It is easy to check that after adding Step 4

to Algorithm A, the proof of Theorem 4.1 in [6] is valid even if the optimal solution is to reject all

jobs. Hence, Algorithm A1 is a 2-approximation algorithm.

2

In the following, we show that Algorithm A1 can be implemented in O(n logn) time. We first re-

index the jobs such that r1 ≤ r2 ≤ · · · ≤ rn. This requires O(n logn) time. Denote Pk = p(S1(rk))

and W̄k =
∑

Jj∈J\S1(rk) wj, for k = 1, 2, . . . , n. It is easy to check that Z(rk) = rk +Pk +W̄k. Next,

we show that the values of Z(r1), Z(r2), . . . , Z(rn) can be computed recursively in O(n) time.

Consider any k = 2, 3, . . . , n. If pk > wk, then S1(rk) = S1(rk−1), Pk = Pk−1, W̄k = W̄k−1, and

therefore Z(rk) = rk + Pk + W̄k = rk + Pk−1 + W̄k−1 = rk + Z(rk−1) − rk−1. If pk ≤ wk, then

S1(rk) = S1(rk−1)∪{Jk}, Pk = Pk−1 +pk, W̄k = W̄k−1−wk, and therefore Z(rk) = rk +Pk +W̄k =

rk + Pk−1 + pk + W̄k−1 −wk = rk + Z(rk−1)− rk−1 + pk −wk. Thus, in both cases,

Z(rk) = rk + Z(rk−1)− rk−1 + min{pk −wk, 0}. (1)

Clearly, Z(r1) can be determined in O(n) time. By repeatedly applying equation (1), the values of

Z(r2), Z(r3), . . . , Z(rn) can be computed in O(n) time. In other words, when the jobs are indexed in

nondecreasing release dates, Z(r1), Z(r2), . . . , Z(rn) can be obtained without determining the sets

S1(t), S2(t), and S3(t) for t = r1, r2, . . . , rn. After computing Z(r1), Z(r2), . . . , Z(rn), we determine

S1(rk′), where k′ = argmink=1,...,n{Z(rk)}. The schedule in Step 3 is obtained by accepting the

jobs in S1(rk′) and assigning them to time interval [rk′, rk′ + Pk′]. This step, as well as Step 4,

requires O(n) time. Hence, we have the following result.

Theorem 1 Algorithm A1 can be implemented in O(n logn) time.

To illustrate this computation process, consider an example with n = 5, (r1, r2, r3, r4, r5) =

(0, 2, 6, 10, 16), (p1, p2, p3, p4, p5) = (7, 1, 10, 4, 3), and (w1, w2, w3, w4, w5) = (8, 4, 12, 3, 7). In this

example, P1 = 7, W̄1 = 26, and therefore Z(r1) = r1 + P1 + W̄1 = 33. By equation (1),

Z(r2) = r2 + Z(r1)− r1 + min{p2 − w2, 0} = 2 + 33− 0 + min{−3, 0} = 32;

Z(r3) = r3 + Z(r2)− r2 + min{p3 − w3, 0} = 6 + 32− 2 + min{−2, 0} = 34;

Z(r4) = r4 + Z(r3)− r3 + min{p4 − w4, 0} = 10 + 34− 6 + min{1, 0} = 38;

Z(r5) = r5 + Z(r4)− r4 + min{p5 − w5, 0} = 16 + 38− 10 + min{−4, 0} = 40.

Thus, k′ = 2, and the solution generated by Step 3 is to accept the jobs in S1(r2) = {J1, J2}, assign

3

them to the time interval [r2, r2 + P2] = [2, 10], and reject the other jobs. The objective value of

this solution is 32. Since W = 34 > 32, in Step 4 we keep this solution instead of rejecting all jobs.

Remark 1 We would like to point out that He et al. [1] have independently developed a 5/4-

approximation for this problem recently, where the complexity is also O(n logn). However, their

algorithm requires a heap to store the data in order to achieve an O(n logn) complexity.

3 Faster Exact Algorithm for 1|rj , pj = p, reject|Cmax +
∑

Jj∈R wj

In this section, we present an exact algorithm for problem 1|rj, pj = p, reject|Cmax +
∑

Jj∈R wj.

This algorithm has a computational complexity of O(n2 log n). From Lemma 3.1 of [6], there exists

an optimal schedule such that the accepted jobs are processed according to the earliest release date

rule (ERD-rule). The following lemma provides an additional optimality property of this problem.

Lemma 1 Given any problem instance of 1|rj, pj = p, reject|Cmax +
∑

Jj∈R wj. If it is not optimal

to reject all the jobs in J, then there exists an optimal solution with the accepted jobs processed

according to the ERD-rule such that the completion time of an accepted job is equal to rµ + kp for

some k ∈ {2− µ, 3− µ, . . . , n + 1− µ}.

Proof: The proof is straightforward and is omitted.

Let Π denote a restricted version of problem 1|rj, pj = p, reject|Cmax +
∑

Jj∈R wj in which the

property stated in Lemma 1 is required to be satisfied if the solution is not to reject all the jobs

in J. Solving problem Π yields an optimal solution of 1|rj, pj = p, reject|Cmax +
∑

Jj∈R wj. Hence,

our algorithm is developed for solving problem Π.

Lemma 1 implies that for each µ, there are n time slots that the accepted jobs can potentially

be assigned to. We first re-index the jobs such that r1 ≤ r2 ≤ · · · ≤ rn. For any µ = 1, 2, . . . , n, we

define time intervals

Iµi = [rµ + (i− µ)p, rµ + (i + 1− µ)p], for i = 1, 2, . . . , n,

4

and we define job subsets

Hµi =

{Jj ∈ J | rj ≤ rµ + (1− µ)p}, for i = 1;

{Jj ∈ J | rµ + (i− 1− µ)p < rj ≤ rµ + (i− µ)p}, for i = 2, 3, . . . , n.

Note that some of these job subsets may be empty, and that Hµ1 ∪Hµ2 ∪ · · ·∪Hµn contains all the

jobs that can be processed within the time period [0, rµ+(n−µ)p]. Also note that Iµ1, Iµ2, . . . , Iµn

cover all the possible time slots that an accepted job can be assigned to. Some of Iµ1, Iµ2, . . . , Iµn

may cover certain negative time periods, but our algorithm will not assign any job to these time

intervals.

In our algorithm, we use σ∗ to keep track of the best solution obtained so far, and we use Z∗

to denote the objective value of σ∗. The algorithm has the following steps:

Algorithm A2

Step 1: Re-index the jobs in ascending order of release dates.

Step 2: Let σ∗ be the solution obtained by rejecting all the jobs in J, and set Z∗ ←
∑n

j=1 wj.

Step 3: For µ = 1, 2, . . . , n do

Step 3.1: Construct job subsets Hµ1, Hµ2, . . . , Hµn.

Step 3.2: Set Wµ ←
∑n

j=1 wj.

Step 3.3: For i = 1, 2, . . . , n do

Step 3.3.1: If Hµ1 ∪ Hµ2 ∪ · · · ∪ Hµi 6= ∅, then let Jx be the job in Hµ1 ∪Hµ2 ∪ · · · ∪ Hµi

with the largest rejection penalty (with ties broken arbitrarily), remove Jx from

Hµ1 ∪Hµ2 ∪ · · · ∪Hµi, assign Jx to time interval Iµi, and set Wµ ←Wµ − wx.

Step 3.3.2: Let σµi denote the solution obtained by accepting those jobs assigned to time

intervals Iµ1, Iµ2, . . . , Iµi and rejecting the other jobs. If rµ+(i+1−µ)p+Wµ <

Z∗, then set σ∗ ← σµi and Z∗ ← rµ + (i + 1− µ)p + Wµ.

Step 2 considers the possibility of rejecting all the jobs in J. Step 3 considers the possibility of

not rejecting all the jobs in J and enumerates all possible values of µ. For each value of µ, Steps 3.1

and 3.2 initialize job subsets Hµ1, Hµ2, . . . , Hµn and variable Wµ, where variable Wµ keeps track

5

of the total rejection penalty of the non-accepted jobs, while Step 3.3 assigns jobs to the time

intervals. In the ith iteration of Step 3.3, Step 3.3.1 selects a job from Hµ1 ∪Hµ2 ∪ · · · ∪Hµi and

assigns it to time interval Iµi. The result of this step is a feasible solution σµi with a makespan no

greater than rµ + (i+ 1− µ)p. Step 3.3.2 compares σµi with the incumbent solution σ∗ and selects

the better of the two.

To illustrate the algorithm, consider a numerical example with n = 5, p = 5, (r1, r2, r3, r4, r5) =

(0, 2, 6, 10, 16), and (w1, w2, w3, w4, w5) = (8, 4, 12, 3, 7). In Step 3, µ is set equal to 1, 2, 3, 4, 5.

Consider, for example, the case where µ = 3. In this case, I3,1 = [−4, 1], I3,2 = [1, 6], I3,3 = [6, 11],

I3,4 = [11, 16], I3,5 = [16, 21], H3,1 = ∅, H3,2 = {J1}, H3,3 = {J2, J3}, H3,4 = {J4}, and H3,5 =

{J5}. In Step 3.3, no job is assigned to time interval I3,1 = [−4, 1], and solution σ3,1 is generated

by rejecting all jobs, with a solution value of 34. Then, J1 is assigned to time interval I3,2 = [1, 6],

and solution σ3,2 is generated by rejecting J2, J3, J4, J5, with a solution value of 32. Next, J3 is

assigned to time interval I3,3 = [6, 11], and solution σ3,3 is generated by rejecting J2, J4, J5, with

a solution value of 25. Next, J2 is assigned to time interval I3,4 = [11, 16], and solution σ3,4 is

generated by rejecting J4, J5, with a solution value of 26. Finally, J5 is assigned to time interval

I3,5 = [16, 21], and solution σ3,5 is generated by rejecting J4, with a solution value of 24. Hence,

when µ = 3, solution σ3,5 is the best among the five solutions generated. In fact, after executing

Step 3 for µ = 1, 2, 3, 4, 5, we obtain σ∗ = σ3,5. Therefore, the solution value obtained by the

algorithm is Z∗ = 24.

Theorem 2 Algorithm A2 solves problem Π optimally.

Proof: Clearly, Algorithm A2 can identify the optimal solution if rejecting all the jobs in J is an

optimal solution. We thus focus on the case where rejecting all the jobs in J is not optimal.

Consider any values of µ and i. Let Πµi denote a modified version of problem Π with an

additional constraint that the makespan Cmax must not exceed rµ +(i+1−µ)p and an objective of

minimizing rµ+(i+1−µ)p+
∑

Jj∈R wj. The ith iteration of Step 3.3 aims to solve problem Πµi. By

Lemma 1, for each value of µ, the set {rµ+(i+1−µ)p | i = 1, 2, . . . , n} covers all possible makespan

values. So, Step 3.3 enumerates all possible makespan values. Hence, the solution generated by

6

Algorithm A2 is optimal to problem Π if the solution σµi generated by the ith iteration of Step 3.3

is an optimal solution of problem Πµi. Therefore, it suffices to show that assigning Jx to time

interval Iµi in Step 3.3.1 will generate the best possible solution of Πµi.

Suppose, to the contrary, that Step 3.3.1 does not generate the best possible solution of Πµi. Let

Iµh, 1 ≤ h ≤ i, denote the first time interval where Step 3.3.1 makes a suboptimal job assignment

decision for problem Πµi. Then, on one hand, Step 3.3.1 must assign some job to Iµh (otherwise

both Step 3.3.1 and the optimal job assignment will not assign any job to Iµh, and Step 3.3.1

will not make a suboptimal job assignment decision for time interval Iµh). On the other hand, an

optimal decision for problem Πµi selects either no job, or a job with different rejection penalty, for

Iµh. Let Jy be the job that Step 3.3.1 assigns to Iµh. We consider two different cases:

Case 1: The optimal job assignment decision is not to assign any job to Iµh. In this case,

the optimal solution must assign Jy to one of the time intervals Iµ,h+1, Iµ,h+2, . . . , Iµi, otherwise

assigning Jy to Iµh would yield a lower cost solution (since wy > 0). However, we can move Jy

from its assigned time interval to Iµh without increasing the total cost. Hence, assigning Jy to Iµh

is not a suboptimal decision, which is a contradiction.

Case 2: The optimal job assignment decision is to assign some job, say Jz, to Iµh. Note that

Step 3.3.1 selects Jy because it has the largest rejection penalty among all job candidates. Thus,

wz < wy. The optimal solution must assign Jy to one of the time intervals Iµ,h+1, Iµ,h+2, . . . , Iµi,

otherwise replacing Jz by Jy in time interval Iµh would yield a lower cost solution (since wy−wz >

0). However, we can swap the assignments of Jy and Jz without increasing the total cost. Hence,

assigning Jy to Iµh is not a suboptimal decision, which is a contradiction.

Combining Cases 1 and 2, we conclude that Step 3.3.1 always makes the optimal job assignment

decision for problem Πµi. This completes the proof of the theorem.

Theorem 3 Algorithm A2 can be implemented in O(n2 log n) time.

Proof: Step 3 is executed n times, each for a different value of µ. For each value of µ, we use a

balanced binary tree data structure (also known as AVL tree) to store the rejection penalties of

the elements of the set Hµ1 ∪ Hµ2 ∪ · · · ∪Hµi. This enables us to insert an element to or remove

7

an element from the set in O(logn) time (see, e.g., [2], Sec. 6.2.3). Thus, in Step 3.3.1, searching

and removing Jx from this set can be achieved in O(logn) time. At the beginning of each iteration

of Step 3.3, we need to append a new set Hµi to the set Hµ1 ∪Hµ2 ∪ · · · ∪ Hµ,i−1. To do so, we

insert each element of Hµi one by one to Hµ1 ∪Hµ2 ∪ · · ·∪Hµ,i−1. Each insertion requires O(logn)

time. Hence, appending Hµi to Hµ1 ∪Hµ2 ∪ · · ·∪Hµ,i−1 requires O(|Hµi| logn) time, and the total

execution time of the n iterations of Step 3.3.1 is O(
∑n

i=1 |Hµi| logn) = O(n logn).

In Step 3.3.2, instead of updating the incumbent solution σ∗ whenever a better solution is

found, we only keep track of the µ and i values of the incumbent solution. Then, each execution

of Step 3.3.2 requires only O(1) time. Hence, each iteration of Step 3 requires O(n logn) time, and

the total running time of Steps 1–3 is O(n2 logn).

Let µ∗ and i∗ be the µ and i values, respectively, of the optimal solution. When the algorithm

completes Steps 1–3, we can construct the optimal schedule by executing the µ∗-th iteration of

Step 3 once more (and stop after finishing the first i∗ iterations of Step 3.3). This extra step does

not affect the O(n2 logn) complexity of the algorithm.

Theorems 2 and 3 imply that problem 1|rj, pj = p, reject|Cmax +
∑

Jj∈R wj can be solved in

O(n2 logn) time.

It is easy to extend Algorithm A2 to solve the parallel machine problem P |rj, pj = p, reject|Cmax+

∑

Jj∈R wj with the running time remaining at O(n2 logn). To do so, we first observe that Lemma 1

remains valid for problem P |rj, pj = p, reject|Cmax+
∑

Jj∈R wj (the validity proof is straightforward

and is omitted). Thus, it suffices to consider those solutions in which the completion time of any

accepted job is equal to rµ+kp for some µ ∈ {1, 2, . . . , n} and k ∈ {2−µ, 3−µ, . . . , n+1−µ}. As in

the single machine case, for each given µ, we generate n time intervals Iµ1, Iµ2, . . . , Iµn, partition

J into n subsets Hµ1, Hµ2, . . . , Hµn, and apply Algorithm A2 to assign jobs to those time intervals

one by one. For the parallel-machine case, the only difference is that each time interval can be

assigned up to m jobs, where m is the number of machines. In other words, for the parallel-machine

case, we repeat Step 3.3.1 of Algorithm A2 m times if Hµ1 ∪Hµ2 ∪ · · ·∪Hµi has not been emptied.

It is easy to verify that the proof of Theorem 2 remains valid for this extended algorithm. The

8

argument in the proof of Theorem 3 also remains valid, except that in the extended algorithm,

for each combination of µ and i, Step 3.3.1 may be repeated up to m times. However, for each

µ, Step 3.3.1 will assign at most n jobs to time intervals Iµ1, Iµ2, . . . , Iµn, and each assignment

requires O(logn) time. Hence, the total running time of Step 3.3.1 for different combinations of µ

and i is O(n2 logn). Therefore, the overall running time of the extended algorithm is O(n2 logn).

This answers an open question raised by Zhang and Lu [5] regarding the computational complexity

status of problem P |rj, pj = p, reject|Cmax +
∑

Jj∈R wj.

Acknowledgments

This research was supported in part by NSFC 71101064 and NSFC 71501051. The second author

was supported in part by Humanities and Social Sciences Research Foundation of Ministry of

Education of China 13YJC630239. The third author was supported in part by The Hong Kong

Polytechnic University under grant 1-BBZL.

References

[1] C. He, J.Y.-T. Leung, K. Lee, M.L. Pinedo, Improved algorithms for single machine scheduling

with release dates and rejections, 4OR (2016), to appear.

[2] D.E. Knuth, The Art of Computer Programming, Volume 3: Sorting and Searching, 2nd

edition, Addison-Wesley, Reading, MA, 1998.

[3] D. Shabtay, N. Gaspar, M. Kaspi, A survey on offline scheduling with rejection, Journal of

Scheduling 16 (2013) 3–28.

[4] S.A. Slotnick, Order acceptance and scheduling: A taxonomy and review, European Journal

of Operational Research 212 (2011) 1–11.

[5] L.Q. Zhang, L.F. Lu, Parallel-machine scheduling with release dates and rejection, 4OR (2016),

to appear.

[6] L.Q. Zhang, L.F. Lu, J.J. Yuan, Single machine scheduling with release dates and rejection,

European Journal of Operational Research 198 (2009) 975–978.

9

