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Abstract

Given a (Conditional) Rewrite System R and terms s and t, we consider the
following problem: is there a substitution σ instantiating the variables in s and
t such that the reachability test σ(s) →∗R σ(t) succeeds? If such a substitution
does not exist, we say that the problem is infeasible; otherwise, we call it feasi-
ble. Similarly, we can consider reducibility, involving a single rewriting step. In
term rewriting, a number of important problems involve such infeasibility tests
(e.g., confluence and termination analysis). We show how to recast infeasibility
tests into the problem of finding a model of a set of (first-order) sentences repre-
senting the operational semantics of R together with some additional sentences
representing the considered property which is formulated as an infeasibility test.

Keywords: Conditional rewriting, confluence, dependency graph, operational
termination.

1. Introduction

Conditional Term Rewriting Systems (CTRSs) [19, Section 7] consist of rules
` → r ⇐ c, where the conditional part c is a (possibly empty) sequence s1 ≈
tn, . . . , sn ≈ tn of conditions whose satisfaction is required before being allowed
to apply a rewriting step with ` and r in the usual way. Several interpretations
of the satisfiability of conditions are possible [19, Definition 7.1.3]. For instance,
dealing with oriented CTRSs, the evaluation of c with respect to a substitution
σ consists of testing the instances of si and ti for reachability, i.e., checking
whether σ(si) rewrites into σ(ti), written σ(si)→∗R σ(ti), for all 1 ≤ i ≤ n.

Given n > 0, a sequence (si ./i ti)
n
i=1 of rewriting goals si ./i ti, where si

and ti are terms, and ./i are predicate symbols → or →∗ is called a feasibility
sequence. Such a sequence is R-feasible if there is a substitution σ such that
the instantiated goals σ(si) ./i σ(ti) are satisfied when ./i is interpreted as the
one-step or rewriting relations →R and →∗R for R, respectively; otherwise, the
sequence is called R-infeasible (see Section 2 for a formal definition).
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Example 1. Consider the CTRS R [19, Example 7.2.45]:

a→ a ⇐ b ≈ x, c ≈ x (1)

b→ d ⇐ d ≈ x, e ≈ x (2)

c→ d ⇐ d ≈ x, e ≈ x (3)

where a, . . . , e are constants and x is a variable. Since d and e are irreducible,
the only way for d →∗ x, e →∗ x to be R-feasible is instantiating x to both d
and e at the same time, which is not possible. Thus, (2) and (3) cannot be
used in any rewriting step. They are called infeasible rules and may be removed
(without changing the induced rewrite relation). Actually, (1) is infeasible too.

R-infeasibility can be used to (i) disable the use of conditional rules in reductions
or even remove them,1 (ii) discard conditional dependency pairs u → v ⇐ c in
the analysis of operational termination of CTRSs [12], (iii) discard conditional
critical pairs u ↓ v ⇐ c that arise in the analysis of confluence of CTRSs
[19, 20, 21], (iv) prove root-stability of a term t (i.e., the absence of any rewriting
sequence from t to an instance of a left-hand side ` of a rewrite rule `→ r ⇐ c)
as the R-infeasibility of t→∗ ` for each `→ r ⇐ c ∈ R, (v) prove irreducibility
of ground terms t (which is undecidable for CTRSs) as the R-infeasibility of
t → x for a variable x, (vi) prove the non-joinability of terms s and t as the
R-infeasibility of s →∗ x, t →∗ x (with x not occurring in s or t), or (vii)
discard arcs in the dependency graphs that are obtained during the analysis of
termination using dependency pairs, see, e.g., [2] for TRSs and [11] for CTRSs.

In Section 3, we prove that R-infeasibility problems can be translated into
the problem of finding a model A of the set of sentences R representing the
operational semantics of the CTRS R plus a sentence ¬(∃~x)

∧n
i=1 si ./i ti where

all symbols (including→ and→∗ as predicate symbols) can be freely interpreted
in a first-order structure A. In Section 4 we show by means of examples how to
apply our method to problems (i)-(vii). We assume familiarity with the basic
notions, terminology and notations of (conditional) term rewriting (see, e.g.,
[3, 19] for TRSs and [19, Section 7] for CTRSs) and first-order logic [16].

The research in this paper was first presented in [8] (a restricted, non-
systematic use in proofs of operational termination of CTRSs is sketched in [7,
Section 11.1]) and then settled by the first author in a first-order logic frame-
work in [6]. In this paper we have extended the treatment of [8] to more general
properties of rewrite systems (e.g., reducibility or root-stability, see Section 4.3).
Also, in contrast to [6], we show that focusing on CTRSs and term rewriting
enables the use of specific refinements available for CTRSs only (e.g., usable
rules, see Section 2). This allows us to deal with more applications and ex-
amples. Interestingly, our semantic approach together with the aforementioned
improvements applies to all the examples solved in papers developing different
specific techniques to deal with problems (i)-(vii) [1, 17, 20, 21].

1Sometimes, infeasible rules cannot be removed without changing relevant properties of
a CTRS. For instance, R = {b → c, a → b ⇐ a ≈ b} is not operationally terminating (see
Section 4.1 below) due to the conditional rule, which is infeasible. However, after removing
it, an operationally terminating CTRS is obtained.
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(R) x→∗ x (C)

xi → yi
f(x1, . . . , xi, . . . , xk)→ f(x1, . . . , yi, . . . , xk)

for all f ∈ F and 1 ≤ i ≤ k = arity(f)

(T)

x→ y y →∗ z

x→∗ z (Rl)

s1 →∗ t1 · · · sn →∗ tn
`→ r

for `→ r ⇐ s1 ≈ t1, . . . , sn ≈ tn ∈ R

Figure 1: Inference rules for conditional rewriting with a CTRS R with signature F

2. Infeasibility problems

Borrowing [19, Definition 7.1.8(3)] we introduce the following.

Definition 2. Let R be a CTRS. A sequence (si ./i ti)
n
i=1, where si and ti are

terms and ./i ∈ {→,→∗} for all 1 ≤ i ≤ n is called a feasibility sequence. It is
R-feasible if there is a substitution σ such that, for all 1 ≤ i ≤ n, σ(si)→R σ(ti)
if ./i is →, and σ(si)→∗R σ(ti) if ./i is →∗. Otherwise, it is R-infeasible.

In Definition 2 we write s →∗R t or s →R t for terms s and t iff there is a
proof tree for s →∗ t (resp. s → t) using R in the inference system of Figure 1
[9]. All rules in the inference system in Figure 1 are schematic in that each

inference rule B1 ··· Bn

A can be used under any instance σ(B1) ··· σ(Bn)
σ(A) of the

rule by a substitution σ. For instance, (Rl) actually establishes that, for every
rule ` → r ⇐ s1 ≈ t1, . . . , sn ≈ tn in the CTRS R, every instance σ(`) by a
substitution σ rewrites into σ(r) provided that, for each si ≈ ti, with 1 ≤ i ≤ n,
the reachability condition σ(si)→∗ σ(ti) can be proved. We have the following:

Proposition 3. Let R be a CTRS. A feasibility sequence (si ./i ti)
n
i=1 is R-

infeasible if (si ./i ti)i∈I is R-infeasible for some I ⊆ {1, . . . , n}.

Aoto observes the following: for TRSs R, the so-called usable rules for reach-
ability associated to a term s, U(R, s) [1, Definition 3], are the only ones we
need in any rewriting sequence starting from s, i.e., s →∗R t iff s →∗U(R,s) t [1,

Lemma 4]. This also holds for the usable rules U(R, s) for CTRSs R and terms
s in [13, Definition 11] that we introduce below. First let

RULES (R, t) = {`→ r ⇐ c ∈ R | ∃p ∈ Pos(t), root(`) = root(t|p)}

Note that RULES (R, t) contains the rules of R which are potentially applicable
to the subterms in t. Now, the set of usable rules for a term t is:

U(R, t) = RULES (R, t) ∪
⋃

l→r⇐c∈RULES(R,t)

(
U(R], r) ∪

⋃
s≈t∈c

U(R], s)

)

where R]= R − RULES (R, t). That is: we consider both unconditional and
conditional rules and add the rules that could be used to evaluate the left-hand
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sides and the conditions when trying to apply those rules to subterms of t. Given
terms s1, . . . , sn, let U(R, s1, . . . , sn) =

⋃n
i=1 U(R, si). We have the following.

Proposition 4. Let R be a CTRS. If (si ./i ti)
n
i=1 is U(R, s1, . . . , sn)-feasible,

then it is R-feasible. If terms si are ground for all 1 ≤ i ≤ n and the sequence
is R-feasible, then it is U(R, s1, . . . , sn)-feasible.

R-infeasibility of (si ./i ti)
n
i=1 can be proved as U(R, s1, . . . , sn)-infeasibility,

provided that all terms si are ground. This requirement cannot be dropped,
in general. For R = {a → b}, the sequence x →∗ a, x →∗ b is R-feasible
(just instantiate variable x to a). However, it is not U(R, x, x)-feasible because
U(R, x, x) contains no rule.

3. Use of logical models for proving infeasibility

In the logic of CTRSs, with binary predicate symbols → (for one-step rewrit-
ing) and →∗ (for many-step rewriting), the first-order theory R for R = (F , R)
is obtained from the inference rules in Figure 1 by specializing (C )f,i for each
f ∈ F and i, 1 ≤ i ≤ ar(f) and (Rl)ρ for all ρ : `→ r ⇐ c ∈ R. Inference rules
B1 ··· Bn

A become sentences (∀x1, . . . , xm)B1∧· · ·∧Bn ⇒ A, where {x1, . . . , xm}
is the (possibly empty) set of variables occurring in the atoms B1, . . . , Bn and
A [10, Section 2]. If such a set is empty, we write B1 ∧ · · · ∧Bn ⇒ A.

Example 5. For R in Example 1, the associated theory R is:

∀x (x→∗ x) (4)

∀x, y, z (x→ y ∧ y →∗ z ⇒ x→∗ z) (5)

∀x (b→∗ x ∧ c→∗ x⇒ a→ a) (6)

∀x (d→∗ x ∧ e→∗ x⇒ b→ d) (7)

∀x (d→∗ x ∧ e→∗ x⇒ c→ d) (8)

Deductions with R proceed à la Hilbert by using modus ponens and general-
ization as inference rules, the usual set of logical axioms, and R as the set of
proper axioms [16, Section 2.3]. In this way, we can also prove goals s→ t and
s→∗ t, written R ` s→ t and R ` s→∗ t, respectively. For all terms s and t,
we have (i) s→R t iff R ` s→ t and (ii) s→∗R t iff R ` s→∗ t.

By a structure A for a first-order language we mean an interpretation of
the function and predicate symbols (f, g, . . . and P,Q, . . ., respectively) as map-
pings fA, gA, . . . and relations PA, QA, . . . on a given set (carrier) also denoted
A. Then, the usual interpretation of first-order formulas with respect to the
structure is considered. A model for a set S of first-order sentences (i.e., for-
mulas whose variables are all quantified) is just a structure that makes them
all true, written A |= S. The Herbrand model HR for a CTRS R (or just H
if no confusion arises) consists of the usual Herbrand interpretation with T (F)
as domain, constants interpreted as themselves, i.e., aH = a for all s ∈ F with
ar(a) = 0, k-ary functions f ∈ F interpreted by fH(t1, . . . , tk) = f(t1, . . . , tk)
for all t1, . . . , tk ∈ T (F) and →H and (→∗)H given by s →H t iff s →R t
and s(→∗)Ht iff s →∗R t for all s, t ∈ T (F). By correctness of the first-order
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predicate calculus, for all models A of a theory S, whenever S ` ϕ holds for a
sentence ϕ, we have A |= ϕ. We use these facts in the following result.

Theorem 6. Let R be a CTRS, (si ./i ti)
n
i=1 be a feasibility sequence, and A

be a structure with nonempty domain. If A |= R ∪ {¬(∃~x)
∧n
i=1 si ./i ti},

then the sequence is R-infeasible. If T (F) 6= ∅, then R-infeasibility implies that
HR |= R ∪ {¬(∃~x)

∧n
i=1 si ./i ti} holds.

Proof. We prove the first claim by contradiction. If (si ./i ti)
n
i=1 isR-feasible,

then there is a substitution σ such that, for all 1 ≤ i ≤ n, σ(si) →R σ(ti)
if ./i is → and σ(si) →∗R σ(ti) if ./i is →∗. Since A is a model of R, by
correctness we have A |= (∀~yi) σ(si) ./i σ(ti) for all 1 ≤ i ≤ n, with ~yi the
variables in Var(σ(si)) ∪ Var(σ(ti)). Thus, A |= (∀~y) (

∧n
i=1 σ(si) ./i σ(ti)),

with ~y the variables in
⋃n
i=1 Var(σ(si)) ∪ Var(σ(ti)). Hence, for all ν : ~y →

A, the interpretation in A of the universally quantified formula above, i.e.,
[
∧n
i=1 σ(si) ./i σ(ti)]

A
ν , is true. Let ~x be the variables in

⋃n
i=1 Var(si)∪Var(ti).

Since the domain of A is not empty, given an arbitrary valuation ν : ~y → A,
there is ν′ : ~x → A given by ν′(x) = [σ(x)]Aν for all variables x in ~x, such that
[
∧n
i=1 si ./i ti]

A
ν′ is true. This contradicts the assumption A |= ¬(∃~x)(

∧n
i=1 si ./i

ti). For the second claim, if (si ./i ti)
n
i=1 is R-infeasible, then for all ground

substitutions σ (which exist due to the assumption T (F) = ∅) there is i, 1 ≤
i ≤ n such that σ(si) ./ σ(ti) does not hold. By definition of HR, and since
valuations in HR are just ground substitutions (and vice versa), we have that
HR |= R ∪ {¬(∃~x)

∧n
i=1 si ./i ti} holds. 2

In order to guarantee that A in Theorem 6 has a nonempty domain, we just
add (∃x) x = x to R ∪ {¬ϕ} (this is not necessary if T (F) 6= ∅). Structures A
can be automatically generated from R and sentence(s) ¬(∃~x)(

∧n
i=1 si ./i ti) by

using tools like AGES [5], implementing the methods in [7]. Essentially, AGES
interprets the sort, function and predicate symbols of an input (many-sorted)
first-order theory as parametric domains, functions and predicates. Sentences in
the theory are then transformed into constraints over such parameters which are
then solved by using standard constraint solving methods and tools (based on
SAT, SMT, etc.). We also use Mace4 [15], which only computes finite models.
Details about the use of AGES and Mace4 to solve the examples in the paper
can be found in Appendix A.

Example 7. For R in Example 1 and R in Example 5, AGES computes a
structure A with domain N ∪ {−1} where aA = bA = 0, cA = dA = −1,
eA = 1, x →A y iff x = y = −1 and x (→∗)A y iff x = y. This is a model of
R∪ {¬(∃x) (b→∗ x∧ c→∗ x),¬(∃x) (d→∗ x∧ e→∗ x)}. By Theorem 6, both
b→∗ x, c→∗ x and d→∗ x, e→∗ x are R-infeasible.

4. Applications

In this section we explore the use of Theorem 6 in the application areas
(i)–(vii) in the introduction. We mostly consider examples from the literature.
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4.1. Infeasible rules and conditional dependency pairs

Rules `→ r ⇐ c with a conditional part c whose associated sequence s1 →∗
t1, . . . , sn →∗ tn is R-infeasible are called infeasible rules. Example 7 shows
that all rules of R in Example 1 are infeasible.

A CTRSR is operationally terminating iff no term t has an infinite proof tree
using the inference system in Figure 1 [9]. As for TRSs [2], the dependency pair
approach provides a suitable way to mechanize proofs of operational termination
of CTRSs [12, 14]. Dependency pairs are just conditional rules u→ v ⇐ c which
are obtained from the CTRS R. Proving infeasibility of such rules is also useful
to prove operational termination of CTRSs, see [14].

4.2. Infeasible critical pairs

A conditional critical pair (CCP) 〈s, t〉 ⇐ σ(c), σ(c′) is obtained from (re-
named versions of) rules ` → r ⇐ c and `′ → r′ ⇐ c′ iff there is a nonvariable
subterm t of ` such that σ(`) = σ(t) for a most general unifier σ [19, Definition
7.1.8]. A critical pair 〈s, t〉 ⇐ s1 ≈ t1, . . . , sn ≈ tn is infeasible if (si →∗ ti)ni=1

is R-infeasible. Joinability of feasible CCPs can be used to prove confluence of
CTRSs [19, Section 7.3]. Infeasible CCPs can be dismissed, though.

Example 8. The following CTRS R [21, Example 23]:

g(x) → f(x, x) (9) g(x)→ g(x) ⇐ g(x) ≈ f(a, b) (10)

has a conditional critical pair 〈f(x, x), g(x)〉 ⇐ g(x) ≈ f(a, b). With AGES, we
obtain a model of R ∪ {¬(∃x) g(x)→∗ f(a, b)} which proves infeasibility of the
conditional critical pair. In [21, Example 23] this is proved by using unification
tests together with a transformation. It is discussed that the alternative tree
automata techniques investigated in the paper do not work for this example.

4.3. Root-stability and irreducibility

A term t is root-stable (with respect to a TRS R) if t cannot be reduced to a
redex, i.e., there is no rule `→ r ∈ R such that t→∗ σ(`) for some substitution
σ [18]. Root-stability is important in the semantic description of lazy languages
where infinite normal forms are allowed and approximated as sequences of root-
stable terms [18]. Clearly, we can prove a ground term t root-stable if we (often
independently) show R-infeasibility of t→∗ ` for all `→ r ∈ R.

Example 9. Consider the following TRS R:

a → b (11)

b → a (12)

f(x, x) → c (13)

We prove root-stability of f(a, c) by showing R-infeasibility of f(a, c)→∗ f(x, x),
f(a, c)→∗ a, and f(a, c)→∗ b. With Mace4 we obtain a model of

R∪ {¬(∃x) f(a, c)→∗ f(x, x),¬(f(a, c)→∗ a),¬(f(a, c)→∗ b)}
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A term t is irreducible if no rewriting step is possible on it. For ground terms,
we can prove irreducibility of t as the R-infeasibility of (∃x) t→ x.

Example 10. Consider the following CTRS R [13, Example 3]

g(a) → c(b) (14)

b → f(a) (15)

f(x) → x⇐ g(x)→ c(y) (16)

Mace4 obtains a model of R∪ {¬(∃x) f(c(a))→ x}, i.e., f(c(a)) is irreducible.

4.4. Non-joinable terms

We can see the usual joinability problem s ↓ t, i.e., the existence of a term
u such that s→∗R u and t→∗R u, as a specific feasibility sequence.

Theorem 11. Let R be a CTRS, s, t be terms, and x be a fresh variable not
occurring in s or t. If s and t are joinable, then s→∗ x, t→∗ x is R-feasible. If
s and t are ground and s→∗ x, t→∗ x is R-feasible, then s and t are joinable.

Proof. If s and t are joinable, then s →∗R u and t →∗R u for some term u.
Hence, s →∗ x, t →∗ x is R-feasible (use σ such that σ(x) = u and σ(y) = y
for any other variable y 6= x). On the other hand, if s and t are ground and
s →∗ x, t →∗ x is R-feasible, then there is a substitution σ such that σ(s) =
s→∗R u = σ(x) and σ(t) = t→∗R u = σ(x), i.e., s and t are joinable. 2

By Theorem 11, R-infeasibility of s →∗ x, t →∗ x implies non-joinability of s
and t (where s and t may contain variables).

Example 12. Consider the following CTRS R [19, Example 7.3.3]:

a → b (17) f(x) → c⇐ x ≈ a (18)

There is no CCP but R is not confluent: f(a) →R f(b) and f(a) →R c but c
and f(b) are not joinable. With AGES we obtain a model of U(R, f(b), c) ∪
{¬(∃x) (f(b)→∗ x∧ c→∗ x)}, where U(R, f(b), c) = {(18)} (see Proposition 4).
Therefore, f(b) and c are proved non-joinable.

4.5. Approximation of dependency graphs

In the dependency pair approach for termination analysis of TRSs R, the
notion of chain of dependency pairs is paramount [2]: a sequence of rules u1 →
v1, u2 → v2, . . . (called dependency pairs) is said to be a chain if there is a
substitution σ such that σ(vi) →∗R σ(ui+1) for all i ≥ 1. Termination of TRSs
is characterized as the absence of infinite chains of dependency pairs. For finite
TRSs, infinite chains can always be represented as cycles in a dependency graph
whose nodes are dependency pairs; there is an arc from a ‘node’ u→ v to another
node u′ → v′ (previously renamed, to share no variable with u→ v) if there is
a substitution σ such that σ(v)→∗R σ(u′). Thus, the R-infeasibility of v →∗ u′
implies the absence of an arc from u→ v to u′ → v′. The dependency graph is
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not computable due to the undecidability of the involved reachability problems.
Several overapproximations are available [2, 4]. However, avoiding ‘false’ arcs
is essential to obtain more efficient termination proofs: we pay attention to
dependency pairs in cycles of the graph only.

Example 13. Consider the following TRS [17, Example 21]:

f(x, a) → f(x, g(x, b)) (19)

g(a, y) → y (20)

g(h(x), y) → g(x, h(y)) (21)

There are three dependency pairs:

F(x, a) → F(x, g(x, b)) (22)

F(x, a) → G(x, b) (23)

G(h(x), y) → G(x, h(y)) (24)

The estimated graph which is obtained by using [4] (usually implemented in ter-
mination tools) is the following:

22 23 24

Middeldorp discusses several refinements that use tree automata techniques for
the approximation of the dependency graph. By using one of them (the so-
called nv approximation [17, Definition 8]) he obtains the graph above. By
using a second one, he shows that the arcs from (22) to itself and from (22)
to (23) can be removed safely, as they do not belong to the dependency graph
(there is no substitution such that σ(F(x, g(x, b))) →∗R σ(F(y, a)), note the re-
naming introduced in the second term). With AGES we obtain a model of
R ∪ {¬(∃x) F(x, g(x, b)) →∗ F(y, a)} which shows that these two arcs do not
belong to the dependency graph.

5. Conclusions

We have presented a semantic approach to prove infeasibility in term rewrit-
ing: in order to prove the infeasibility of a sequence (si ./i ti)

n
i=1 of rewriting

goals, we try to find a model of a set R of first-order sentences representing the
operational semantics of R together with a sentence ¬(∃~x)

∧n
i=1 si ./i ti.

We have shown the usefulness of this approach by an exhaustive considera-
tion of examples from several recent papers addressing the role of infeasibility
when applied to such problems. In particular, we could deal with all of Aoto’s
examples in [1] (regarding proofs of non-joinability of ground terms in TRSs),
see Appendix B. In [17], Middeldorp uses different approximations to the esti-
mation of the dependency graph for TRSs in the analysis of termination using
dependency pairs. We were also able to deal with all examples reported in [17]
(see Example 13 and Appendix C). We also dealt with all examples solved in
[20] (see Appendix D), and [21] (see Example 8 and Appendix E). Note that
these papers explore several alternative methods and, as reported by the au-
thors, some of them fail in specific examples which require a different approach.
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In contrast to all aforementioned works, we are using a single technique to deal
with all kinds of reported problems. Of course, we do not claim to actually
outperform them. However, in view of these good results, we believe that the
technique is promising.

We do not have a dedicated, fully automated ‘infeasibility’ checker yet. In-
stead, we just encode the problem we want to deal with as a specific infeasibility
sequence and then use AGES or Mace4 to apply Theorem 6. In AGES, the gen-
eration of a single model is completely automatic, but in order to succeed on a
given problem, we may need to try different configurations for the generation
of several models. In contrast to Mace4, whose generation scheme is simpler
and where this is automatic, AGES currently requires user assistance to change
settings like the dimension of the domains or the use of piecewise interpretations
(like in Example 8), which are usually ‘expensive’ and not part of the default
configuration. Thus, further investigation developing heuristics and strategies
for an efficient use of the technique is envisaged as a subject for future work.

Acknowledgments. We thank the anonymous referees for many remarks and
suggestions that led to improve the paper.

References

[1] T. Aoto. Disproving Confluence of Term Rewriting Systems by Interpretation
and Ordering. In P. Fontaine, C. Ringeissen, and R.A. Schmidt, editors, Proc. of
the 9th International Symposium on Frontiers of Combining Systems, FroCoS’13,
LNCS 8152:311-326, 2013.

[2] T. Arts and J. Giesl. Termination of Term Rewriting Using Dependency Pairs.
Theoretical Computer Science, 236(1–2):133–178, 2000.

[3] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

[4] J. Giesl, R. Thiemann, and P. Schneider-Kamp. Proving and Disproving Termina-
tion of Higher-Order Functions. In B. Gramlich, editor, Proc. of 5th International
Workshop on Frontiers of Combining Systems, FroCoS’05, LNAI 3717:216-231,
2005.

[5] R. Gutiérrez, S. Lucas, and P. Reinoso. A tool for the automatic generation
of logical models of order-sorted first-order theories. In A. Villanueva, editor,
Proc. of the XVI Jornadas sobre Programación y Lenguajes, PROLE’16, pages
215-230, 2016. http://hdl.handle.net/11705/PROLE/2016/018. Tool available
at http://zenon.dsic.upv.es/ages/.

[6] S. Lucas. Analysis of Rewriting-Based Systems as First-Order Theories. In F.
Fioravanti and J.P. Gallagher, editors, Revised Selected papers from the 27th In-
ternational Symposium on Logic-Based Program Synthesis and Transformation,
LOPSTR 2017, LNCS to appear, 2018.

[7] S. Lucas and R. Gutiérrez. Automatic Synthesis of Logical Models for Order-
Sorted First-Order Theories. Journal of Automated Reasoning, 60(4):465–501,
2018.

9



[8] S. Lucas and R. Gutiérrez. A Semantic Criterion For Proving Infeasibitlity In
Conditional Rewriting. In B. Accatoli and B. Felgenhauer, editors, Proc. of the
6th International Workshop on Confluence, IWC 2017, pages 15-19, 2017.
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Appendix A. Generation of models for the examples in the paper
with AGES and Mace4

Example 7: infeasible rules

AGES specification.

mod ExOhl02_7_2_45 is

sort S .

ops a b c d e : -> S .

var x : S .

crl a => a if b => x /\ c => x .

crl b => d if d => x /\ e => x .

crl c => d if d => x /\ e => x .

endm

AGES goal. The current version of AGES does not accept explicit quantification
in goals; universal quantification is assumed. Thus, ¬(∃~x) (s1 →∗ t1 ∧ · · · ∧
sn →∗ tn) must be introduced as ¬(s1 →∗ t1 ∧ · · · ∧ sn →∗ tn), which actually
corresponds to the equivalent universally quantified version (∀~x) ¬(s1 →∗ t1 ∧
· · · ∧ sn →∗ tn) of the original sentence.

~(b ->* x:S /\ c ->* x:S)

~(d ->* x:S /\ e ->* x:S)

AGES output.

Domains:

S: |N U {-1}

Function Interpretations:

|[a]| = 0

|[b]| = 0

|[c]| = - 1

|[d]| = - 1

|[e]| = 1

Predicate Interpretations:

x_1_1:S ->* x_2_1:S <=> ((x_1_1:S >= x_2_1:S) /\ (x_2_1:S >= x_1_1:S))

x_1_1:S -> x_2_1:S <=> ((0 >= 2+2.x_2_1:S) /\ (x_2_1:S >= x_1_1:S))

Computed model. The computed structure A has domain N ∪ {−1}. Symbols
are interpreted as follows:

aA = bA = 0 cA = dA = −1 eA = 1
x→A y⇔ x = y = −1 x (→∗)A y⇔ x = y
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Example 8: infeasible critical pairs

AGES specification.

mod Ex23_SS16 is

sorts S .

ops a b : -> S .

op f : S S -> S [N=2].

op g : S -> S .

var x : S .

rl g(x) => f(x,x) .

crl g(x) => g(x) if g(x) => f(a,b) .

endm

AGES goal.

~(g(x:S) ->* f(a,b))

AGES output.

Domains:

S: |N U {-1}

Function Interpretations:

|[g(x_1_1:S)]| = 1 + x_1_1:S

|[a]| = 0

|[b]| = - 1

|[f(x_1_1:S,x_2_1:S)]| =

1 + x_1_1:S if (x_2_1:S >= x_1_1:S)

- 1 + x_1_1:S otherwise

Predicate Interpretations:

x_1_1:S ->* x_2_1:S <=> ((x_2_1:S >= x_1_1:S) /\ (x_1_1:S >= x_2_1:S))

x_1_1:S -> x_2_1:S <=> ((x_1_1:S >= x_2_1:S) /\ (x_2_1:S >= x_1_1:S))

Computed model. The computed structure A has domain N ∪ {−1}. Symbols
are interpreted as follows:

aA = 0 bA = −1 fA(x, y) =

{
x+ 1 if y ≥ x
x− 1 otherwise

gA(x) = x+ 1 x→A y⇔ x = y x (→∗)A y⇔ x = y
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Example 9: root-stability

Mace4 assumptions.

reds(x,x).

(red(x,y) & reds(y,z)) -> reds(x,z).

red(x,y) -> red(f(x,z),f(y,z)).

red(x,y) -> red(f(z,x),f(z,y)).

red(f(x,x),c).

red(a,b).

red(b,a).

Mace4 goal.

exists x reds(f(a,c),f(x,x)).

reds(f(a,c),a).

reds(f(a,c),b).

Mace4 output.

a = 0.

b = 0.

c = 1.

f(0,0) = 2.

f(0,1) = 1.

f(0,2) = 1.

f(1,0) = 0.

f(1,1) = 2.

f(1,2) = 2.

f(2,0) = 0.

f(2,1) = 2.

f(2,2) = 2.

red(0,0).

- red(0,1).

- red(0,2).

- red(1,0).

red(1,1).

- red(1,2).

- red(2,0).

red(2,1).

red(2,2).

reds(0,0).

- reds(0,1).
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- reds(0,2).

- reds(1,0).

reds(1,1).

- reds(1,2).

- reds(2,0).

reds(2,1).

reds(2,2).

Computed model. The computed structure A has domain N∪{0, 1, 2}. Symbols
are interpreted as follows:

aA = bA = 0 fA(x, y) =

 2 if x, y ≥ 1 ∨ x = y = 0
1 if x = 0 ∧ y 6= 0
0 otherwise

cA = 1 x→A y⇔ x (→∗)A y ⇔ x = y ∨ (x = 2 ∧ y = 1)

14



Example 10: irreducibility

Mace4 assumptions.

reds(x,x).

(red(x,y) & reds(y,z)) -> reds(x,z).

red(x,y) -> red(c(x),c(y)).

red(x,y) -> red(f(x),f(y)).

red(x,y) -> red(g(x),g(y)).

red(g(a),c(b)).

red(b,f(a)).

reds(g(x),c(y)) -> red(f(x),x).

Mace4 goal.

exists x red(f(c(a)),x).

Mace4 output.

a = 0.

b = 1.

c(0) = 2.

c(1) = 1.

c(2) = 1.

f(0) = 1.

f(1) = 1.

f(2) = 0.

g(0) = 1.

g(1) = 1.

g(2) = 0.

- red(0,0).

- red(0,1).

- red(0,2).

red(1,0).

red(1,1).

red(1,2).

- red(2,0).

- red(2,1).

- red(2,2).

reds(0,0).

- reds(0,1).

- reds(0,2).
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reds(1,0).

reds(1,1).

reds(1,2).

- reds(2,0).

- reds(2,1).

reds(2,2).

Computed model. The computed structure A has domain {0, 1, 2}. Symbols are
interpreted as follows:

aA = 0 cA(x) =

{
2 if x = 0
1 otherwise

fA(x) = gA(x) =

{
0 if x = 2
1 otherwise

bA = 1 x→A y⇔ x = 1 x (→∗)A y⇔ x = y ∨ x = 1
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Example 12: non-joinable terms

AGES specification.

mod Ex7_3_3_Ohl02 is

sort S .

ops a b c : -> S .

op f : S -> S .

var x : S .

crl f(x) => c if x => a .

endm

AGES goal.

~(f(b) ->* x:S /\ c ->* x:S)

AGES output.

Domains:

S: |N U {-1}

Function Interpretations:

|[f(x_1_1:S)]| = x_1_1:S

|[a]| = 0

|[b]| = - 1

|[c]| = 0

Predicate Interpretations:

x_1_1:S ->* x_2_1:S <=> ((x_2_1:S >= x_1_1:S) /\ (x_1_1:S >= x_2_1:S))

x_1_1:S -> x_2_1:S <=> ((x_2_1:S >= x_1_1:S) /\ (x_1_1:S >= x_2_1:S))

Computed model. The computed structure A has domain N ∪ {−1}. Symbols
are interpreted as follows:

aA = 0 bA = −1 cA = 0 fA(x) = x
x→A y⇔ x = y x (→∗)A y⇔ x = y
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Example 13: refined dependency graph

AGES specification.

mod Ex21_Mid01 is

sort S .

ops a b : -> S .

ops f g : S S -> S .

op h : S -> S .

ops F : S S -> S .

vars x y : S .

rl g(a,y) => y .

rl f(x,a) => f(x,g(x,b)) .

rl g(h(x),y) => g(x,h(y)) .

endm

AGES goal.

~(F(x:S,g(x:S,b)) ->* F(y:S,a))

AGES output.

Domains:

S: |N \ {0}

Function Interpretations:

|[f(x_1_1:S,x_2_1:S)]| = x_1_1:S

|[g(x_1_1:S,x_2_1:S)]| = x_2_1:S

|[F(x_1_1:S,x_2_1:S)]| = x_2_1:S

|[a]| = 1

|[b]| = 2

|[h(x_1_1:S)]| = x_1_1:S

Predicate Interpretations:

x_1_1:S ->* x_2_1:S <=> (x_2_1:S >= x_1_1:S)

x_1_1:S -> x_2_1:S <=> (x_2_1:S >= x_1_1:S)

Computed model. The computed structure A has domain N−{0}. Symbols are
interpreted as follows:

aA = 1 bA = 2 fA(x, y) = x gA(x, y) = y

hA(x) = x FA(x, y) = y x→A y⇔ y ≥ x x (→∗)A y⇔ y ≥ x
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Appendix B. Additional examples from [1]

Appendix B.1. Example 8 (non-joinability)
AGES specification (complete).

mod Ex8_Aoto13 is

sort S .

ops a c : -> S .

ops f g h : S -> S .

var x : S .

rl a => h(c) .

rl a => h(f(c)) .

rl h(x) => h(h(x)) .

rl f(x) => f(g(x)) .

endm

AGES goal.

~(h(c) ->* x:S /\ h(f(c)) ->* x:S)

We restrict the attention to the usable rules (Proposition 4):

AGES specification.

mod Ex8_Aoto13 is

sort S .

ops a c : -> S .

ops f g h : S -> S .

var x : S .

rl h(x) => h(h(x)) .

rl f(x) => f(g(x)) .

endm

AGES output.

Domains:

S: {0 , 1}

Function Interpretations:

|[f(x_1_1:S)]| = 1 - x_1_1:S

|[h(x_1_1:S)]| = x_1_1:S

|[a]| = 1

|[c]| = 0

|[g(x_1_1:S)]| = x_1_1:S

Predicate Interpretations:

x_1_1:S ->* x_2_1:S <=> ((x_1_1:S >= x_2_1:S) /\ (x_2_1:S >= x_1_1:S))

x_1_1:S -> x_2_1:S <=> ((x_2_1:S >= x_1_1:S) /\ (x_1_1:S >= x_2_1:S))

Computed model. The computed structure A has domain {0, 1}. Symbols are
interpreted as shown above.
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Appendix B.2. Example 9 (non-joinability)

AGES specification (complete).

mod Ex9_Aoto13 is

sort S .

ops a c : -> S .

ops f g h : S -> S .

var x : S .

rl a => f(c) .

rl a => h(c) .

rl f(x) => h(g(x)) .

rl h(x) => f(g(x)) .

endm

AGES goal.

~(f(c) ->* x:S /\ h(c) ->* x:S)

We restrict the attention to the usable rules (Proposition 4):

AGES specification.

mod Ex9_Aoto13 is

sort S .

ops a c : -> S .

ops f g h : S -> S .

var x : S .

rl f(x) => h(g(x)) .

rl h(x) => f(g(x)) .

endm

AGES output.

Domains:

S: {-1 , 0}

Function Interpretations:

|[f(x_1_1:S)]| = - 1 - x_1_1:S

|[h(x_1_1:S)]| = x_1_1:S

|[a]| = 0

|[c]| = 0

|[g(x_1_1:S)]| = - 1 - x_1_1:S

Predicate Interpretations:

x_1_1:S ->* x_2_1:S <=> ((x_1_1:S >= x_2_1:S) /\ (x_2_1:S >= x_1_1:S))

x_1_1:S -> x_2_1:S <=> ((x_1_1:S >= x_2_1:S) /\ (x_2_1:S >= x_1_1:S))

Computed model. The computed structure A has domain {−1, 0}. Symbols are
interpreted as shown above.
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Appendix B.3. Example 15 (non-joinability)

Mace4 assumptions.

reds(x,x).

(red(x,y) & reds(y,z)) -> reds(x,z).

red(x,y) -> red(f(x,z),f(y,z)).

red(x,y) -> red(f(z,x),f(z,y)).

red(x,y) -> red(g(x),g(y)).

red(x,y) -> red(h(x,z),h(y,z)).

red(x,y) -> red(h(z,x),h(z,y)).

red(c,f(c,d)).

red(c,h(c,d)).

red(f(x,y),h(g(y),x)).

red(h(x,y),f(g(y),x)).

Mace4 goal.

exists x (reds(h(f(c,d),d),x) & reds(f(c,d),x)).

Mace4 output.

c = 0.

d = 1.

g(0) = 0.

g(1) = 1.

g(2) = 2.

f(0,0) = 0.

f(0,1) = 2.

f(0,2) = 0.

f(1,0) = 0.

f(1,1) = 2.

f(1,2) = 1.

f(2,0) = 0.

f(2,1) = 2.

f(2,2) = 0.

h(0,0) = 0.

h(0,1) = 0.

h(0,2) = 0.

h(1,0) = 2.

h(1,1) = 2.

h(1,2) = 2.

h(2,0) = 0.

h(2,1) = 1.
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h(2,2) = 0.

red(0,0).

red(0,1).

red(0,2).

- red(1,0).

red(1,1).

- red(1,2).

- red(2,0).

- red(2,1).

red(2,2).

reds(0,0).

reds(0,1).

reds(0,2).

- reds(1,0).

reds(1,1).

- reds(1,2).

- reds(2,0).

- reds(2,1).

reds(2,2).

Computed model. The computed structure A has domain {0, 1, 2}. Symbols are
interpreted as shown above.
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Appendix B.4. Example 16 (non-joinability)
Mace4 assumptions.

reds(x,x).

(red(x,y) & reds(y,z)) -> reds(x,z).

red(x,y) -> red(f(x,z),f(y,z)).

red(x,y) -> red(f(z,x),f(z,y)).

red(f(x,f(y,z)),f(f(x,y),f(x,z))).

red(f(f(x,y),z),f(f(x,z),f(y,z))).

red(f(f(x,y),f(y,z)),y).

Mace4 goal.

exists x (reds(f(a,a),x) & reds(a,x)).

Mace4 output.

a = 0.

f(0,0) = 1.

f(0,1) = 2.

f(0,2) = 2.

f(1,0) = 2.

f(1,1) = 2.

f(1,2) = 2.

f(2,0) = 2.

f(2,1) = 2.

f(2,2) = 2.

- red(0,0).

- red(0,1).

- red(0,2).

- red(1,0).

- red(1,1).

- red(1,2).

red(2,0).

red(2,1).

red(2,2).

reds(0,0).

- reds(0,1).

- reds(0,2).

- reds(1,0).

reds(1,1).

- reds(1,2).

reds(2,0).

reds(2,1).

reds(2,2).

The computed structure A has domain {0, 1, 2}. Symbols interpreted as above.
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Appendix C. Additional examples from [17]

Appendix C.1. Example 13 (arcs in dependency graph)

AGES specification.

mod Ex13_Mid01 is

sorts S .

ops a b : -> S .

ops f g : S -> S .

op F : S -> S .

var x : S .

rl a => b .

rl f(g(a)) => f(a) .

endm

AGES goal.

~(F(a) ->* F(g(a)))

AGES output.

Domains:

S: {-1 , 0}

Function Interpretations:

|[a]| = 0

|[f(x_1_1:S)]| = x_1_1:S

|[F(x_1_1:S)]| = x_1_1:S

|[b]| = 0

|[g(x_1_1:S)]| = - 1

Predicate Interpretations:

x_1_1:S ->* x_2_1:S <=> ((0 >= x_1_1:S) /\ (x_2_1:S >= x_1_1:S))

x_1_1:S -> x_2_1:S <=> ((0 >= x_2_1:S) /\ (x_2_1:S >= x_1_1:S))

Computed model. The computed structure A has domain {−1, 0}. Symbols are
interpreted as shown above.

24



Appendix C.2. Example 14 (arcs in dependency graph)

AGES specification.

mod Ex14_Mid01 is

sorts S .

ops a b : -> S .

ops f : S S -> S .

op F : S S -> S [N=2] .

vars x : S .

rl f(x,x) => f(a,b) .

endm

AGES goal.

~(F(a,b) ->* F(x:S,x:S))

AGES output.

Domains:

S: {-1 , 0}

Function Interpretations:

|[f(x_1_1:S,x_2_1:S)]| = 0

|[F(x_1_1:S,x_2_1:S)]| =

- 1 if (x_1_1:S + x_2_1:S >= 0)

x_1_1:S otherwise

|[a]| = 0

|[b]| = - 1

Predicate Interpretations:

x_1_1:S ->* x_2_1:S <=> ((x_1_1:S >= x_2_1:S) /\ (x_2_1:S >= x_1_1:S))

x_1_1:S -> x_2_1:S <=> ((x_1_1:S >= x_2_1:S) /\ (x_2_1:S >= x_1_1:S))

Computed model. The computed structure A has domain {−1, 0}. Symbols are
interpreted as shown above.
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Appendix C.3. Example 20 (arcs in dependency graph)

Mace4 assumptions.

reds(x,x).

(red(x,y) & reds(y,z)) -> reds(x,z).

red(x,y) -> red(f(x,u,v),f(y,u,v)).

red(x,y) -> red(f(u,x,v),f(u,y,v)).

red(x,y) -> red(f(u,v,x),f(u,v,y)).

red(x,y) -> red(F(x,u,v),F(y,u,v)).

red(x,y) -> red(F(u,x,v),F(u,y,v)).

red(x,y) -> red(F(u,v,x),F(u,v,y)).

red(f(a,b,x),f(x,x,x)).

red(a,c).

Mace4 goal.

exists x exists y reds(F(x,x,x),F(a,b,y)).

Mace4 output.

a = 0.

b = 1.

c = 0.

F(0,0,0) = 0.

F(0,0,1) = 0.

F(0,1,0) = 1.

F(0,1,1) = 1.

F(1,0,0) = 0.

F(1,0,1) = 0.

F(1,1,0) = 0.

F(1,1,1) = 0.

f(0,0,0) = 0.

f(0,0,1) = 0.

f(0,1,0) = 0.

f(0,1,1) = 0.

f(1,0,0) = 0.

f(1,0,1) = 0.

f(1,1,0) = 0.

f(1,1,1) = 0.

red(0,0).

- red(0,1).

- red(1,0).

26



red(1,1).

reds(0,0).

- reds(0,1).

- reds(1,0).

reds(1,1).

Computed model. The computed structure A has domain {0, 1}. Symbols are
interpreted as shown above.
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Appendix C.4. Example 30 (arcs in dependency graph)

Mace4 assumptions.

reds(x,x).

(red(x,y) & reds(y,z)) -> reds(x,z).

red(x,y) -> red(f(x),f(y)).

red(x,y) -> red(g(x),g(y)).

red(x,y) -> red(h(x,z),h(y,z)).

red(x,y) -> red(h(z,x),h(z,y)).

red(x,y) -> red(G(x),G(y)).

red(f(a),g(h(a,b))).

red(g(g(a)),f(b)).

red(h(x,x),g(a)).

Mace4 goal.

reds(G(h(a,b)),G(g(a))).

Mace4 output.

a = 0.

b = 1.

G(0) = 0.

G(1) = 1.

f(0) = 0.

f(1) = 0.

g(0) = 0.

g(1) = 0.

h(0,0) = 0.

h(0,1) = 1.

h(1,0) = 0.

h(1,1) = 0.

red(0,0).

- red(0,1).

- red(1,0).

red(1,1).

reds(0,0).

- reds(0,1).

- reds(1,0).

reds(1,1).

The computed structure A has domain {0, 1}. Symbols are interpreted as above.
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Appendix D. Additional examples from [20]

Appendix D.1. Introduction (infeasible critical pair)

AGES specification.

mod SM15_Sec1 is

sorts S .

ops a b c : -> S .

ops f g : S -> S .

var x : S .

crl f(g(x)) => b if x => a .

crl g(x) => c if x => c .

endm

AGES goal.

~(x:S ->* a /\ x:S ->* b)

AGES output.

Domains:

S: {-1 , 0}

Function Interpretations:

|[f(x_1_1:S)]| = x_1_1:S

|[g(x_1_1:S)]| = - 1

|[a]| = 0

|[b]| = - 1

|[c]| = - 1

Predicate Interpretations:

x_1_1:S ->* x_2_1:S <=> ((x_1_1:S >= x_2_1:S) /\ (x_2_1:S >= x_1_1:S))

x_1_1:S -> x_2_1:S <=> ((0 >= 1 + x_2_1:S) /\ (x_2_1:S >= x_1_1:S))

Computed model. The computed structure A has domain {−1, 0}. Symbols are
interpreted as shown above.
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Appendix D.2. Example 3.3 (infeasible critical pair)

AGES specification.

mod SM15_Example_3_3 is

sorts S .

ops a b : -> S .

op f : S -> S .

var x : S .

crl f(x) => a if a => x .

crl f(x) => b if b => x .

endm

AGES goal.

~(a ->* x:S /\ b ->* x:S)

AGES output.

Domains:

S: |N U {-1}

Function Interpretations:

|[f(x_1_1:S)]| = x_1_1:S

|[a]| = 1

|[b]| = 0

Predicate Interpretations:

x_1_1:S ->* x_2_1:S <=> ((x_2_1:S >= x_1_1:S) /\ (x_1_1:S >= x_2_1:S))

x_1_1:S -> x_2_1:S <=> ((x_2_1:S >= x_1_1:S) /\ (x_1_1:S >= x_2_1:S))

Computed model. The computed structure A has domain N ∪ {−1}. Symbols
are interpreted as shown above.
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Appendix D.3. Example 5.1 (infeasible critical pairs)

AGES specification.

mod SM15_Example_5_1 is

sorts S [m=1 n=1] .

ops Z tt : -> S .

op s : S -> S .

op leq : S S -> S [N=2] .

op gt : S S -> S [N=2] .

op div : S S -> S .

op minus : S S -> S [N=2] .

op pair : S S -> S .

var q r x y : S .

rl leq(Z,x) => tt .

rl leq(s(x),s(y)) => leq(x,y) .

rl gt(s(x),Z) => tt .

rl gt(s(x),s(y)) => gt(x,y) .

rl minus(x,Z) => x .

rl minus(Z,x) => Z .

rl minus(s(x),s(y)) => minus(x,y) .

crl div(x,y) => pair(Z,y) if gt(y,x) => tt .

crl div(x,y) => pair(s(q),r) if

leq(y,x) => tt /\ div(minus(x,y),y) => pair(q,r) .

endm

AGES goal.

~(leq(x:S,w:S) ->* tt /\ div(minus(w:S,x:S),x:S) ->* pair(y:S,z:S)

/\ gt(x:S,w:S) ->* tt)

By Proposition 3, we can use the following simpler goal:

~(leq(x:S,w:S) ->* tt /\ gt(x:S,w:S) ->* tt)

AGES output. Fix the interpretation of → to be the equality.

Domains:

S: |N U {-1}

Function Interpretations:

|[div(x_1_1:S,x_2_1:S)]| = 1

|[gt(x_1_1:S,x_2_1:S)]| =

- 1 if (x_1_1:S >= 1 + x_2_1:S)

- x_1_1:S + x_2_1:S otherwise

|[leq(x_1_1:S,x_2_1:S)]| =

0 if (x_1_1:S >= 1 + x_2_1:S)

- 1 otherwise
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|[minus(x_1_1:S,x_2_1:S)]| =

- 1 if (x_2_1:S >= 1 + x_1_1:S)

- 1 + x_1_1:S - x_2_1:S otherwise

|[Z]| = - 1

|[pair(x_1_1:S,x_2_1:S)]| = 1

|[s(x_1_1:S)]| = 1 + x_1_1:S

|[tt]| = - 1

Predicate Interpretations:

x_1_1:S ->* x_2_1:S <=> ((1 + x_1_1:S >= 0) /\ (x_2_1:S >= x_1_1:S))

x_1_1:S -> x_2_1:S <=> ((x_1_1:S >= x_2_1:S) /\ (x_2_1:S >= x_1_1:S))

Computed model. The computed structure A has domain N ∪ {−1}. Symbols
are interpreted as shown above.
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Appendix E. Additional examples from [21]

Appendix E.1. Example 3 (infeasible critical pair)

AGES specification.

mod Ex3_SS16infCCP is

sorts S .

ops a b : -> S .

op f : S -> S .

var x : S .

crl f(x) => a if x => a .

crl f(x) => b if x => b .

endm

AGES goal.

~(x:S ->* a /\ x:S ->* b)

AGES output.

Domains:

S: |N

Function Interpretations:

|[f(x_1_1:S)]| = x_1_1:S

|[a]| = 0

|[b]| = 1

Predicate Interpretations:

x_1_1:S ->* x_2_1:S <=> ((x_2_1:S >= x_1_1:S) /\ (x_1_1:S >= x_2_1:S))

x_1_1:S -> x_2_1:S <=> ((x_1_1:S >= x_2_1:S) /\ (x_2_1:S >= x_1_1:S))

Computed model. The computed structure A has domain N. Symbols are in-
terpreted as shown above.
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Appendix E.2. Example 16 (infeasible critical pair)

AGES specification.

mod Ex16_SS16 is

sorts S .

ops a b c d : -> S .

op g : S S -> S .

op f : S S -> S .

var x : S .

rl f(a,x) => a .

rl f(b,x) => b .

rl c => c .

crl g(a,x) => c if f(x,a) => a .

crl g(x,a) => d if f(x,b) => b .

endm

AGES goal.

~(f(a,b) ->* b /\ f(a,a) ->* a)

AGES output.

Domains:

S: |N U {-1}

Function Interpretations:

|[c]| = - 1

|[f(x_1_1:S,x_2_1:S)]| = x_1_1:S

|[g(x_1_1:S,x_2_1:S)]| = x_2_1:S

|[a]| = - 1

|[b]| = 1

|[d]| = - 1

Predicate Interpretations:

x_1_1:S ->* x_2_1:S <=> (1 + x_1_1:S >= x_2_1:S)

x_1_1:S -> x_2_1:S <=> (x_1_1:S >= x_2_1:S)

Computed model. The computed structure A has domain N. Symbols are in-
terpreted as shown above.
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Appendix E.3. Example 17 (infeasible rule)

AGES specification.

mod Ex17_SS16 is

sorts S .

ops a b c : -> S .

ops g h : S -> S .

var x : S .

rl h(x) => a .

rl g(x) => x .

rl c => c .

crl g(x) => a if h(x) => b .

endm

AGES goal.

~(h(x:S) ->* b)

AGES output.

Domains:

S: {-1 , 0 , 1}

Function Interpretations:

|[c]| = 0

|[g(x_1_1:S)]| = x_1_1:S

|[h(x_1_1:S)]| = 0

|[a]| = 0

|[b]| = - 1

Predicate Interpretations:

x_1_1:S ->* x_2_1:S <=> (x_2_1:S >= x_1_1:S)

x_1_1:S -> x_2_1:S <=> (x_2_1:S >= x_1_1:S)

Computed model. The computed structure A has domain {−1, 0, 1}. Symbols
are interpreted as shown above.

35



Appendix E.4. Example 23 (infeasible critical pair)

AGES specification.

mod Ex23_SS16 is

sorts S .

ops a b : -> S .

op f : S S -> S [N=2] .

op g : S -> S .

var x : S .

rl g(x) => f(x,x) .

crl g(x) => g(x) if g(x) => f(a,b) .

endm

AGES goal.

~(g(x:S) ->* f(a,b))

AGES output.

Domains:

S: |N U {-1}

Function Interpretations:

|[g(x_1_1:S)]| = 1 + x_1_1:S

|[a]| = 0

|[b]| = - 1

|[f(x_1_1:S,x_2_1:S)]| =

1 + x_1_1:S if (x_2_1:S >= x_1_1:S)

- 1 + x_1_1:S otherwise

Predicate Interpretations:

x_1_1:S ->* x_2_1:S <=> ((x_2_1:S >= x_1_1:S) /\ (x_1_1:S >= x_2_1:S))

x_1_1:S -> x_2_1:S <=> ((x_1_1:S >= x_2_1:S) /\ (x_2_1:S >= x_1_1:S))

Computed model. The computed structure A has domain N ∪ {−1}. Symbols
are interpreted as shown above.
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