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Abstract

We study the problem of allocating a set of indivisible items to agents with additive utilities
to maximize the Nash social welfare. Cole and Gkatzelis [3] recently proved that this problem
admits a constant factor approximation. We complement their result by showing that this
problem is APX-hard.

1 Introduction

Suppose there are set A of n agents and set B of m items (n 6 m), and each agent a ∈ A has a
non-negative utility ua,i for each item i ∈ B. An allocation A is defined to be a partition of B into
n disjoint subsets {Ba}a∈A, and agent i’s utility under this allocation is ua(A) :=

∑

i∈Ba
ua,i. We

study the problem of computing an allocation A = {Ba}a∈A that maximizes the geometric mean
of the agents’ utilities (

∏

i∈[n] ui(A))1/n. The above objective function is known as the Nash social
welfare defined in the fifties.

There are two related objective functions. The first objective seeks to maximize the arithmetic
mean, which is computationally very easy. The second objective, also known as the Santa Clause
problem [1], tries to compute an allocation that maximizes the minimum utility of any agent.
While the first objective focuses on efficiency and the second objective emphasizes fairness, the
Nash social welfare balances these two extremes and satisfies other desirable properties. See Cole
and Gkatzelis [3] for further discussions on the Nash social welfare.

Very recently, Cole and Gkatzelis [3] suggested the first constant-factor approximation algo-
rithm, which guarantees 2e1/e ≈ 2.889-approximation. While only NP-hardness of computing the
exact optimum is known [4], we prove that there exists a constant µ > 1 such that it is NP-hard
to approximate this problem within factor µ, suggesting that constant-factor approximation is the
best we can hope for.

2 APX-Hardness

We reduce Vertex Cover on 3-regular graphs. Chlebı́k and Chlebı́ková [2] proved that
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Theorem 2.1. [2] Given a 3-regular graph with N vertices with M = 1.5N edges, it is NP-hard to
distinguish whether it has a vertex cover of size at most cminN for cmin ≈ 0.5103, or every vertex cover has
size at least cmaxN for cmax ≈ 0.5155. Therefore, it is NP-hard to approximate Vertex Cover on 3-regular
graphs within factor ≈ 1.01.

Given a 3-regular graph G = (V,E), our reduction produces the following instance. Let α be a
constant in (13 ,

1
2). Any choice (say 0.4) is sufficient for our purpose, but we denote it as α to keep

the presentation clear.

• For each vertex v, there is an agent a(v). Call them vertex agents.

• For each edge e, there is an agent a(e). Call them edge agents.

• There are cminN identical items. Each of them has utility 1 for each vertex agent, and 0 for
each edge agent. Call them vertex items.

• For each edge e, there is an item i(e). It has utility 1 − α for a(e), and 0 for all other agents.
Call them edge items.

• For each vertex-edge pair (v, e) with v ∈ e, there is an item i(v, e). It has utility 1
3 for a(v) and

α for a(e), and 0 for all other agents. Call them shared items.

It is easy to verify that n = N +M = 2.5N and m = cminN +M + 3N = (4.5 + cmin)N .

Completeness. Suppose G has a vertex cover C ⊆ V of size cminN . We allocate items as follows.

• For each v ∈ C , a(v) gets one vertex item. Her utility is 1.

• For each v /∈ C , a(v) gets all three shared items that have nonzero utility. Her utility is 1.

• Since C is a vertex cover, for each edge e, a(e) has either 1 or 2 shared items that have nonzero
utility for her and are not taken by any vertex agent. a(e) gets all these items and i(e).

– If she gets 1 shared item, her utility is 1. If she gets 2 shared items, her utility is 1 + α.

– Out of 3N shared items, 3(1−cmin)N items are taken by vertex agents and 3cminN items
are taken by edge agents. Therefore, 3(1− cmin)N edge agents have 1 shared item, and
3(cmin − 0.5)N edge agents have 2 shared items. Let β := 3(cmin − 0.5) ≈ 0.03.

Therefore, the Nash social welfare of the above allocation is ((1 + α)βN )1/n = (1 + α)β/2.5.

Soundness. For soundness, we prove that if every vertex cover of G has size at least cmaxN , the
optimal Nash social welfare of the instance produced by our reduction is low. First, we observe
that in any optimal allocation, each vertex item should be assigned to some vertex agent, and
each edge item i(e) should be assigned to the corresponding agent a(e). We prove the following
lemmas that guarantee the existence of an optimal allocation of a certain form.

Lemma 2.2. There exists an optimal allocation where each vertex agent has at most 1 vertex item.
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Proof. Take an arbitrary optimal allocation A. If no vertex agent has more than 1 vertex item, the
lemma is proved. Let a(v) be an agent that has x vertex items for x > 2. Note that ua(v)(A) > x > 2.
Since the number of vertex items cminN is less than the number of vertex agents N , there is another
vertex agent a(v′) that has no vertex item. The utility of a(v′) only comes from shared items, so her
utility ua(v′)(A) is at most 1. Consider another allocation A′ here a(v) gives one of her vertex item
to a(v′). Utilities of agents except a(v) and a(v′) do not change, and the product of the utilities of
a(v) and a(v′) becomes

ua(v)(A
′ )ua(v′)(A

′ ) = (ua(v)(A)− 1)(ua(v′)(A) + 1) > ua(v)(A)ua(v′)(A),

where equality holds only if ua(v)(A) = 2, ua(v′)(A) = 1. Therefore, this new allocation never
decreases the Nash social welfare. The lemma is proved by repeated applying this observation.

Lemma 2.3. Let α ∈ (13 ,
1
2). There exists an optimal allocation where each vertex agent has at most 1

vertex item, and each shared item i(v, e) satisfies the following rule.

1. If a(v) has 1 vertex item, a(e) gets i(v, e).

2. Elseif a(e) has 1 shared item other than i(v, e), a(v) gets i(v, e).

3. Elseif a(v) has 2 shared items other than i(v, e), a(e) gets i(v, e).

4. Else a(v) gets i(v, e).

Proof. By Lemma 2.2, fix an optimal allocation A where each vertex agent has at most 1 vertex
item. Fix a shared item i(v, e). For each step of the above rule, we assume that it is violated and
derive contradiction to the optimality of the current allocation by considering another allocation.

1. Assume towards contradiction that a(v) has 1 vertex item but a(v) also gets i(v, e). It implies
that ua(v)(A) > 4

3 and ua(e)(A) 6 1. Consider another allocation A′ where a(v) gives i(v, e)
to a(e). Utilities of other agents do not change and

ua(v)(A
′ )ua(e)(A

′ ) = (ua(v)(A)− 1/3)(ua(e)(A) + α) > ua(v)(A)ua(e)(A),

since
(ua(v)(A)− 1/3)

ua(v)(A)
>

3

4
,

(ua(e)(A) + α)

ua(e)(A)
> 1 + α,

3

4
(1 + α) > 1.

This contradicts the optimality of A.

2. Assume towards contradiction that a(v) has no vertex item, a(e) has 1 shared item other than
i(v, e), but a(e) also gets i(v, e). It implies that ua(v)(A) 6 2

3 and ua(e)(A) = 1 + α. Consider
another allocation A′ where a(e) gives i(v, e) to a(v). Utilities of other agents do not change
and

ua(v)(A
′ )ua(e)(A

′ ) = (ua(v)(A) + 1/3)(ua(e)(A)− α) > ua(v)(A)ua(e)(A),

since
(ua(v)(A) + 1/3)

ua(v)(A)
>

3

2
,

(ua(e)(A)− α)

ua(e)(A)
=

1

1 + α
,

3

2
·

1

1 + α
> 1.

This contradicts the optimality of A.

3



3. Assume towards contradiction that a(v) has no vertex item but has all 3 shared items in-
cluding i(v, e), a(e) has no shared item. It implies that ua(v)(A) = 1 and ua(e)(A) = 1 − α.
Consider another allocation A′ where a(v) gives i(v, e) to a(e). Utilities of other agents do
not change and

ua(v)(A
′ )ua(e)(A

′ ) = (ua(v)(A)− 1/3)(ua(e)(A) + α) > ua(v)(A)ua(e)(A),

since
(ua(v)(A)− 1/3)

ua(v)(A)
=

2

3
,

(ua(e)(A) + α)

ua(e)(A)
=

1

1− α
,

2

3
·

1

1− α
> 1.

This contradicts the optimality of A.

4. Assume towards contradiction that a(v) has no vertex item and at most 1 shared item other
than i(v, e), but a(e) gets i(v, e). It implies that ua(v)(A) 6

1
3 and ua(e)(A) > 1. Consider

another allocation A′ where a(e) gives i(v, e) to a(v). Utilities of other agents do not change
and

ua(v)(A
′ )ua(e)(A

′ ) = (ua(v)(A) + 1/3)(ua(e)(A)− α) > ua(v)(A)ua(e)(A),

since
(ua(v)(A) + 1/3)

ua(v)(A)
> 2,

(ua(e)(A)− α)

ua(e)(A)
> 1− α, 2(1− α) > 1.

This contradicts the optimality of A.

Now we prove the main lemma for soundness. Note that for any γ > 0, (2(1+α)
3 )γ/2.5 < 1.

Lemma 2.4. For some universal constant γ > 0, if every vertex cover of G has at least cmaxN vertices, the

optimal Nash social welfare is at most (2(1+α)
3 )γ/2.5(1 + α)β/2.5.

Proof. Let A be an optimal allocation that satisfies the conditions in Lemma 2.3. Let C ⊆ V be a
set of vertices v such that a(v) gets 1 vertex item (|C| = cminN ), and I := V \ C . If the subgraph
induced by I has less than (cmax−cmin)N edges, there exists a vertex cover of size less than cmaxN
vertices, since adding one arbitrary endpoint of each such edge to C yields a vertex cover. This
contradicts that every vertex cover of G has size at least cmaxN , so the subgraph induced by I has
at least (cmax − cmin)N edges.

By the first rule of Lemma 2.3, if some vertex agent a(v) gets 1 vertex item, it does not get any
shared item. By the fourth rule, if a(v) does not get any vertex item, it has to get at least 2 shared
items. Therefore, for each vertex v ∈ V , the possibility utility ua(v)(A) ∈ {2

3 , 1}. Let I3 ⊆ I be a set
of vertices v such that the corresponding agent a(v) has no vertex item but all 3 shared items. Let
I2 := I \ I3 be a set of vertices v such that the corresponding agent a(v) has no vertex item and 2
shared items. It is clear that ua(v)(A) = 1 if v ∈ C ∪ I3 and ua(v)(A) = 2

3 if v ∈ I2. For i = 0, 1, 2, let
Ei be the set of edges e such that the corresponding agent a(e) gets i shared items. We deduce the
following facts.

1. By definition, each edge e of E2 cannot have any endpoint in I3. By the second rule of
Lemma 2.3, it cannot have any endpoint in I2. Therefore, it has to have both endpoints in C .
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2. By definition, each edge e of E1 cannot be entirely contained in I3. By the first rule of
Lemma 2.3, it cannot be entirely contained in C . Let E1C ⊆ E1 be the set of edges covered
by C , and E1I := E1 \ E1C .

3. By the third rule of Lemma 2.3, all edges in E0 have both endpoints in I2.

Therefore, the number of edges induced by I is |E1I | + |E0| > (cmax − cmin)N . Since edges in
E0 have both endpoints in I2 and edges in E1I have at least one endpoint in I2, 3-regularity of G

implies 3|I2| > |E1I |+ 2|E0|, so we can conclude that |I2| > γN , where γ := (cmax−cmin)
3 ≈ 0.0017.

Furthermore, by the number of shared items, the number of vertices, the number of edges, we
have the following three identities.

3|I3|+ 2|I2|+ 2|E2|+ |E1| = 3N. (1)

|I3|+ |I2| = (1− cmin)N. (2)

|E2|+ |E1|+ |E0| = M = 1.5N. (3)

There are five variables and three identities. Eliminating |I3| and |E1| gives

(1) − 3(2) − (3) :− |I2|+ |E2| − |E0| = (1.5 − 3(1− cmin))N

⇒|E2| = βN + |I2|+ |E0|,

where β was defined to be 3(cmin − 0.5) ≈ 0.03.

The Nash social welfare of A is

(

(2

3

)|I2|(1 + α)|E2|(1 − α)|E0|

)1/n

=

(

(2

3

)|I2|(1 + α)|I2|+|E0|+βN (1− α)|E0|

)1/n

=

(

(2(1 + α)

3

)|I2|(1 + α)βN
(

(1 + α)(1 − α)
)|E0|

)1/n

6

(

(2(1 + α)

3

)γN
(1 + α)βN

)1/n

=
(2(1 + α)

3

)γ/2.5
(1 + α)β/2.5.

By our completeness and soundness properties, if G has a vertex cover of size at most cminN ,
the reduced instance has the Nash social welfare at least (1+α)β/2.5, while if every vertex cover of

G has size at least cmaxN , the reduced instance has the Nash social welfare at most (2(1+α)
3 )γ/2.5(1+

α)β/2.5. Therefore, it is NP-hard to approximate the Nash social welfare within factor

µ := (
2(1 + α)

3
)−γ/2.5 > 1.

With α = 1
3 and γ ≈ 0.0017, µ ≈ 1.00008. It still remains an open problem to close the gap between

1.00008 and 2.889.
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