
ar
X

iv
:1

71
0.

08
29

1v
2

 [
cs

.D
S]

 1
7

A
ug

 2
01

9

On Deterministic Rendezvous at a Node of Agents

with Arbitrary Velocities

Sébastien Bouchard∗ Yoann Dieudonné† Andrzej Pelc‡ Franck Petit§

Abstract

We consider the task of rendezvous in networks modeled as undirected graphs. Two mobile
agents with different labels, starting at different nodes of an anonymous graph, have to meet.
This task has been considered in the literature under two alternative scenarios: weak and strong.
Under the weak scenario, agents may meet either at a node or inside an edge. Under the
strong scenario, they have to meet at a node, and they do not even notice meetings inside an
edge. Rendezvous algorithms under the strong scenario are known for synchronous agents. For
asynchronous agents, rendezvous under the strong scenario is impossible even in the two-node
graph, and hence only algorithms under the weak scenario were constructed. In this paper we
show that rendezvous under the strong scenario is possible for agents with asynchrony restricted
in the following way: agents have the same measure of time but the adversary can impose, for
each agent and each edge, the speed of traversing this edge by this agent. The speeds may
be different for different edges and different agents but all traversals of a given edge by a given
agent have to be at the same imposed speed. We construct a deterministic rendezvous algorithm
for such agents, working in time polynomial in the size of the graph, in the length of the smaller
label, and in the largest edge traversal time.

Keywords: rendezvous, deterministic algorithm, mobile agent, velocity.

1 Introduction

The background. We consider the task of rendezvous in networks modeled as undirected graphs.

Two mobile entities, called agents, have different positive integer labels, start from different nodes of

the network, and have to meet. Mobile entities may represent software agents in a communication

network, or physical mobile robots, if the network is a labyrinth or a cave, or if it consists of corridors

∗Sorbonne Universités, UPMC Université Paris 06, CNRS, INRIA, LIP6 UMR 7606, Paris, France, E-mail: se-

bastien.bouchard@lip6.fr
†MIS Lab., Université de Picardie Jules Verne, France, E-mail: yoann.dieudonne@u-picardie.fr
‡Département d’informatique, Université du Québec en Outaouais, Gatineau, Québec J8X 3X7, Canada. E-mail:

pelc@uqo.ca. Supported in part by NSERC discovery grant 8136 – 2013 and by the Research Chair in Distributed

Computing of the Université du Québec en Outaouais.
§Sorbonne Universités, UPMC Université Paris 06, CNRS, INRIA, LIP6 UMR 7606, Paris, France, E-mail:

Franck.Petit@lip6.fr

1

http://arxiv.org/abs/1710.08291v2

of a building. The reason to meet may be to exchange previously collected data or ground or air

samples, or to split work in a future task of network exploration or maintenance.

The task of rendezvous in networks has been considered in the literature under two alternative

scenarios: weak and strong. Under the weak scenario [6, 7, 10], agents may meet either at a node

or inside an edge. Under the strong scenario [8, 13, 17], they have to meet at a node, and they

do not even notice meetings inside an edge. Each of these scenarios is appropriate in different

applications. The weak scenario is suitable for physical robots in a network of corridors, while the

strong scenario is needed for software agents in computer networks.

Rendezvous algorithms under the strong scenario are known for synchronous agents, where time is

slotted in rounds, and in each round each agent can either wait at a node or move to an adjacent

node. For asynchronous agents, where an agent decides to which neighbor it wants to move but

the adversary totally controls the walk of the agent and can arbitrarily vary its speed, rendezvous

under the strong scenario is impossible even in the two-node graph, and hence only algorithms

under the weak scenario were constructed.

However, due to the fact that the strong scenario is appropriate for software agents in computer

networks, and that such agents are rarely synchronous, it is important to design rendezvous algo-

rithms under the strong scenario, restricting the asynchrony of the agents as little as possible. This

is the aim of this paper. We consider mobile agents with asynchrony restricted as follows: agents

have the same measure of time but the adversary can impose, for each agent and each edge, the

speed of traversing this edge by this agent. The speeds may be different for different edges and

different agents but all traversals of a given edge by a given agent have to be at the same imposed

speed. We are interested in deterministic rendezvous algorithms for such agents.

The model.

The network. The network is modeled as a simple undirected connected graph. As in the majority

of papers on rendezvous, we seek algorithms that do not rely on the knowledge of node labels,

and we assume that the underlying graph is anonymous. Designing such algorithms is important

because even when node labels exist, nodes may refuse to reveal them, e.g., due to security or

privacy reasons. It should be also noted that, if nodes had distinct labels, agents might explore

the graph and meet in the smallest node, hence gathering would reduce to graph exploration. On

the other hand, we make the assumption, again standard in the literature of the domain, that

edges incident to a node v have distinct labels in {0, . . . , d − 1}, where d is the degree of v. Thus

every undirected edge {u, v} has two labels, which are called its port numbers at u and at v. Port

numbers are visible to the agents. Port numbering is local, i.e., there is no relation between port

numbers at u and at v. Note that in the absence of port numbers, edges incident to a node could

not be distinguished by agents and thus rendezvous would be often impossible, as the adversary

could prevent an agent from traversing some edge incident to the current node. Also, the above

mentioned concerns of security and privacy that may prevent nodes from revealing their labels, do

not apply to port numbers.

2

The agents. Agents A1 and A2 start at arbitrary different nodes of the graph. They are placed

at their starting nodes at the beginning. They cannot mark visited nodes or traversed edges in

any way. The adversary wakes up the agents at possibly different times. Agents do not know the

topology of the graph nor any bound on its size. They have clocks ticking at the same rate. The

clock of each agent starts at its wakeup, and at this time the agent starts executing the algorithm.

When an agent enters a node, it learns its degree and the port of entry. We assume that the

memory of the agents is unlimited: from the computational point of view they are modeled as

Turing machines.

The adversary. The adversary assigns different positive integer labels to both agents. Each agent

knows a priori only its own label. Both agents execute the same deterministic algorithm whose

parameter is the label of the agent. Moreover, for each edge e of the graph, the adversary assigns

two positive reals: t1(e) and t2(e). During the execution of an algorithm, an agent can wait at the

currently visited node for a time of its choice, or it may choose a port to traverse the corresponding

edge e. In the latter case, agent Ar traverses this edge in time tr(e), getting to the other end of the

edge after this time. This modelling permits a lot of asynchrony: agents can have different velocities

when traversing different edges, and an agent slower in one edge can be faster in another edge. This

is motivated by the fact that congestion and bandwidth of different edges may be different, and that

each of the agents can have a different traversing priority level on different edges. In particular,

this general scenario includes the model of agents walking at possibly different constant velocities,

that was used in [9] for the task of approach in the plane.

The time of a rendezvous algorithm is the worst-case time between the wakeup of the earlier agent

and the meeting at a node.

Our results. We construct a deterministic rendezvous algorithm working for arbitrary graphs

under the strong scenario. Our algorithm works in time polynomial in n, ℓ and τ , where n is the

number of nodes of the graph, ℓ is the logarithm (i.e., the length) of the smaller label, and τ is the

maximum of all values t1(e) and t2(e) assigned by the adversary, over all edges e of the graph.

Related work. A survey of randomized rendezvous in various scenarios can be found in [1]. De-

terministic rendezvous in networks was surveyed in [15]. In many papers rendezvous was considered

in a geometric setting: an interval of the real line, see, e.g., [4, 12], or the plane, see, e.g., [2, 3]).

For deterministic rendezvous in networks, attention concentrated on the study of the feasibility of

rendezvous, and on the time required to achieve this task, when feasible. For example, deterministic

rendezvous with agents equipped with tokens used to mark nodes was considered, e.g., in [14].

Deterministic rendezvous of two agents that cannot mark nodes but have unique labels was discussed

in [8, 13, 17]. All these papers were concerned with the time of rendezvous in arbitrary graphs. In

[8] the authors showed a rendezvous algorithm polynomial in the size of the graph, in the length of

the shorter label and in the delay between the starting times of the agents. In [13, 17] rendezvous

time was polynomial in the first two of these parameters and independent of the delay. All the

above papers assumed that agents are synchronous, and used the scenario called strong in the

3

present paper.

Several authors investigated asynchronous rendezvous in the plane [5, 11] and in network environ-

ments [6, 7, 10]. In the latter scenario, the agent chooses the edge which it decides to traverse

but the adversary totally controls the walk of the agent inside the edge and can arbitrarily vary

its speed. Under this assumption, rendezvous under the strong scenario cannot be guaranteed

even in very simple graphs, and hence the rendezvous requirement was weakened by considering

the scenario called weak in the present paper. In particular, the main result of [10] is an asyn-

chronous rendezvous algorithm working in an arbitrary graph at cost (measured by the number of

edge traversals) polynomial in the size of the graph and in the logarithm of the smaller label. The

scenario of possibly different fixed speeds of the agents was introduced in [9].

2 Preliminaries

Throughout the paper, the number of nodes of a graph is called its size. Procedure Explo, based

on universal exploration sequences (UXS), is a corollary of the result of Reingold [16]. Given any

positive integer n, it allows the agent to visit all nodes of any graph of size at most n, starting

from any node of this graph and coming back to it, using P (n) edge traversals, where P is some

increasing polynomial. In the first half of the procedure, after entering a node of degree d by some

port p, the agent can compute the port q by which it has to exit; more precisely q = (p + xi)

mod d, where xi is the corresponding term of the UXS. In the second half of the procedure, the

agent backtracks to its starting node.

We will use the following terminology. The agent woken up earlier by the adversary is called the

earlier agent and the other agent is called the later agent. If agents are woken up simultaneously,

these appellations are given arbitrarily. Consider executions E1 and E2, respectively of procedures

P1 and P2 by agents A1 and A2. Executions E1 and E2 are called overlapping, if the time segments

that they occupy are not disjoint.

We define the following transformation of labels. Consider a label x of an agent, with binary

representation (c1 . . . cr). Define the modified label of the agent to be the sequence M(x) =

(c1c1c2c2 . . . crcr01). Note that, for any x and y, the sequence M(x) is never a prefix of M(y).

Also, M(x) 6= M(y) for x 6= y.

3 The algorithm and its analysis

The strong rendezvous procedure is called StrongRV (shown in Algorithm 1) and its execution

requires to call procedure Phase(h) that is described in Algorithm 2. At a high level, Phase(h)

consists of executions of Explo(h) and carefully scheduled waiting periods of various lengths, de-

signed according to the bits of the modified label of the agent. The aim is to guarantee a period in

4

which one agent stays still at a node and the other visits all nodes of the graph.

Algorithm 1 Algorithm StrongRV

1: h← 1
2: while agents have not met do
3: execute Phase(h)
4: h← 2h
5: end while

6: declare that the gathering is achieved

Algorithm 2 Phase(h)

1: Let x be the label of the agent and let M(x) = (b1b2 . . . bs), where s is the length of M(x).
2: /* Initialization */
3: execute Explo(h)

4: wait for time 4h2(
∑log(h)

j=0 (P (2j)))
5: /* Core */
6: i← 1
7: while i ≤ h do

8: if i > s or bi = 0 then

9: wait for time 2hP (h)
10: execute twice Explo(h)
11: else

12: execute twice Explo(h)
13: wait for time 2hP (h)
14: end if

15: i← i+ 1
16: end while

17: /* End */
18: Wait for time hP (2h)
19: Execute Explo(h)

The correctness and time complexity of Algorithm StrongRV are now analyzed. In the following

statements and proofs, α denotes the smallest power of two which upper bounds the following three

numbers: the size n ≥ 2 of the graph G, the length of the smaller modified label 2ℓ + 2, and the

parameter τ the maximum of all traversal durations assigned by the adversary over all edges of G.

The following proposition directly follows from the definitions of α and UXS.

Proposition 3.1. For any positive integers x and y such that x ≥ α, xP (y) upper bounds the time

required by any agent to execute Explo(y) in G.

Proposition 3.2. For any positive integer x and any power of two y such that x ≥ α and x ≥ y,

Tx,y = 4xy
∑log(y)

z=0 P (2z) upper bounds the time required by any agent to execute the sequence

Sy = Phase(1), Phase(2), . . . , Phase(y4), Phase(
y
2), Explo(y) in graph G.

5

Proof. Let an arbitrary positive integer at least α be assigned to x. The proof is made by induction

on y. Consider the case where y = 1. In this case, the sequence Sy consists only of Explo(1). In

view of Proposition 3.1, Tx,1, which is equal to 4xP (1), upper bounds the time required by any

agent to execute Explo(1), which proves the first step of the induction. Now, assume that there

exists a power of two 1 ≤ z ≤ x, such that the statement of the proposition holds for y = z. The

next paragraph proves that if 2z ≤ x, then the statement of the lemma holds also for 2z.

Denote by Suffix(z) the sequence of instructions of Phase(z) deprived from the first call to

Explo(z). The sequence S2z is successively made of Sz, Suffix(z) and Explo(2z). By the in-

ductive hypothesis, the time required to execute Sz is upper bounded by Tx,z. By Proposi-

tion 3.1, the time required to execute Explo(2z) is upper bounded by xP (2z). In view of Al-

gorithm 2 and Proposition 3.1, the time required to execute Suffix(z) is upper bounded by

Tx,z + 2z(x+ z)P (z) + zP (2z) + xP (z). Hence, the maximal duration of S2z is upper bounded by

2Tx,z + (x + z)P (2z) + P (z)(2z(x + z) + x), which is at most 2Tx,z + (2z(x + z) + 2x + z)P (2z)

as P (2z) ≥ P (z). Moreover, 2Tx,z + (2z(x + z) + 2x + z)P (2z) ≤ 2Tx,z + 4x(2z)P (2z) = Tx,2z.

This shows that the statement of the proposition also holds when y = 2z, which proves the propo-

sition.

The following theorem proves the correctness of Algorithm StrongRV.

Theorem 3.1. Algorithm StrongRV guarantees rendezvous in G by the time the first of the agents

completes the execution of Phase(2α).

Proof. Assume by contradiction that the statement of the theorem is false. Note that when any

agent finishes the first execution of Explo(α) of Phase(α) (line 3 of Algorithm 2) it has visited

every node of G, and thus the other agent has been woken up before the end of this execution, or

else the agents would have met.

The core of Phase(α) (lines 6-16 of Algorithm 2) can be viewed as a sequence of α blocks, where

the x-th block (for 1 ≤ x ≤ α) corresponds to processing bit bx of the modified label if x ≤ s and

bit 0 otherwise. Each of these blocks in turn can be viewed as a sequence of 4 sub-blocks, each of

which corresponds either to a waiting period of length αP (α), or to a single execution of Explo(α).

Let I1, I2, . . . , I4α (resp. J1, J2, . . . , J4α) be the sequence of the 4α sub-blocks executed by agent A

(resp. agent B) in the core of Phase(α). The proof of this theorem relies on the following claim.

Claim 3.1. For every 1 ≤ y ≤ 4α, Iy and Jy are concurrent.

Proof of the claim. Assume by contradiction that y = x is the smallest integer for which it does

not hold. Without loss of generality, suppose that the first agent to complete its x-th sub-block is

A. If x = 1, then in view of Proposition 3.2, when A starts and finishes I1, A2 is executing the

first waiting period of Phase(α). Since I1 corresponds to Explo(α), as the first bit of a modified

label is always 1, a meeting occurs by the end of the execution of I1 because α ≥ n, which is a

contradiction. So, x > 1 and since x is minimal, Ix−1 and Jx−1 are concurrent. So, when A starts

6

Ix, B is executing Jx−1 and when A completes Ix, the execution of Jx−1 has not yet been completed.

This implies that the time required by A to execute Ix is shorter than the time required by B to

execute Jx−1. Hence, Ix cannot be a sub-block corresponding to a waiting period, as each of these

periods has length αP (α), which upper bounds the duration of every sub-block corresponding to

Explo(α) (in view of Proposition 3.1). Thus Ix corresponds to an execution of Explo(α), and so

does Jx−1, as otherwise rendezvous would occur by the time Ix is completed, which would be a

contradiction.

Consider the time lag between executions of Ix and Jx. Let θ1 = tB − tA, where tA (resp. tB) is

the time when A (resp. B) starts Ix (resp. Jx). The time required by A (resp. B) to execute

Explo(α) never changes because it is always executed from the initial node of A (resp. B), and

is at most θ1 (resp. at least θ1). Moreover, in each block there are always four sub-blocks: either

two waiting periods of αP (α) followed by two Explo(α), or vice versa. Consider each of the four

positions that can be occupied by Ix in its corresponding block. If it is the first, second, or fourth

sub-block of its block, then since Ix and Jx−1 correspond to Explo(α), the number of whole sub-

blocks corresponding to Explo(α) (resp. the waiting period of αP (α)) that remain to be executed

by A from tA is the same as the number of those that remain to be executed by B from tA. If

Ix is the third sub-block of its block, then Jx and Jx+1 correspond to the waiting period while Ix

and Ix+1 correspond to the execution of Explo(α). In this case, the number of whole blocks that

remain to be executed by A from tA is the same as the number of those that remain to be executed

by B from tA. Moreover, in view of Proposition 3.1, the time needed by B to execute Jx and Jx+1

is at least the time needed by A to execute Ix and Ix+1.

As a result, whichever the position of Ix in its block, A is the first agent to finish the core of

Phase(α) and there exists a difference of θ2 ≥ θ1 between the times when A and B complete this

core. To conclude the proof of the claim, two cases are considered: either θ2 is longer than the time

A needs to execute Explo(2α), or not.

In the first case, since A executes Explo(α) faster than B, it necessarily completes the end of

Phase(α) at least time θ2 ahead of B. As a consequence, it starts executing Phase(2α), and in

particular its first instruction Explo(2α), at least time θ2 ahead of B. This implies that A completes

the execution of the first instruction Explo(2α) of Phase(2α) before B starts it. Hence, A starts

the execution of the first waiting period of Phase(2α) by the time B starts the first execution

of Explo(2α) in Phase(2α). In view of Proposition 3.2, this leads to a meeting before any agent

starts the core of Phase(2α), which is a contradiction. In the second case, A completes the last

waiting period of Phase(α) at a time θ2 ahead of B. Moreover, θ2 is at most the duration of this

waiting period and at least the time required by A to execute Explo(α). Hence, while A executes

entirely the last instruction Explo(α) of Phase(α), B is waiting (it executes the last waiting period

of Phase(α)). This leads to a meeting before any agent starts Phase(2α), and hence the second

case also results in a contradiction, which proves the claim. ⋆

Note that the length of the smaller modified label is at most α. Moreover, the modified labels are

not prefixes of each other, hence they must differ at some bit. Thus, it follows from the claim that

7

there exists a period during which an agent is waiting in Phase(α) while the other entirely executes

Explo(α). Hence a meeting occurs before any agent starts Phase(2α), which is a contradiction and

proves the theorem.

According to Theorem 3.1, rendezvous occurs by the time the first of the two agents completes

Phase(2α), which occurs, by Proposition 3.2, before this agent has spent at most a time T4α,4α

since its wake up. However, in view of the definition of α and of the modified labels, T4α,4α is

polynomial in α and, thus, in n, ℓ and τ . This proves the following theorem.

Theorem 3.2. The execution time of Algorithm StrongRV is polynomial in n, ℓ and τ .

4 Discussion of alternative scenarios

Our result shows that the time of rendezvous can be polynomial in n, ℓ and τ , where n is the number

of nodes of the graph, ℓ is the logarithm of the smaller label, and τ is the maximum of all values

t1(e), t2(e) assigned by the adversary, over all edges e of the graph. We assumed that the time is

counted since the wakeup of the earlier agent. It is natural to ask, if it is possible to construct a

rendezvous algorithm whose time depends on n, ℓ and τ ′, where τ ′ is the minimum of all values

t1(e), t2(e) assigned by the adversary, over all edges e of the graph. The answer is trivially negative,

if time is counted, as we do, since the wakeup of the earlier agent. Indeed, suppose that there exists

such an algorithm working in some time F (n, ℓ, τ ′). The adversary assigns t1(e) > F (n, ℓ, τ ′), for

the first edge e taken by the first agent, starts the first agent at some time t0 and delays the wakeup

of the second agent until time t0 + t1(e). Rendezvous cannot happen before time t0 + t1(e), which

is a contradiction.

It turns out that the answer is also negative in the easier scenario, when time is counted since the

wakeup of the agent that is woken up later.Consider even a simplified situation, where t1 = t1(e)

is the same for all edges e, and t2 = t2(e) is the same for all edges e. In other words, each of the

agents has a constant speed. Thus τ = max(t1, t2) and τ ′ = min(t1, t2). Call the agent Ar for

which tr is larger the slower agent, and the other – the faster agent.

First notice that, if we show that any rendezvous algorithm must take time at least τ since the

wakeup of the later agent, the negative result follows, as the adversary can assign τ > F (n, ℓ, τ ′).

We now show that, indeed, for any rendezvous algorithm, there exists a behavior of the adversary

for which this algorithm takes time at least τ since the wakeup of the later agent.

Denote by β (resp. by γ) the waiting time between the wakeup of the faster (resp. slower) agent

and the time when it starts the first edge traversal. Let d = |β − γ|.

If β ≥ γ, the adversary wakes up the faster agent at some time t0 and wakes up the slower agent at

time t0 + d. Both agents start traversing their first edge at the same time t0 + β and cannot meet

before time t0 + β + τ . Since both agents were awake at time t0 + β, our claim follows.

8

If β < γ, the adversary wakes up the slower agent at some time t0 and wakes up the faster agent

at time t0 + d. Both agents start traversing their first edge at the same time t0 + γ and cannot

meet before time t0 + γ + τ . Since both agents were awake at time t0 + γ, our claim follows. This

concludes the justification that it is impossible to guarantee rendezvous in time depending on n, ℓ

and τ ′, even when time is counted since the wakeup of the later agent.

The above remark holds under the strong scenario considered in this paper. By contrast, the answer

to the same question turns out to be positive in the weak scenario. This can be justified as follows.

In [10] the authors showed a rendezvous algorithm with cost (measured by the total number of

edge traversals) polynomial in n and ℓ under the weak scenario, assuming that agents are totally

asynchronous. Let A be this algorithm and let its cost be K(n, ℓ), where K is some polynomial.

Consider algorithm A in the simplified model mentioned above, where each of the agents has a

constant speed, the speeds being possibly different, still under the weak scenario. Consider the

part of the cost of the algorithm counted since the wakeup of the later agent. This cost is K ′(n, ℓ),

where K ′ is some polynomial. Of course, the behavior of the agents in which an agent never waits

at a node and crosses each edge at its constant speed is a possible behavior imposed by a totally

asynchronous adversary, and hence the result of [10] still holds (under the weak scenario). Hence,

if time is counted from the wakeup of the later agent, the time of the algorithm from [10] is at most

τ ′ ·K ′(n, ℓ), and therefore it is polynomial in n, ℓ and τ ′.

Hence, we get the following observation that shows a provable difference between the time of

rendezvous under the strong and the weak scenarios, even in the situation when rendezvous is

possible under both of these scenarios. If time is counted from the wakeup of the later agent, and

agents have constant, possibly different velocities, then rendezvous in time depending on n, ℓ and

τ ′ cannot be guaranteed under the strong scenario, but there is a rendezvous algorithm working in

time polynomial in n, ℓ and τ ′ under the weak scenario.

We conclude the paper by stating the following problem. What is the strongest adversary under

which strong rendezvous in arbitrary graphs is possible? We showed that this is the case under an

adversary that imposes possibly different speeds for different agents and different edges, but the

speed must be the same for all traversals of a given edge by a given agent. On the other hand, it

is easy to see that if the adversary can impose a different speed for each traversal of each edge by

each agent (thus the speeds may vary for different traversals of the same edge by the same agent)

then strong rendezvous is impossible even in the two-node graph.

References

[1] S. Alpern and S. Gal, The theory of search games and rendezvous. Int. Series in Operations

research and Management Science, Kluwer Academic Publisher, 2002.

[2] E. Anderson and S. Fekete, Asymmetric rendezvous on the plane, Proc. 14th Annual ACM

Symp. on Computational Geometry (1998), 365-373.

9

[3] E. Anderson and S. Fekete, Two-dimensional rendezvous search, Operations Research 49

(2001), 107-118.

[4] V. Baston and S. Gal, Rendezvous search when marks are left at the starting points, Naval

Reaserch Logistics 48 (2001), 722-731.

[5] M. Cieliebak, P. Flocchini, G. Prencipe, N. Santoro, Distributed Computing by Mobile Robots:

Gathering. SIAM J. Comput. 41(2012), 829-879.

[6] J. Czyzowicz, A. Labourel, A. Pelc, How to meet asynchronously (almost) everywhere, ACM

Transactions on Algorithms 8 (2012), article 37.

[7] G. De Marco, L. Gargano, E. Kranakis, D. Krizanc, A. Pelc, U. Vaccaro, Asynchronous deter-

ministic rendezvous in graphs, Theoretical Computer Science 355 (2006), 315-326.

[8] A. Dessmark, P. Fraigniaud, D. Kowalski, A. Pelc. Deterministic rendezvous in graphs. Algo-

rithmica 46 (2006), 69-96.

[9] Y. Dieudonné, A. Pelc, Deterministic polynomial approach in the plane, Distributed Comput-

ing 28 (2015), 111-129.

[10] Y. Dieudonné, A. Pelc, V. Villain, How to meet asynchronously at polynomial cost, SIAM

Journal on Computing 44 (2015), 844-867.

[11] P. Flocchini, G. Prencipe, N. Santoro, P. Widmayer, Gathering of asynchronous robots with

limited visibility. Theor. Comput. Sci. 337 (2005), 147-168.

[12] S. Gal, Rendezvous search on the line, Operations Research 47 (1999), 974-976.

[13] D. Kowalski, A. Malinowski, How to meet in anonymous network, Theor. Comput. Sci. 399

(2008), 141-156.

[14] E. Kranakis, D. Krizanc, N. Santoro and C. Sawchuk, Mobile agent rendezvous in a ring, Proc.

23rd Int. Conference on Distributed Computing Systems (ICDCS 2003), IEEE, 592-599.

[15] A. Pelc, Deterministic rendezvous in networks: A comprehensive survey, Networks 59 (2012),

331-34.

[16] O. Reingold, Undirected connectivity in log-space, Journal of the ACM 55 (2008), 1-24.

[17] A. Ta-Shma and U. Zwick. Deterministic rendezvous, treasure hunts and strongly universal

exploration sequences. ACM Trans. Algorithms 10 (2014): 12:1-12:15.

10

	1 Introduction
	2 Preliminaries
	3 The algorithm and its analysis
	4 Discussion of alternative scenarios

