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The Quadratic Assignment Problem (QAP) is a well-known NP-hard combinatorial 
optimization problem that has received a lot of attention from the research community 
since it has many practical applications, such as allocation of facilities, design of electronic 
devices, etc. In this paper, we propose a hybrid approximate approach for the QAP based 
upon the framework of the Biased Random Key Genetic Algorithm. This hybrid approach 
includes an improvement method to be applied over the best individuals of the population 
in order to exploit the promising regions found in the search space. In the computational 
experiments, we evaluate the performance of our approach on widely known instances 
from the literature. In these experiments, we compare our approach against the best 
proposals from the related literature and we conclude that our approach is able to report 
high-quality solutions by means of short computational times.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

The Quadratic Assignment Problem (QAP) is a combina-
torial optimization problem introduced by Koopmans and 
Beckman [14]. Input data for the QAP are a set of facilities
denoted as F = {1, 2, . . . , n} and a set of locations de-
noted as L = {1, 2, . . . , n}. Each pair of facilities, (i, j) ∈F , 
requires a certain flow, denoted as f i j ≥ 0. The distance be-
tween the locations k, l ∈L is denoted as dkl ≥ 0. It should 
be mentioned that the flows and distances are symmet-
ric (i.e., f i j = f ji, ∀i, j ∈ F and dkl = dlk, ∀k, l ∈ L) and the 
flow/distance between a given facility/location and itself is 
zero (i.e., f ii = 0, ∀i ∈F and dkk = 0, ∀k ∈L).

The objective of the QAP is to minimize the cost de-
rived from the distance and flows among facilities. This can 
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be formally expressed as minimizing the following expres-
sion:

n∑

i=1

n∑

j=1

f i jdφ(i)φ( j), (1)

where φ is a solution belonging to the set composed of 
all the feasible permutations, denoted as Sn , such that 
φ : F → L. The cost associated to assign facility i to lo-
cation φ(i) and facility j to facility φ( j) is, according to 
Equation (1), f i jdφ(i)φ( j) . In addition, let us denote as f (φ)

the objective function value of solution φ ∈ Sn . A com-
prehensive description of the QAP is provided by Burkard 
et al. [2].

The QAP is known to belong to the NP-hard class 
(Sahni and Gonzalez [17]). In fact, there are no exact meth-
ods in the literature which can tackle the QAP in medium 
scenarios (n > 25) by means of reasonable computational 
times. Nowadays, its hardness and heterogeneous appli-
cations turn the QAP a challenging problem within the 
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optimization field. Additionally, many well-known prob-
lems such as the Travelling Salesman Problem or Graph 
Partitioning can be formulated as the QAP. In this con-
text, the QAP has served as proving ground for algorith-
mic proposals over the last decades. Exact methods have 
been proposed by Fedjki and Duffuaa [4] and Erdoǧan and 
Tansel [10]. Drezner et al. [7] review the applicability of 
widespread metaheuristics from the literature to address 
the QAP. The interested reader is referred to the detailed 
survey provided by Loiola et al. [15].

There are many practical applications of the QAP in the 
literature. For instance, Duman and Or [8] discuss how to 
carry out the sequencing of placement and configuration 
of feeder in printed circuit boards. Cheng et al. [5] model 
the passenger walking distance in airports according to the 
passenger transfer volume between aircrafts and distance 
between gates. Finally, Wu et al. [20] describe an applica-
tion within the field of coding theory.

The remainder of this paper is organized as follows. 
Section 2 describes the Hybrid Biased Random Key Ge-
netic Algorithm proposed to address the QAP. Afterwards, 
Section 3 analyzes the performance of our proposal in re-
alistic scenarios. Finally, Section 4 draws forth the main 
conclusions extracted from the work and suggests several 
directions for further research.

2. Hybrid Biased Random Key Genetic Algorithm

Genetic Algorithms (GAs) are bio-inspired algorithms 
based upon the concepts of biological evolution and sur-
vival of the fittest individuals (Holland [13]). One of the 
major drawbacks of GAs is the difficulty to maintain fea-
sibility through successive generations. With the goal of 
avoiding this fact, Bean [1] introduced the concept of ran-
dom key. A random key is a real-valued number defined in 
[0, 1), whereas a random key vector is an element of the 
[0, 1)ρ space, where ρ depends on the dimension of the 
optimization problem at hand. For instance, ρ = n when 
addressing the Quadratic Assignment Problem (QAP).

A Random Key Genetic Algorithm (RKGA) is a variant 
of GA in which the chromosomes are random key vec-
tors. The reproduction is performed by copying a subset of 
elite individuals (i.e., those individuals with the lowest ob-
jective function value) from the current population to the 
next one. In this case, the parameterized uniform crossover 
suggested by Spears and De Jong [18] is used as crossover 
strategy. This strategy involves tossing a biased coin for 
each gene in order to determine which parent contributes 
to the corresponding gene of the relevant offspring solu-
tion. Finally, a set of random individuals is included into 
the current population during the mutation phase.

A variation of RKGA was presented by Ericsson et al.
[11], in which one parent is selected from the set of 
elite individuals and the other one from the rest of the 
population when applying the crossover operator. In this 
case, a biased coin favouring the elite parent is tossed 
during the crossover. Although this specialized version of 
the RKGA was proposed as a heuristic to solve a particu-
lar problem (i.e., the Weight Setting Problem), it contained 
the germ of what in the subsequent paper by Gonçalves 
and Resende [12] would be identified as a general-purpose 
Algorithm 1: Hybrid Biased Random Key Genetic Al-
gorithm.

Require: G , number of generations
Require: t , size of the population
Require: e, number of elite individuals in the population
Require: m, number of mutant individuals in the population
Require: α, crossover rate
Require: n, number of facilities in the QAP
Ensure: Best solution found for the QAP

1: Create P(1) with random key vectors composed of n random 
keys by means of Solution Generator Procedure

2: Evaluate the fitness of each individual in P(1)

3: for (g = 2 . . .G) do
4: P(g) = Pe(g − 1)

5: Apply improvement method over each individual included into 
P(g)

6: Include m mutant individuals in P(g) with Solution Generator 
Procedure

7: while (|P(g)| ≤ t) do
8: rk1 ← Select an individual at random from Pe(g − 1)

9: rk2 ← Select an individual at random from P(g − 1) \
Pe(g − 1)

10: rk ← Crossover(rk1, rk2, α)
11: P(g) = P(g) ∪ {rk};
12: end while
13: Evaluate the fitness of each individual in P(g)

14: end for
15: return Best solution in P(G)

metaheuristic: the Biased Random Key Genetic Algorithm 
(BRKGA).

A BRKGA evolves a fixed-size population, denoted as 
P(g) = {P1, P2, . . . , Pt}, composed of t random key vec-
tors for each generation g = 1, 2, . . . , G . The objective func-
tion values of the individuals included into the popula-
tion determine a partition: P(g) = Pe(g) ∪ Pc(g), g =
1, 2, . . . , G (where t = e + c). In this regard, Pe(g) ⊂ P(g)

is termed elite population and composed of the elite indi-
viduals, whereas Pc(g) ⊂ P(g) is termed non-elite popula-
tion and contains the remaining individuals. Each random 
key vector, P ∈ P(g), is mapped at the solution space 
of the optimization problem by means of a deterministic 
procedure termed decoder, denoted as d : P → φ (see Sec-
tion 2.2). This way, a random key vector, P , is decoded 
to a feasible solution of the optimization problem, φ ∈ Sn . 
Once the solution is decoded into the problem space, its 
fitness value, f (φ), is computed. The evolutionary dyna-
mics of a BRKGA are as follows. At each generation g , all 
the elite individuals are copied from the current popula-
tion P(g) (without any change) to the population of the 
next generation, P(g + 1). Afterwards, a set Pm(g + 1) of 
mutant individuals is inserted into P(g + 1) with the goal 
of diversifying the search.

In this work, we propose a Hybrid Biased Random Key 
Genetic Algorithm (HBRKGA) approach in order to solve 
the QAP. Its pseudocode is depicted in Algorithm 1. It 
takes as parameters the number of generations, G , the size 
of the population, t , the number of elite individuals, e, 
the number of mutant individuals, m (where e + m ≤ t
and 2 × e ≤ t), the crossover rate, α, and the number of 
facilities involved in the QAP to be solved, n. The first 
step of the HBRKGA is to obtain the initial population, 
P(1) (line 1) generated by a Solution Generation Proce-
dure consisting of generating n random keys at random. 
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Fig. 1. Scheme of the Hybrid Biased Random Key Genetic Algorithm.
With this goal in mind, t random key vectors, composed 
of n random keys each one, are generated. The fitness of 
each individual included into the initial population P(1) is 
evaluated according to f (·) (line 2). The HBRKGA iterates 
during G generations (lines 3–14) in such a way that a 
new population is generated. The population in the gener-
ation g , P(g), includes the elite individuals of the previous 
population, that is, Pe(g − 1) (line 4). Unlike the BRKGA, 
the elite individuals imported from the previous popula-
tion are improved by means of an improvement method 
with the goal of exploiting the promising regions of the 
search space of the QAP found during the search (line 5). 
This step is later discussed in Section 2.3. Also, m mutant 
random key vectors are included in the new population 
in order to diversify the search and avoid its fast conver-
gence (line 6). The rest of the population is filled with 
individuals obtained through a crossover operator applied 
to individuals from the previous population (lines 7–12). 
One of the parents involved in the crossover is selected 
from the elite population, Pe(g − 1) (line 8), whereas the 
other one is selected from the non-elite population, that 
is, Pc(g − 1) = P(g − 1) \ Pe(g − 1) (line 9). Section 2.4
broadly describes the crossover operator. In addition, Fig. 1
shows the flows of individuals between populations in suc-
cessive generations including the inclusion of new individ-
uals as mutants by means of the Solution Generator proce-
dure (line 6). The last step of each generation evaluates the 
fitness of the individuals included into the current popula-
tion (line 13). Finally, the HBRKGA reports the best solution 
included into the last population P(G) (line 15).

2.1. Coding

A feasible solution of the QAP, φ ∈ Sn , is represented as 
a permutation. In the random key representation, each so-
lution is encoded by means of an array with n components, 
P = (p1, p2, . . . , pn), where n is the number of facilities 
(see Section 1). Each component, pi (i = 1, 2, . . . , n), is a 
random key and, by definition, a real number in the inter-
val [0, 1). Fig. 2 shows an example of a random key vector 
of a QAP with n = 6 facilities.
Fig. 2. Decoding process of a random key vector for the Quadratic Assign-
ment Problem.

2.2. Decoding

The decoding process is carried out by means of a de-
terministic procedure termed decoder which seeks that 
each random key vector, P ∈ P(g)(g = 1, 2, . . . , G), is 
mapped at the solution space of the QAP. Its random keys, 
pi ∈ P (i = 1, 2, . . . , n), are used to determine the assign-
ment of facilities to the available locations. For this pur-
pose, the random keys are sorted in an non-decreasing 
order, giving rise to a sorted random key vector denoted as 
P ′ = (p′

1, p
′
2, . . . , p

′
n), where p′

i ≤ p′
i+1(i = 1, 2, . . . , n − 1). 

The location assigned to each facility stems from the posi-
tion of the value p′

i (i = 1, 2, . . . , n) in the original random 
key vector, P . Fig. 2 illustrates the decoding process of a 
random key vector of a QAP with n = 6 facilities.

2.3. Improvement method

The improvement method is aimed at exploiting the 
promising regions of the search space found by the 
HBRKGA. Specifically, its goal is to obtain a feasible solu-
tion, φ′ , for each decoded solution of the elite population, 
φ, in such a way that f (φ′) < f (φ). With this goal in mind, 
the 2-opt neighbourhood structure (Burkard et al. [2]) is 
applied. That is, given a decoded solution, φ ∈ Sn , the 
2-opt neighbourhood, N (φ) = {φ ◦ (i, j) : 1 ≤ i, j ≤ n, i 
= j}, 
performs the transposition (i, j) by swapping the two rel-
evant locations assigned to the facilities, i and j, respec-
tively. In order to keep a reduced time consumption, the 
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Table 1
Parameter values used in the parameter setting.

Parameter Value

t ∈ {50,100,150,200}
e ∈ {5,10,15}
m ∈ {5,10,15}
α ∈ {0.6,0.7,0.8,0.9}
G ∈ {100,200}

2-opt iterates only once over each decoded solution, φ. 
The selection of the neighbour solution is performed by 
following the steepest descent strategy. That is, an exhaus-
tive exploration of the neighbourhood of φ is carried out 
and that neighbour solution, φ′ ∈ N (φ), that maximizes 
� = f (φ) − f (φ′) is considered.

2.4. Crossover

The crossover is carried out by combining the genes of 
two chromosomes, rk1 and rk2, where rk1 ∈Pe(g − 1) and 
rk2 ∈Pc(g − 1). The combination strategy used in HBRKGA 
is the parameterized uniform crossover (Spears and De 
Jong [18]), where a crossover rate denoted as α > 0.5 is 
selected. An example of this crossover strategy for the 
HBRKGA is as follows. Given two random keys, rk1 =
(0.34, 0.9, 0.55, 0.71, 0.48) and rk2 = (0.64, 0.81, 0.05,

0.26, 0.17), and a crossover rate, α = 0.7, the offspring 
of both parents for the random sequence (0.64, 0.9, 0.56,

0.71, 0.17) is as follows: rk = (0.34, 0.81, 0.55, 0.26, 0.48).

3. Computational results

This section is wholly devoted to demonstrate the suit-
able performance of the HBRKGA previously introduced in 
Section 2. In this regard, we perform a set of computa-
tional experiments over a representative set of instances 
from the most extended library of problem instances for 
the Quadratic Assignment Problem (QAP), the QAPLIB pro-
posed by Burkard et al. [3]. For this representative set and 
in the same way as Duman et al. [9], we divided it into 
sparse and dense instances. Moreover, we also considered 
the instances proposed by Duman et al. [9]. This set of 
instances has been generated considering the printed cir-
cuit board problem (PCB-QAP) related to the location of 
electronic components. In each case, 20 executions of our 
HBRKGA were carried out for each problem instance. The 
proposed optimization technique has been implemented 
in Java Standard Edition 7 and executed on a computer 
equipped with an Intel 3.16 GHz and 4 GB of RAM.

3.1. Parameter setting

Our first goal is to conduct a proper selection of param-
eter values for the HBRKGA through a statistical analysis. 
In this regard, Table 1 shows reasonable parameter values 
to assess during the parameter setting. In this work, once 
the performance of the HBRKGA with each combination 
of parameter values is known, the Friedman nonparamet-
ric statistical test (Daniel [6]) is used in order to state an 
order of performances. In those cases in which the null hy-
pothesis of equality of treatments is rejected, the multiple 
comparisons test of Friedman is used with the aim of de-
termining the differences among combinations.

According to the aforementioned discussion, the Fried-
man test is applied to the average objective function value 
of the HBRKGA on a subset of 5 representative instances 
with the combinations of parameter values reported in Ta-
ble 1. In this case, the Friedman test at αfriedman = 0.05
significance level for the objective function values indicates 
that there are statistically significant differences among 
the combinations of parameter values. Then, in the re-
mainder of this work, the combination t = 100, e = 10, 
m = 5, α = 0.8, and G = 100 is used due to the fact that it 
presents the best performance.

3.2. Comparison with previous approaches

In the following, we perform a comparison between the 
proposed HBRKGA, BRKGA, and the most competitive ap-
proximate approaches from the related literature. Namely, 
the Migrating Birds Optimization (MBO) recently proposed 
by Duman et al. [9] and the Discrete Differential Evolution 
Algorithm with Local Search (DDELS) proposed by Tasge-
tiren et al. [19]. It is worth mentioning that, the authors 
of the MBO only report the computational consumption of 
their algorithm for two instance sizes (n = 32 and n = 80). 
Consequently, in order to carry out a suitable comparison 
we estimate linearly the computational time of MBO for 
the remaining instance sizes by considering the two times 
provided in their work. As indicated by Duman et al. [9], 
the MBO has been executed on a computer equipped with 
an Intel Core2 2.83 GHz and 3 GB of RAM. On the other 
hand, as indicated by Tasgetiren et al. [19] the DDELS has 
been executed using the same termination criterion as Du-
man et al. [9] comparing in their paper only the quality of 
the solution in terms of the objective function value. Thus, 
for the DDELS we estimate the same computational time 
as MBO.

Table 2 and Table 3 show the comparison between 
HBRKGA, BRKGA, and MBO (Duman et al. [9]). The first 
column in the tables reports the properties of the in-
stances used. That is, the identifier (Id) and size of the 
instances (n). The second column indicates the objec-
tive function value of the Best Known Solution (BKS) re-
ported in the literature for the corresponding instance. It 
should be noted that those objective function values are 
reported without considering the results of our HBRKGA. 
Furthermore, the performances of MBO, BRKGA, DDELS , and 
HBRKGA in terms of objective value (Obj.), relative error 
(Gap (%)), and computational time (measured in seconds) 
are lastly reported.

The quality of the solutions reported by HBRKGA in 
Table 2 indicates that our approach, although exhibits a 
worse objective function value for some instances with 
respect to DDELS , is highly effective regardless if the in-
stances are either sparse or dense when compared with 
MBO. Moreover, the results reported in Table 3, HBRKGA 
exhibits, on average, a better performance than MBO and 
DDELS . In this regard, HBRKGA is able to provide several 
new best solutions for the instances B2, B7 and B9. In 
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Table 2
Comparison among Migrating Birds Optimization (MBO) (Duman et al. [9]), Discrete Differential Evolution Algorithm with Local Search (DDELS) proposed 
by Tasgetiren et al. [19], BRKGA, and HBRKGA for solving the instances from QAPLIB (Burkard et al. [3]). The horizontal line divides dense instances from 
sparse. Best values in bold.

Instance BKS MBO DDELS BRKGA HBRKGA

Obj. Gap (%) t (s.) Obj. Gap (%) Obj. Gap (%) t (s.) Obj. Gap (%) t (s.)

esc32e 2 2 0.00 0.20 2 0.00 2 0.00 0.11 2 0.00 0.96
esc32f 2 2 0.00 0.20 2 0.00 2 0.00 0.14 2 0.00 0.99
esc32g 6 6 0.00 0.20 6 0.00 6 0.00 0.18 6 0.00 1.05
esc32h 438 438 0.00 0.20 438 0.00 448 2.28 0.16 438 0.00 1.11
esc64a 116 116 0.00 16.73 116 0.00 136 17.24 0.50 116 0.00 15.25
tai64c 1855928 1855928 0.00 16.73 1855928 0.00 1857646 0.09 0.50 1855928 0.00 13.78

lipa40b 476581 501792 5.29 4.33 476581 0.00 582757 22.28 0.27 476581 0.00 2.59
sko49 23420 23683 1.27 8.98 23488 0.29 24890 6.28 0.33 23586 0.71 4.89
wil50 48816 49094 0.57 9.50 48879 0.13 50352 3.15 0.40 49036 0.45 5.27
tai60b 608215054 609249020 0.17 14.67 608519162 0.05 650764660 7.00 0.56 609808716 0.26 10.80
lipa70a 169755 171130 0.81 19.83 171096 0.79 172456 1.59 0.63 171109 0.80 20.76
lipa80a 253195 255069 0.74 25.00 254942 0.69 256777 1.41 0.79 255007 0.72 33.48

Table 3
Comparison among Migrating Birds Optimization (MBO) (Duman et al. [9]), Discrete Differential Evolution Algorithm with Local Search (DDELS) proposed 
by Tasgetiren et al. [19], BRKGA, and HBRKGA for solving the PCB-QAP problem instances (Duman et al. [9]). Best values in bold.

Instance BKS MBO DDELS BRKGA HBRKGA

id n Obj. Gap (%) t (s.) Obj. Gap (%) Obj. Gap (%) t (s.) Obj. Gap (%) t (s.)

B1 52 1074 1074 0.00 10.53 1086 1.12 1652 53.82 0.51 1076 0.19 10.08
B2 54 764 764 0.00 11.57 760 −0.52 1170 53.14 0.44 752 −1.57 7.78
B3 52 740 762 2.97 10.53 724 −2.16 1154 55.95 6.56 746 0.81 6.56
B5 50 1462 1462 0.00 9.50 1454 −0.55 1940 32.69 0.47 1458 −0.27 5.50
B6 48 756 758 0.26 8.47 756 0.00 1154 52.65 0.39 756 0.00 4.96
B7 49 1392 1398 0.43 8.98 1396 0.29 1790 28.59 0.41 1388 −0.29 5.34
B8 47 1358 1358 0.00 7.95 1348 −0.74 1842 35.64 0.35 1348 −0.74 4.51
B9 40 718 722 0.56 4.33 716 −0.28 950 32.31 0.31 714 −0.56 2.39

Fig. 3. Performance of BRKGA and HBRKGA for two instances selected at random.
these cases, HBRKGA reports solutions with a maximum 
improvement of 1.57% in the best case (instance B2). The 
implementation of the BRKGA for the QAP presented in 
this work exhibits a competitive behaviour in terms of 
computational time. However, as reported in the tables and 
discussed below, the quality of the solutions provided by 
BRKGA is not competitive in comparison with the other so-
lution approaches.

With the aim of analyzing the overall performance of 
BRKGA when an improvement phase is applied over the 
individuals belonging to the elite population, we made a 
comparison between BRKGA and HBRKGA. The rationale 
behind this is to analyze the contribution of the improve-
ment method to BRKGA. Fig. 3 shows the performance 
of both algorithms over time, measured in seconds. Two 
problem instances were selected at random. As can be 
seen, for the same amount of computational time HBRKGA 
exhibits better performance than BRKGA. This may indicate 
that the use of an improvement method within the BRKGA 
produces an improvement over the quality of the solutions. 
In this regard, at the initial phase of the search they have 
a quite similar behaviour, however when the search con-
tinues, HBRKGA clearly presents a better behaviour. The 
plots also highlight that HBRKGA quickly converges to its 
best solutions, this gives rise to the use of other additional 
stopping criterion to improve its temporal performance.
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Fig. 4. Performance of BRKGA and HBRKGA for one instances from Burkard et al. [3] selected at random.

Fig. 5. Performance of BRKGA and HBRKGA for one instance from Duman et al. [9] selected at random.
In Figs. 4 and 5 we assess how BRKGA and HBRKGA 
respond to parameter m (number of mutant individuals 
in the population) along the same time limit of 10 se-
conds. It can be seen that for that time period and regard-
less of the value of m HBRKGA exhibits a better perfor-
mance in terms of the evolution of the objective function 
value shown along the time. This indicates that improving 
the elite population –through the improvement method–
drives to a rapid convergence and best objective values 
than without it. In the case of Fig. 4 within the 2 first 
seconds HBRKGA converges faster to better objective val-
ues than BRKGA. Similarly, as shown in Fig. 5 in less than 
two seconds HBRKGA is able to converge to its best ob-
jective value, where BRKGA without improvement method 
may require more than 10 seconds. Finally, in the case of 
BRKGA we can see a great variability of the objective func-
tion values at the end of the time limit.

3.3. Contribution of the improvement method in unbiased and 
biased random key approaches for the QAP

In order to analyze the overall performance of our ap-
proach and contextualize its behaviour, we assess the con-
tribution that the improvement method proposed in this 
work has over the unbiased and biased RKGAs when is 
applied to the individuals belonging to the elite popula-
tion. Hence, in this subsection we have made a comparison 
among RKGA, BRKGA, HRKGA, and HBRKGA. It should be 
noted that HRKGA is a RKGA in which an improvement 
method is applied over the elite individuals of the popu-
lation.

Fig. 6 and Fig. 7 show the performance of the algo-
rithms under analysis over time (measured in seconds). 
Two problem instances from each benchmark suite (QAPLIB 
and PCB-QAP) are selected at random. As can be seen, for 
the same amount of computational time, the usage of an 
improvement method within BRKGA and RKGA improves 
the quality of the solutions provided by both methods. 
This suggests that incorporating an improvement method 
within this genetic algorithms may improve their perfor-
mance. Concerning HRKGA and HBRKGA, both algorithms 
present a homogeneous behaviour. Nevertheless, HBRKGA 
exhibits an slightly better behaviour than HRKGA. In the 
QAPLIB instances, BRKGA provides solutions with lower 
objective function values than RKGA. This is not reflected 
for the PCB-QAP instances, where both show a similar be-
haviour. The plots also highlight that HRKGA and HBRKGA 
converge quickly toward their best solutions in the case 
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Fig. 6. Performance comparison of RKGA, BRKGA, HRKGA, and HBRKGA for two instances selected at random from the QAPLIB instances.

Fig. 7. Performance comparison of RKGA, BRKGA, HRKGA, and HBRKGA for two instances selected at random from PCB-QAP instances.

Fig. 8. Convergence comparison of RKGA, BRKGA, HRKGA, and HBRKGA for two instances selected at random from the QAPLIB instances.
of PCB-QAP. It should be pointed out that this fact makes 
sense with the results of HBRKGA for those instances.

Fig. 8 and Fig. 9 show the generations-to-target plots 
stemming from the execution of the algorithms when solv-
ing instances with well-known best objective function val-
ues. Each algorithm has been executed 10 times with a 
maximum of G = 105 generations. As proposed by Ribeiro 
et al. [16], the goal is to derive empirical performance dis-
tributions of the algorithms and then estimate the proba-
bilities that a certain algorithm requires a shorter number 
of generations than the remaining ones. For this experi-
ments two problem instances from each benchmark suite 
(QAPLIB and PCB-QAP) have been selected at random.

In the case of the QAPLIB problem instances, in both 
cases the usage of a biased strategy when performing the 
selection of the parents exhibits a better performance ei-
ther an improvement method or not is used. Moreover, 
HRKGA and HBRKGA converge quickly to the best solution 
known. In this case, the latter one presents a better be-
haviour than HRKGA. For the PCB-QAP instances, it can be 
clearly seen that, on one hand, HRKGA and HBRKGA exhibit 
a quite similar behaviour. On the other hand, using no im-
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Fig. 9. Convergence comparison of RKGA, BRKGA, HRKGA, and HBRKGA for two instances selected at random from PCB-QAP instances.
provement method gives rise to a poor convergence toward 
the best solution. Note that for these algorithms the con-
verge toward the best known solution requires more than 
105 generations.

4. Conclusions and further research

In this paper, we present a Hybrid Biased Random Key 
Genetic Algorithm (HBRKGA) for solving the Quadratic As-
signment Problem. This hybrid approach includes an im-
provement method over the individuals belonging to the 
elite sub-population. It is noticeable from the computa-
tional experiments that the proposed algorithm is able to 
report high-quality solutions by means of short computa-
tional times. HBRKGA provides new best solutions for some 
problem instances reported in the literature.

The computational results indicate that the use of an 
improvement method within the BRKGA framework pro-
duces an improvement of the quality of the solution. In 
this regard, as shown in the relevant section, within the 
same computational effort HBRKGA provides better solu-
tion objective function values that without its use. More-
over, HBRKGA exhibits a rapid convergence to its best so-
lutions, which gives rise to improve its temporal behaviour 
by including additional stopping criterion.

Several lines are still open for further research. In the 
future, we are going to test the performance of HBRKGA 
in other related assignment problems. In this regard, we 
are also going to study how different configurations of the 
population impact on the performance of HBRKGA.
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