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Abstract

In this work, we consider the following problem: given a digraph G =
(V,E), for each vertex v, we want to compute the number of vertices
reachable from v. In other words, we want to compute the out-degree of
each vertex in the transitive closure ofG. We show that this problem is not
solvable in time O

(

|E|2−ǫ
)

for any ǫ > 0, unless the Strong Exponential
Time Hypothesis is false. This result still holds if G is assumed to be
acyclic.

1 Introduction

In this work, we consider the following problem: given a digraph G = (V,E),
for each vertex v, we want to compute the number of vertices reachable from v.
An efficient solution of this problem could have many applications: to name a
few, there are algorithms that need to compute (or estimate) these values [6],
the number of reachable vertices is used in the definition of other measures,
like closeness centrality [10, 14, 11], and it can be useful in the analysis of
the transitive closure of a graph (indeed, the out-degree of a vertex v in the
transitive closure is the number of vertices reachable from v).

Until now, the best algorithms to solve this problem explicitly compute the
transitive closure of the input graph, and then output the out-degree of each
node. This can be done through fast matrix multiplication [8], in time O(N2.373)
[16], or by performing a Breadth-First Search from each node, in time O(MN),
where N = |V | and M = |E|.

However, one might think that if only the number of reachable vertices is
needed, then there might be a faster algorithm: in this work, we prove that
this is not the case, even if the input graph is acyclic. Indeed, an algorithm
running in time O(M2−ǫ) would falsify the well-known Strong Exponential Time
Hypothesis [9]: this hypothesis says that, for each δ > 0, if k is big enough, the
k-Satisfiability problem on n variables cannot be solved in time O((2− δ)n).
As far as we know, this reduction has never been published, even if several
similar reductions are available in the literature [15, 17, 12, 13, 4, 2, 7, 1, 5, 3].
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Figure 1: An example of the graph obtained from the formula (¬x1 ∨y2)∧ (x1 ∨
¬y1 ∨ y2)∧ (x1 ∨x2 ∨¬y1). The two gray evaluations correspond to a satisfying
assignment.

2 The Reduction

Let us consider an instance of the k-Satisfiability problem on n variables,
and let us assume that n = 2l (if n is odd, we add one variable that does
not appear in any clause). Let us divide the variables in two sets X,Y , such
that |X | = |Y | = l. We will name x1, . . . , xl the variables in X , and y1, . . . , yl
the variables in Y . From this instance of the k-Satisfiability problem, let
us construct a digraph as follows. We consider the set VX of all 2|X| possible
evaluations of the variables in X , and the set VY of all 2|Y | possible evaluations
of the variables in Y . The set of vertices is VX ∪ VY ∪ VC , where VC is the set
of clauses.

We add a directed edge from a vertex v ∈ VX to a vertex w ∈ VC if the
evaluation v does not make the clause w true. For instance, if X = {x1, x2},
and w is x1 ∨ y2, the evaluation (x1 = T, x2 = T ) is not connected to w,
because the variable x1 makes the clause w true. Conversely, the evaluation
(x1 = F, x2 = T ) is connected to w, because it does not make the clause w true
(note that, in this case, we still can make w true by setting y2 = T ). Similarly,
we add a directed edge from a clause w ∈ VC to an evaluation v in VY if the
evaluation v does not make the clause w true. An example is shown in Figure 1.

The formula is satisfiable if and only if we can find an evaluation vX ∈ VX

of the variables in X and an evaluation vY ∈ VY of the variables in Y such that
each clause is either satisfied by vX or by vY . By construction, this happens if
and only if vX is not connected to vY in the graph constructed (for example,
the two gray evaluations in Figure 1 correspond to a satisfying assignment).

Moreover, the graph constructed has at most N = |X |+ |Y |+ |C| ≤ 2∗2
n

2 +
nk = O

(

2
n

2

)

nodes, and at most M = |X ||C|+ |Y ||C| ≤ 2∗2
n

2 ∗nk = O
(

2
n

2 nk
)

edges.
This means that, if we can count the number of reachable vertices in time

O(N2−ǫ), then we can also verify if the formula is satisfiable, by checking if
all vertices in VX can reach all vertices in VY with no overhead (the number
of vertices in VY reachable from a vertex v ∈ VX can be computed in time
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O(nk) as the total number of vertices reachable from v, minus the number of
vertices in VC reachable from v). As a consequence, if we have an algorithm that
computes the number of reachable vertices in time O(M2−ǫ) for some ǫ, then we

can find an algorithm that solves k-Satisfiability in time O
(

(

2
n

2 nk
)2−ǫ

)

=

O
((

2
2−ǫ

2

)n

n(2−ǫ)k
)

= O ((2− δ)
n
) for a suitable choice of δ. This falsifies the

Strong Exponential Time Hypothesis, and concludes the reduction.
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