
ar
X

iv
:1

31
1.

18
59

v1
 [

cs
.D

S]
 8

 N
ov

 2
01

3

Simple DFS on the Complement of a Graph and on

Partially Complemented Digraphs

Benson Joeris

Department of Combinatorics and Optimization, University of Waterloo, Waterloo, ON

N2L 3G1, Canada

Nathan Lindzey

Department of Mathematics Colorado State University, Fort Collins, CO 80521

Ross M. McConnell

Department of Computer Science, Colorado State University, Fort Collins, CO 80521

Nissa Osheim

Department of Computer Science, Colorado State University, Fort Collins, CO 80521

Abstract

A complementation operation on a vertex of a digraph changes all outgoing
arcs into non-arcs, and outgoing non-arcs into arcs. A partially complemented

digraph G̃ is a digraph obtained from a sequence of vertex complement opera-
tions on G. Dahlhaus et al. showed that, given an adjacency-list representation
of G̃, depth-first search (DFS) on G can be performed in O(n+ m̃) time, where

n is the number of vertices and m̃ is the number of edges in G̃. To achieve this
bound, their algorithm makes use of a somewhat complicated stack-like data
structure to simulate the recursion stack, instead of implementing it directly as
a recursive algorithm. We give a recursive O(n + m̃) algorithm that uses no
complicated data-structures.

1. Introduction

A complementation operation on a vertex of a digraph changes all outgoing
arcs into non-arcs, and outgoing non-arcs into arcs. A partially complemented di-

graph G̃ is a digraph obtained from a sequence of vertex complement operations
on G. Let n denote the number of vertices and m denote the number of edges
of G̃. In [1] several linear-time graph algorithms for partially complemented
digraphs were presented. Their algorithm for DFS on partially complemented
digraphs was notably more complicated than their algorithm for BFS despite
the comparable simplicity of DFS and BFS in the usual context.

Preprint submitted to Elsevier August 17, 2018

http://arxiv.org/abs/1311.1859v1

One application they give of this result is in computing the modular de-
composition of an undirected graph G. A step in the algorithm of [2] requires
finding the strongly-connected components of a directed graph G′ that is in the
partially-complemented equivalence class of G, but whose size is not bounded
by the size of G. Construction of G′ and running DFS on it gives the Θ(n2)
bottleneck in the running time of that algorithm. An O(n +m logn) bound is
easily obtained for this algorithm using the partially-complemented DFS algo-
rithm of [1], and they use it to obtain a simple linear-time algorithm for modular
decomposition.

Their algorithm for DFS is not recursive and is complicated by the use of so-
called complement stacks, a stack-like data structure to simultaneously simulate
the recursion stack and keep track of which undiscovered vertices will not be
called from which vertices on the recursion stack. This raised the question
of whether there exists a more natural recursive DFS algorithm for partially
complemented digraphs. To this end, we give an elementary recursive O(n+ m̃)
algorithm for performing depth-first search on G given a partially complemented
digraph G̃.

A notable special case is when every vertex is complemented, that is, G̃ = G
where G denotes the complement of G. Algorithms for performing DFS on G,
given G, have also been developed [4][5], the most efficient of which runs in
O(n + m) time where n + m is the number of vertices and number edges of
G respectively. To achieve this bound, the algorithm in [4] makes use of the
Gabow-Tarjan disjoint set data structure [3]. Our algorithm also provides a
simpler way to run DFS on G given G.

2. Preliminaries

We will assume that the vertices are numbered 1 through n. For vertices u
and v, let u < v denote that the vertex number of u is smaller than that of v.

Let Ñ(v) denote the neighbors of v in G̃. That is, if v is uncomplemented,

Ñ(v) is a list of neighbors of v in G, and if v is complemented, it is a list of non-

neighbors of v in G. We are given Ñ(v) for each vertex v. We assume that Ñ(v)
is given in a doubly-linked list, sorted by vertex number. (This ordering can be

achieved in O(n+m̃) time by radix sorting the set {(v, w)|v ∈ V and w ∈ Ñ(v)}
using v as the primary sort key and w as the secondary sort key.) Each vertex
is labeled with a bit to indicate whether it is complemented, specifying whether
Ñ(v) should be interpreted as neighbors or non-neighbors of v in G. We will

find it convenient to assume that Ñ(v) is terminated by a fictitious vertex whose
vertex number, n + 1, is larger than those of any vertex in G. Let us call this
the pc-list representation of G.

3. The Algorithm

A vertex is discovered when a recursive call to DFS is made on it. At all
times, we maintain a doubly-linked list U of undiscovered vertices, which is
sorted by vertex number. Initially, U contains all vertices of G.

2

Algorithm 1: DFS(v)

Data: A current undiscovered vertex v, and a global ordered
doubly-linked list U of undiscovered vertices

remove(U ,v);
if v is uncomplemented then

for u ∈ N(v) do
if u is undiscovered then

DFS(u);

else

uv ←− head(U);

nv ←− head(Ñ(v));
while uv 6= null do

if uv = nv then

uv ←− next(U, uv);

nv ←− next(Ñ(v), nv);

else if uv > nv then

s←− nv;

nv ←− next(Ñ(v), nv);

remove(Ñ(v), s);

else

DFS(uv);
// restarting step ...

w = prev(Ñ(v), nv);
while w 6= null and w /∈ U do

t = w;

w←− prev(Ñ(v), t);

remove(Ñ(v), t));

if w = null then
uv ←− head(U);

else

uv ←− next(U,w);

3

When a recursive call is made on an undiscovered vertex v, it is removed
from U and marked as discovered. If v is uncomplemented, the algorithm for
generating recursive calls from it is exactly what it is in standard DFS: for each
w ∈ Ñ(v), if w is undiscovered, a recursive call is made on it.

If v is complemented, then the presence of each w ∈ Ñ(v) is used to block
any recursive call on w from v, since this means that w is not a neighbor of v
in G. If w has been discovered, however, its absence from U suffices to block
a recursive call on it from v. This allows us to remove w from Ñ(v) while
maintaining the following invariant:

Invariant 1. All undiscovered non-neighbors of each complemented vertex v
remain in Ñ(v).

The invariant suffices to prevent recursive calls from v on non-neighbors of
v. Removal of elements from Ñ(v) while maintaining this invariant is the key to

our time bound, since it may be necessary to traverse an element w ∈ Ñ(v) more
than once, and we can charge the extra cost of multiple traversals to deletions
of vertices from Ñ(v).

We traverse the lists for Ñ(v) and U in parallel, in a manner similar to the
merge operation in mergesort, advancing the pointer to the lower-numbered
vertex at each step, or advancing both pointers in their lists if they point to the
same vertex.

Let nv be the current vertex in Ñ(v) and let uv be the current vertex in
U . If nv = uv, it is a non-neighbor of v, hence we cannot make a recursive call
on it from v. We set nv to its successor in Ñ(v) and uv to its successor in U .
If nv 6∈ U , which is detected if nv < uv, then nv has already been discovered,
and we can remove remove it from Ñ(v) and advance nv to the next vertex

in Ñ(v) by Invariant 1. If uv 6∈ Ñ(v), which is detected if uv < nv, we make
a recursive call on uv, and when this recursive call returns, we perform the
following restarting step:

• Advance uv to be the first vertex u′

v
in U with a higher vertex number

than the current uv.

The difficulty in implementing the restarting step efficiently is that when the
recursive call on uv returns, uv and possibly many other vertices were discovered
and removed from U during the recursive call on it. It is thus not a simple matter
of finding the successor of uv in U . We discuss an efficient implementation below.

By induction on the number of times uv is advanced, we see that the following
invariant is maintained:

Invariant 2. Whenever uv advances in U , its predecessors in U are members

of Ñ(v), hence non-neighbors of v.

The call on v returns when uv moves past the end of U , which happens
before nv moves past the end of Ñ(v), due to the presence of the fictitious

vertex numbered n+ 1 at the end of Ñ(v).

4

For the correctness, let k be the number of undiscovered vertices when v is
discovered. Since the number of undiscovered vertices is less than k when each
recursive call is generated from v, we may assume by induction on the number
of undiscovered vertices that each recursive call generated from v faithfully
executes a DFS, given the marking of vertices as undiscovered or discovered
when the call is made. If v is not complemented, the correctness of the call on
it is immediate. If v is complemented, the correctness of the call on it follows
from Invariant 2 and the fact that a recursive call is made on uv whenever it is
found to be a neighbor of v.

To implement the restarting step, we traverse Ñ(v) backward, starting at

prev(Ñ(v), nv), removing vertices from Ñ(v) that are no longer in U . Their
removal does not violate Invariant 1 or Invariant 2.

Eventually, we have either encountered a vertex w that is in both Ñ(v) and

U , or we have deleted all precessors of uv in Ñ(v). Suppose we encounter w.
All predecessors of uv in U were non-neighbors of v when nv was last advanced.
Also, uv < nv, since we wouldn’t have reached uv to make a recursive call on
it if nv were less than uv, and we wouldn’t have made a recursive call on it
if they were equal. Finally, w is now the predecessor of nv in Ñ(v) since we
have deleted all vertices from nv back to w. It follows that the successor of w is
greater than uv, hence the successor of w now gives u′

v
. By a similar argument,

if all predecessors of nv are deleted from Ñ(v), the first element of U gives u′

v
.

Though the restarting step is not an O(1) operation, the total time required
by restarting steps over the entire DFS is O(n + m̃), since all but O(1) of a
restarting operation can be charged to elements that it deletes from some list
Ñ(v), and the initial sum of sizes of these lists is m̃. Pseudocode of the algorithm
is given as Algorithm 1, and makes use of the following O(1) operations:

• head(L): returns the head node of a doubly-linked list L.

• next(L,n): returns the next node of the node n that exists in L, or null if
no such node exists.

• prev(L,n): returns the previous node of the node n that exists in L, or
null if no such node exists.

• remove(L,n): removes a node n from doubly-linked list L.

References

[1] Elias Dahlhaus, Jens Gustedt, and Ross M. McConnell. Partially comple-
mented representations of digraphs. Discrete Mathematics & Theoretical

Computer Science, 5(1):147–168, 2002.

[2] A. Ehrenfeucht, H. N. Gabow, R. M. McConnell, and S. J. Sullivan. An
O(n2) divide-and-conquer algorithm for the prime tree decomposition of
two-structures and modular decomposition of graphs. Journal of Algorithms,
16:283–294, 1994.

5

[3] Harold N. Gabow and Robert Endre Tarjan. A linear-time algorithm for a
special case of disjoint set union. In STOC, pages 246–251, 1983.

[4] Hiro Ito and Mitsuo Yokoyama. Linear time algorithms for graph search
and connectivity determination on complement graphs. Inf. Process. Lett.,
66(4):209–213, 1998.

[5] Ming-Yang Kao, Neill Occhiogrosso, and Shang-Hua Teng. Simple and ef-
ficient graph compression schemes for dense and complement graphs. J.

Comb. Optim., 2(4):351–359, 1998.

6

	1 Introduction
	2 Preliminaries
	3 The Algorithm

