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We consider two variations of graph total domination, namely, k-tuple total domination 
and total {k}-domination (for a fixed positive integer k). Their related decision problems 
are both NP-complete even for bipartite graphs. In this work, we study some subclasses of 
bipartite graphs. We prove the NP-completeness of both problems (for every fixed k) for 
bipartite planar graphs and we provide an APX-hardness result for the total domination 
problem for bipartite subcubic graphs. In addition, we introduce a more general variation 
of total domination (total (r, m)-domination) that allows us to design a specific linear 
time algorithm for bipartite distance-hereditary graphs. In particular, it returns a minimum 
weight total {k}-dominating function for bipartite distance-hereditary graphs.
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1. Introduction and preliminaries

All the graphs in this paper are finite, simple and 
without isolated vertices. Given a graph G = (V (G), E(G)), 
V (G) and E(G) denote its vertex and edge sets, respec-
tively. For any v ∈ V (G), N(v) is the open neighborhood
of v in G , i.e. the set of vertices adjacent to v in G and 
N[v] = N(v) ∪{v} is the closed neighborhood of v in G . Two 
vertices u, v ∈ V (G) are false (true) twins if N(u) = N(v)

(resp. N[u] = N[v]). For a graph G and v ∈ V (G), G − v de-
notes the graph induced by V (G) − {v}. A pendant vertex 
in G is a vertex of degree one in G . Given a function f , a 
graph G and S ⊆ V (G), f (S) = ∑

v∈S
f (v) denotes the weight
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of f on S , if S = V (G) we just say the weight of f . A func-
tion f : V (G) �→ {0, 1} is a total dominating function of G if 
f (N(v)) ≥ 1 for all v ∈ V (G). The total domination number
of G is the minimum weight of a total dominating func-
tion of G , and it is denoted by γt(G) [4]. Total domination 
in graphs is now well studied in graph theory. The litera-
ture on the subject has been surveyed and detailed in the 
book [10].

In [9] Henning and A. Kazemi defined a generalization 
of total domination as follows: let k be a positive inte-
ger, a function f : V (G) �→ {0, 1} is a k-tuple total domi-
nating function of G if f (N(v)) ≥ k for all v ∈ V (G). It is 
clear that a graph has a k-tuple total dominating func-
tion if its minimum degree is at least k. The minimum 
possible weight of a k-tuple total dominating function of 
G is called the k-tuple total domination number of G and 
denoted by γ×k,t(G). Another generalization (defined by 
N. Li and X. Hou in [13]) is the following: a function 
f : V (G) �→ {0, 1, . . . , k} is a total {k}-dominating function of 
G if f (N(v)) ≥ k for all v ∈ V (G). The minimum possible 
weight of a total {k}-dominating function of G is called the 
total {k}-domination number of G and denoted by γ{k},t(G). 
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As usual, these definitions induce the study of the follow-
ing decision problems for a positive fixed integer k:

k-TUPLE TOTAL DOMINATION PROBLEM (k-DOM-T)
Inst.: G = (V (G), E(G)), j ∈N

Quest.: Does G have a k-tuple total dominating function 
f with f (V (G)) ≤ j?

TOTAL {k}-DOMINATION PROBLEM ({k}-DOM-T)
Inst.: G = (V (G), E(G)), j ∈N

Quest.: Does G have a total {k}-dominating function f
with f (V (G)) ≤ j?

It is clear that, for k = 1, the above problems become 
the well-known Total Domination Problem DOM-T. It is 
known that k-DOM-T and {k}-DOM-T are NP-complete for 
each value of k, even for bipartite graphs (see [8,15]). In 
this work we study these problems in some subclasses of 
bipartite graphs.

In Section 2, we consider bipartite planar graphs and 
provide NP-completeness results not only for k-DOM-T and 
{k}-DOM-T, but also for DOM-T. For the latest, we obtain an 
inapproximability result for bipartite subcubic graphs.

In Section 3, we introduce a more general variation 
of total domination (total (r, m)-domination) that allows 
us to design a specific linear time algorithm for bipar-
tite distance-hereditary graphs which in particular, returns 
a minimum total {k}-dominating function for a given bi-
partite distance-hereditary graph. The motivation of con-
sidering this subclass of bipartite graphs is given by the 
following reasoning (for the definition of clique-width and 
q expression, see the Appendix):

Theorem 1 ([5,14]). Let q ∈ Z+ . Every LinEMSOL(τ1) problem 
P on the family of graphs with clique-width at most q can be 
solved in polynomial time. Moreover, if the q-expression can be 
found in linear time, the problem P can be solved in linear time.

We can prove that given k, q ∈ Z+ , k-DOM-T and 
{k}-DOM-T can be solved in polynomial time for the fam-
ily of graphs with clique-width at most q (see Theorem 16
in the Appendix) and, in particular, in linear time for 
distance-hereditary graphs since it is known that they have 
clique-width bounded by 3 and moreover, a 3-expression 
can be found in linear time for them [6]. The main con-
tribution of Section 3 is a specific linear time algorithm to 
find a minimum total {k}-dominating function for bipartite 
distance-hereditary graphs.

1.1. First results

Let us remark that it is not hard to see that γ{k},t(G) ≤
k ·γt(G), for every graph G and positive integer k. An open 
problem concerning these type of bounds is to characterize 
graphs that verify this inequality by an equality. The next 
result—that will be used at the end of Section 3—provides 
a tool in that direction.

Lemma 2. Let G be a graph, k a positive integer. Then, γ{k},t(G)

= k · γt(G) if and only if there exists a minimum weight total 
{k}-dominating function f of G such that f (v) ∈ {0, k} for all 
v ∈ V (G).
Proof. First, let f be a minimum weight total {k}-domi-
nating function of G such that f (v) ∈ {0, k} for all v ∈
V (G). Note that f (N(v)) is a multiple of k for every ver-
tex v of G , thus the function g = f

k is a total dominat-
ing function and k · g(V (G)) = f (V (G)) = γ{k},t(G). Hence, 
γ{k},t(G) ≥ k · γt(G). From the observation above, it holds 
γ{k},t(G) = k · γt(G).

Conversely, if g is a minimum weight total dominating 
function of G , then f = k · g is a total {k}-dominating func-
tion of G with f (V (G)) = k · g(V (G)) = k ·γt(G) = γ{k},t(G)

and the lemma holds. �
Next, we provide an equality that relates the total 

{k}-domination and the k-tuple total domination numbers 
through a graph product. Given two graphs G and H , the 
lexicographic product G ◦ H is defined on the vertex set 
V (G) × V (H) where two vertices (u1, v1) and (u2, v2) are 
adjacent if and only if either u1 is adjacent to u2 in G , or 
u1 = u2 and v1 is adjacent to v2 in H .

In particular, if G is a graph with V (G) = {v1, . . . , vn}
and Sk is the edgeless graph with V (Sk) = {1, . . . , k}, we 
denote a vertex (vr, j), r ∈ {1, . . . , n} and j ∈ {1, . . . , k} of 
G ◦ Sk by v j

r .

Theorem 3. For any graph G and k ∈ Z+ , γ{k},t(G) = γ×k,t(G ◦
Sk).

Proof. Let f be a total {k}-dominating function with min-

imum weight of G and V ′ =
n⋃

r=1
{v j

r : j = 1, . . . , f (vr)} ⊆
V (G ◦ Sk).

It is clear that |V ′| = γ{k},t(G). In addition, as f (N(vr))

≥ k, it holds |N(v j
r ) ∩ V ′| ≥ k for all r ∈ {1, . . . , n} and 

j ∈ {1, . . . , k}. Thus, the function that assigns 1 to the ver-
tices in V ′ and zero otherwise is a k-tuple total dominating 
function of G ◦ Sk implying γ{k},t(G) ≥ γ×k,t(G ◦ Sk).

Conversely, let f be a k-tuple total dominating func-
tion of G ◦ Sk and V ′ ⊆ V (G ◦ Sk) such that v ∈ V ′ if and 
only if f (v) = 1. It is immediate to check that the function 
f : V (G) �→ {0, 1, . . . , k} defined by f (vr) = |V ′ ∩ {v j

r : j =
1, . . . , k}| is a total {k}-dominating function of G and then 
γ{k},t(G) ≤ γ×k,t(G ◦ Sk). �
2. NP-completeness and inapproximability results

A vertex cover of a graph is a subset of vertices inter-
secting all the edges. The minimum cardinality of a vertex 
cover in a graph G is called vertex cover number of G and 
denoted by τ (G). The related decision problem is the well-
known Vertex Cover Problem (VCP), which is NP-complete 
for planar graphs [7]. By reducing VCP for planar graphs to 
DOM-T for bipartite planar graphs, we have the following 
result.

Theorem 4. DOM-T is NP-complete for bipartite planar graphs.

Proof. We transform a planar graph G = (V , E) into a bi-
partite planar graph G ′ as follows: subdivide each edge of 
G and add a pendant vertex to each vertex arising from 
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Fig. 1. Graphs G1 and G2 of Lemma 6 and G v
3 of Lemma 8.
the subdivision. Clearly, G ′ is a bipartite planar graph and 
it can be obtained in polynomial time.

We will prove that τ (G) + |E(G)| = γt(G ′) by proving 
that G has a vertex cover S with |S| ≥ j if and only if 
G ′ has a total dominating function f with f (V (G ′)) ≥ j +
|E(G)|.

Let S be a vertex cover of G of size at least j and 
let f : V (G ′) �→ {0, 1} such that {v ∈ V (G) : f (v) = 1} =
S ∪ N , where N is the subset of V (G ′) of vertices aris-
ing from the subdivision. Note that |N| = |E(G)|. It is clear 
that f is a total dominating function of G ′ with weight 
at least j + |E(G)|. Conversely, let f be a total dominat-
ing function of G ′ with weight at least j + |E(G)|. No-
tice that N ⊆ {v ∈ V (G ′) : f (v) = 1}. W.l.o.g. we can as-
sume that the set {v ∈ V (G ′) : f (v) = 1} does not contain 
any of the added pendant vertices. Then, it is clear that 
{v ∈ V (G ′) : f (v) = 1} − N is a vertex cover of G and 
|{v ∈ V (G ′) : f (v) = 1} − N| ≥ j.

Then, τ (G) +|E(G)| = γt(G ′) and the theorem holds. �
A similar approach as the one used to prove Theorem 4

can be used to show the following inapproximability re-
sult. Recall that APX is the class of problems approximable 
in polynomial time to within some constant, and that a 
problem � is APX-hard if every problem in APX reduces 
to � via an AP-reduction. APX-hard problems do not ad-
mit a polynomial-time approximation scheme (PTAS), un-
less P=NP. To show that a problem is APX-hard, it suffices 
to show that an APX-complete problem is L-reducible to 
it [2].

Recall that, given two NP optimization problems 
∏

and 
∏′ , we say that 

∏
is L-reducible to 

∏′ if there ex-
ists a polynomial-time transformation from instances of 

∏
to instances of 

∏′ and positive constants α and β such 
that for every instance X of 

∏
, we have: opt∏′ ( f (X)) ≤

α · opt∏(X), and for every feasible solution y′ of f (X)

with objective value c2 we can compute in polynomial 
time a solution y of X with objective value c1 such that 
|opt∏(X) − c1| ≤ β · |opt∏′ ( f (X)) − c2|.

In what follows, we consider VCP and DOM-T as opti-
mization problems. We have:

Theorem 5. DOM-T is APX-hard for bipartite subcubic graphs.

Proof. Since VCP is APX-complete for cubic graphs [1], it 
suffices to show that VCP in cubic graphs is L-reducible 
to DOM-T in bipartite subcubic graphs. Consider the 
polynomial-time transformation described in Theorem 4, 
that starts from an instance of VCP given by a cubic 
graph G (not necessarily planar) and computes an instance 
G ′ of DOM-T. By Theorem 4, we have γt(G ′) = τ (G) +
|E(G)|. Moreover, since G is cubic, every vertex in a ver-
tex cover of G covers exactly 3 edges, hence τ (G) ≥ |E(G)|

3 . 
This implies that γt(G ′) = τ (G) + |E(G)| ≤ 4τ (G), hence 
the first condition in the definition of L-reducibility is sat-
isfied with α = 4. The second condition in the definition 
of L-reducibility states that for every total dominating set 
D , we can compute in polynomial time a vertex cover S of 
G such that |S| − τ (G) ≤ β · (|D| − γt(G ′)) for some β > 0. 
We claim that this can be achieved with β = 1. Indeed, 
the proof of Theorem 4 shows how one can transform in 
polynomial time any total dominating set D in G ′ to a ver-
tex cover S of G such that |S| ≤ |D| − |E(G)|. Therefore, 
|S| − τ (G) ≤ |D| −|E(G)| − τ (G) = |D| −γt(G ′). This shows 
that VCP in cubic graphs is L-reducible to DOM-T in bipar-
tite subcubic graphs, and completes the proof. �

Notice that for a bipartite planar graph and an integer 
k ≥ 4, there is no k-tuple total dominating function. For the 
remaining values of k and a given graph G , we construct 
a graph W (G) by adding to each v ∈ V (G), a graph G v
with 2k vertices and isomorphic to Gk−1, with k = 2, 3 (see 
Fig. 1), and the edge v1v , where 1v is any vertex in the 
outer face of G v .

Lemma 6. For k = 2, 3 and any graph G, γ×(k−1),t(G) =
γ×k,t(W (G)) − 2k|V (G)|.

Proof. Let f be a (k − 1)-tuple total dominating function 
of G and define f̃ : V (W (G)) → {0, 1} such that f̃ (v) =
f (v) for v ∈ V (G) and f̃ (u) = 1 for u ∈ ⋃

v∈V (G)

V (G v ). It 

turns out that f̃ is a k-tuple total dominating function of 
W (G). Then γ×k,t(W (G)) ≤ γ×(k−1),t(G) + 2k|V (G)|.

Conversely, let f̃ be a k-tuple total dominating function 
of W (G). Notice that f̃ (u) = 1 for u ∈ ⋃

v∈V (G)

V (G v ). Define 

f : V (G) → {0, 1} such that f (v) = f̃ (v) for v ∈ V (G). It 
is not difficult to see that f is a (k − 1)-tuple total dom-
inating function of G and f (V (G)) = f̃ (V (G)) − 2k|V (G)|. 
Thus γ×(k−1),t(G) ≤ γ×k,t(W (G)) − 2k|V (G)|.

Hence we have proved that γ×k,t(W (G)) = γ×(k−1),t(G)

+ 2k|V (G)| and the result follows. �
When G is bipartite planar, it is clear that W (G) is 

also bipartite planar. Thus, as a consequence of the lemma 
above we have:

Theorem 7. k-DOM-T is NP-complete for bipartite planar
graphs, for k ∈ {2, 3}.
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Proof. Clearly, k-DOM-T on bipartite planar graphs is NP. 
As a consequence of Lemma 6, we can prove that this 
problem is NP-complete. �
Lemma 8. For any k and graph G, γ{k},t(H(G)) = γ{

⌊
k
2

⌋
},t(G) +

|V (G)|γ{k},t(C6).

Proof. Given a graph G , define a graph H(G) by adding to 
each vertex v ∈ V (G), a graph G v

3 and an edge vu1
v (see 

Fig. 1).
Clearly, when G is a bipartite planar graph, H(G) also 

is. Besides, it is clear that H(G) can be built in polynomial 
time.

Let g : V (G) → {0, . . . , k} be a minimum total
{
 k

2 �}-dominating function of G . We define ĝ : V (H(G)) →
{0, . . . , k} as follows: for each v ∈ V (G), ĝ(v) = g(v), 
ĝ(w1

v) = 0, ĝ(u1
v) = ĝ(u2

v) = ĝ(u5
v) = ĝ(u6

v) =
⌈

k
2

⌉
, and 

ĝ(u3
v) = ĝ(u4

v) =
⌊

k
2

⌋
. It is not hard to see that ĝ is a total 

{k}-dominating function of H(G). Therefore,

γ{k},t(H(G)) ≤ ĝ(V (H(G)))

= γ{
⌊

k
2

⌋
},t(G) + |V (G)|γ{k},t(C6).

To see the converse inequality, let ĥ : V (H(G)) →
{0, . . . , k} be a total {k}-dominating function of H(G). Since 
N(w1

v) ⊆ N(u1
v) for every v ∈ V (G), it is not difficult to 

prove that we can assume ĥ(w1
v) = 0 for all v ∈ V (G). We 

will construct a total {k}-dominating function f̂ of H(G)

such that f̂ (V (H(G))) ≤ ĥ(V (H(G))), according to the fol-
lowing procedure: for each v ∈ V (G):

Case 1: ĥ(u1
v) ≥

⌈
k
2

⌉
. First, observe that N(v) ∩ V (G) �= ∅

since G has no isolated vertices. Besides, note that 
ĥ({u2

v , u4
v , u6

v}) ≥ 3k
2 and ĥ({u4

v)) = ĥ(u3
v) + ĥ(u5

v) ≥
k. Then ĥ({u2

v , u3
v , u4

v , u5
v , u6

v}) ≥
⌈

5k
2

⌉
, which implies 

ĥ(V (G v
3)) ≥

⌈
5k
2

⌉
+

⌈
k
2

⌉
+ (ĥ(u1

v) −
⌈

k
2

⌉
). We de-

fine f̂ (u1
v) = f̂ (u2

v) = f̂ (u5
v) = f̂ (u6

v) =
⌈

k
2

⌉
, f̂ (u3

v) =
f̂ (u4

v) =
⌊

k
2

⌋
, f̂ (xv ) = min{ĥ(xv ) + ĥ(u1

v) −
⌈

k
2

⌉
, k} for 

some xv ∈ N(v) ∩ V (G) and f̂ (z) = ĥ(z) for all the re-
maining vertices.

Case 2: 0 ≤ ĥ(u1
v) ≤

⌈
k
2

⌉
−1. First, observe that ĥ(N(w1

v)) =
ĥ(u2

v) + ĥ(u6
v) ≥ k, ĥ(N(u2

v)) = ĥ(u1
v) + ĥ(w1

v) + ĥ(u3
v) =

ĥ(u1
v) + ĥ(u3

v) ≥ k, ĥ(N(u3
v)) = ĥ(u2

v) + ĥ(u4
v) ≥ k, 

ĥ(N(u4
v)) = ĥ(u3

v) + ĥ(u5
v) ≥ k, ĥ(N(u5

v)) = ĥ(u4
v) +

ĥ(w6
v) ≥ k, and ĥ(N(u6

v)) = ĥ(u1
v) + ĥ(w1

v) + ĥ(u5
v) =

ĥ(u1
v) + ĥ(u5

v) ≥ k.
Therefore, ĥ(V (G v

3)) ≥ γ{k},t(C6).

Then, we define f̂ (u1
v) = f̂ (u2

v) = f̂ (u5
v) = f̂ (u6

v) =⌈
k
2

⌉
, f̂ (u3

v) = f̂ (u4
v) =

⌊
k
2

⌋
and f̂ (z) = ĥ(z) for all the 

remaining vertices.
From its construction, in both cases f̂ is a {k}-domi-
nating function of H(G) such that f̂ (H(G))) ≤ ĥ(V (H(G))), 
as desired. Besides, f̂ (u1

v) =
⌈

k
2

⌉
for all v ∈ V (G) which 

implies that the restriction of f̂ to G is a total {
 k
2 �}-domi-

nating function of G . As f̂ (V (G v
3)) = γ{k},t(C6) for all v ∈

V (G), we have f̂ (V (H(G))) ≥ γ{
⌊

k
2

⌋
},t(G) +|V (G)|γ{k},t(C6), 

hence

γ{k},t(H(G)) ≥ γ{
⌊

k
2

⌋
},t(G) + |V (G)|γ{k},t(C6). �

As a consequence of the lemma above, we obtain:

Theorem 9. For every fixed k ∈ Z+ , {k}-DOM-T is NP-complete 
for bipartite planar graphs.

Proof. Clearly, {k}-DOM-T on bipartite planar graphs is in 
NP and, from Theorem 4, DOM-T is NP-complete on bipar-
tite planar graphs. Besides, it is not difficult to prove that 
γ{k},t(C6) = 3k + 1.

Now, Lemma 8 implies that, given a positive inte-
ger m, γ{

⌊
k
2

⌋
},t(G) ≤ m if and only if γ{k},t(H(G)) −

|V (G)|γ{k},t(C6) ≤ m. �
3. Bipartite distance-hereditary graphs

A graph G is distance-hereditary if for each induced con-
nected subgraph G ′ of G and all x, y ∈ V (G ′), the distances 
in G and in G ′ between x and y coincide. A graph is bi-
partite distance-hereditary (BDH, for short) if it is distance-
hereditary and bipartite. It is known that a graph G is 
distance-hereditary if and only if it can be constructed 
from K1 (a single vertex) by a sequence of three opera-
tions: adding a pendant vertex, creating a true twin vertex 
and creating a false twin vertex [3].

A pruning sequence of a graph G is a total ordering 
σ = [x1, . . . , x|V (G)|] of V (G) and a sequence Q of words 
qi = (xi, Z , yi) for i = 1, . . . , |V (G)| −1, where Z ∈ {P , F , T }
and such that, for i ∈ {1, . . . , |V (G)| − 1}, if Gi = G \
{x1, . . . , xi−1} then, Z = P if xi is a pendant vertex and 
yi = s(xi) its neighbour in Gi , Z = F if xi and yi are false 
twins in Gi , and Z = T if xi and yi are true twins in Gi .

Distance-hereditary graphs are characterized as those 
graphs that admit a pruning sequence [12] that can be ob-
tained in O (|V (G)| +|E(G)|)-time [11]. On the other hand, 
BDH graphs are characterized as the graphs that can be 
constructed from K1 by a sequence of additions of false 
twins and pendant vertices. Then, a pruning sequence of a 
connected BDH graph has no words (x, T , y), except possi-
bly (x|V (G)|−1, T , y|V (G)|−1).

As mentioned in Section 1, we know that k-DOM-
T and {k}-DOM-T can be solved in linear time for BDH 
graphs. However, there is not a specific algorithm for 
this graph class that solves these problems. In this sec-
tion, we present a simple and easy to implement linear 
time algorithm that, in particular, returns a minimum total 
{k}-dominating function for a given BDH graph.

To this end, let us introduce a more general variation of 
total domination.
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Definition 10. Let G be a graph, k a positive integer 
and r(v), m(v) ∈ {0, . . . , k} for each v ∈ V (G). A total 
(r, m)-dominating function of G is a function f : V �→
{0, . . . , k} such that f (N(v)) ≥ r(v) and f (v) ≥ m(v) for 
all v ∈ V (G). The minimum weight of a total (r, m)-domi-
nating function of G is called the total (r, m)-domination 
number of G and denoted by γ(r,m),t(G).

Algorithm 1 (r, m)-TotalDomBDH(G, k, r, m, f ).
Require: A connected BDH graph G with |V (G)| ≥ 2, k ∈ Z

+ , r, m :
V (G) �→ {0, . . . , k}.

Ensure: A minimum total (r, m)-dominating function f of G .
1: Obtain a pruning sequence with Q = [q1, . . . , q|V (G)|−1] of G
2: if |V (G)| ≥ 3 then
3: for i = 1 to |V (G)| − 2 do
4: if qi = (xi , P , yi) then
5: r(yi) = max{r(yi) −m(xi), 0} and m(yi) = max{m(yi), r(xi)}
6: else
7: for v ∈ N(xi) do
8: r(v) = max{r(v) −m(xi), 0} and r(yi) = max{r(yi), r(xi)}
9: end for

10: end if
11: G = G − xi and f (xi) = m(xi)

12: end for
13: else
14: f (x1) = max{r(x2), m(x1)} and f (x2) = max{r(x1), m(x2)}
15: end if

Algorithm 1 is based on the following results:

Remark 11. Let V (K2) = {v1, v2}, k be a positive integer 
and r(vi), m(vi) ∈ {0, . . . , k} for i = 1, 2. Then, a minimum 
total (r, m)-dominating function f of K2 is defined by 
f (vi) = max{r(v j), m(vi)} with i, j = 1, 2 and i �= j.

Lemma 12. Let G be a connected graph with |V (G)| ≥ 3, k a 
positive integer and r(x), m(x) ∈ {0, . . . , k} for every x ∈ V (G). 
Let v, v ′ ∈ V such that N(v) ⊆ N(v ′). Then, there exists a 
minimum total (r, m)-dominating function f of G such that 
f (v) = m(v).

Proof. Let f ′ be a minimum total (r, m)-dominating func-
tion of G such that f ′(v) > m(v). Consider f : V �→
{0, . . . , k} such that f (v ′) = min{ f ′(v ′) + f ′(v) − m(v), k}, 
f (v) = m(v) and f (x) = f ′(x) o.w. It is not difficult to 
prove that f is a total (r, m)-dominating function of G and 
f (V (G)) ≤ f ′(V (G)). �
Proposition 13. Let G be a connected graph with |V (G)| ≥ 3, 
k a positive integer and r(x), m(x) ∈ {0, . . . , k} for every x ∈
V (G). We have:

• When w is a pendant vertex of G and u its neighbour, 
γ(r,m),t(G) = γ(r′,m′),t(G − w) + m(w) where r′(u) =
max{r(u) − m(w), 0}, m′(u) = max{m(u), r(w)} and 
r′(x) = r(x) and m′(x) = m(x) if x ∈ V (G) − {w, u}.

• When v and v ′ are false twins in G, γ(r,m),t(G) = γ(r′,m′),t ×
(G − v ′) + m(v ′) where r′(v) = max{r(v), r(v ′)}, r′(u) =
max{r(u) − m(v ′), 0} if u ∈ N(v ′), r′(x) = r(x) if x ∈
V − ({v, v ′} ∪ N(v ′)) and m′(x) = m(x) for every x ∈
V (G) − v ′ .
Proof. Let f be a minimum total (r, m)-dominating func-
tion of G and w a pendant vertex of G . W.l.o.g from 
Lemma 12 we suppose that f (w) = m(w). Consider 
f ′ , the restriction of f to V − w . Note that f ′(u) =
f (u) ≥ max{m(u), r(w)} = m′(u) and f ′(N(u)) = f (N(u) −
w) = f (N(u)) − f (w) = f (N(u)) − m(w) ≥ max{r(u) −
m(w), 0} = r′(u). Thus, f ′ is a total (r′, m′)-dominating 
function of G − v ′ and f ′(V − w) = f (V ) − m(w). Thus 
γ(r,m),t(G) ≥ γ(r′,m′),t(G − w) + m(w).

To prove the converse inequality it is enough to see that 
if f ′ is a total (r′, m)-dominating function of G − w , then 
the function f : V �→ {0, . . . , k} such that f (w) = m(w)

and f (x) = f ′(x) o.w. is a total (r, m)-dominating function 
of G .

Let f be a minimum total (r, m)-dominating function 
of G and v and v ′ false twins in G . W.l.o.g from Lemma 12
we suppose that f (v) = m(v). Consider f ′ , the restric-
tion of f to V − v . Note that f ′(N(v)) = f (N(v ′)) ≥
max{r(v), r(v ′)} = r′(v) and f ′(N(u)) = f (N(u)) − f (v) =
f (N(u)) − m(v) ≥ max{r(u) − m(v), 0} = r′(u). Thus f ′ is 
total (r′, m′)-dominating function of G −v ′ and f ′(V −v) =
f (V ) − m(v). Thus γ(r,m),t(G) ≥ γ(r′,m′),t(G − v) + m(v).

To prove the converse inequality it is enough to see 
that if f ′ is a total (r′, m)-dominating function of G − v , 
then the function f : V �→ {0, . . . , k} such that f (v) = m(v)

and f (x) = f ′(x) o.w. is a total (r, m)-dominating function 
of G . �

Finally, we have:

Theorem 14. Algorithm 1 returns a minimum weight total 
(r, m)-dominating function for a connected BDH graph G in 
O (|V (G)| + |E(G)|)-time.

From Proposition 13, the correctness of Algorithm 1
holds.

As a total (k, 0)-dominating function is a total {k}-domi-
nating function, we obtain as a corollary of the above theo-
rem, that Algorithm 1 returns a minimum total
{k}-dominating function of any given connected BDH 
graph in linear time. Notice that in this case, the total 
(k, 0)-dominating function f returned by Algorithm 1 ver-
ifies f (v) ∈ {0, k}. Then, from Lemma 2 we know how to 
calculate its weight:

Proposition 15. Let G be a BDH graph and k a positive integer. 
Then, γ{k},t(G) = k · γt(G).

Appendix

The vocabulary {E} consisting of one binary relation 
symbol E is denoted by τ1. For a graph G , G(τ1) denotes 
the presentation of G as a τ1-structure < V , E >, where 
V is the domain of the logical structure (V (G)) and E is 
the binary relation corresponding to the adjacency matrix 
of G .

Regarding graph properties, if a formula can be defined 
using vertices and sets of vertices of a graph, the logical 
operators OR, AND, NOT (denoted by ∨, ∧, ¬), the logi-
cal quantifiers ∀ and ∃ over vertices and sets of vertices, 
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the membership relation ∈ to check whether an element 
belongs to a set, the equality operator = for vertices and 
the binary adjacency relation adj, where adj(u, v) holds if 
and only if vertices u and v are adjacent, then the formula 
is expressible in τ1-monadic second-order logic, MSOL(τ1) 
for short.

An optimization problem P is a LinEMSOL(τ1) optimiza-
tion problem over graphs, if it can be defined in the fol-
lowing form: Given a graph G presented as a τ1-structure 
and functions f1, . . . , fm associating integer values to the 
vertices of G , find an assignment z to the free variables in 
θ such that
∑

1≤i≤l
1≤ j≤m

aij|z(Xi)| j

= opt{
∑

1≤i≤l
1≤ j≤m

aij|z′(Xi)| j : θ(X1, . . . , Xl)

is true for G and z′},
where θ is an MSOL(τ1) formula having free set vari-
ables X1, . . . , Xl , aij : i ∈ {1, . . . , l}, j ∈ {1, . . . , m} are integer 
numbers and |z(Xi)| j := ∑

a∈z(Xi)
f j(a). More details can 

be found for example in [5] and in [14].
It has been shown that MSOL(τ1) is particularly useful 

when combined with the concept of the graph parameter 
clique-width.

With every p-graph G , an algebraic expression built us-
ing the following operations can be associated: creation of 
a vertex with label i, disjoint union, renaming label i to la-
bel j and connecting all vertices with label i to all vertices 
with label j, for i �= j.

If all the labels in the expression of G are in {1, . . . , q}
for positive integer q, the expression is called a q-expression
of G . It is clear to see that there is a |V (G)|-expression 
which defines G , for every graph G . For a positive integer 
q, C(q) denotes the class of p-graphs which can be defined 
by q-expressions. The clique-width of a p-graph G , denoted 
by cwd(G), is defined by cwd(G) = min{q : G ∈ C(q)}.

We can prove:

Theorem 16. Let k, q ∈ Z+ . Then, k-DOM-T and {k}-DOM-T 
can be solved in polynomial time for the family of graphs with 
clique-width at most q.

Proof. Based on Theorem 1, we first prove that k-DOM-T 
is a LinEMSOL(τ1) optimization problem.

Given a graph G presented as a τ1-structure G(τ1)

and one evaluation function (the constant function that 
associates 1’s to the vertices of G) and denoting by 
X(u) the atomic formula indicating that u ∈ X , find-
ing the k-tuple total domination number of G , γ×k,t(G), 
is equivalent to finding an assignment z to the free 
set variable X in θ such that |z(X)|1 = min{|z′(X)|1 :
θ(X) is true for G and z′}, where

θ(X) = ∀v

⎛
⎝ ∧

1≤r≤k

Ar(X, v, u1, . . . , ur)

⎞
⎠ ,
with A1(X, v, u1) := ∃u1 [X(u1) ∧ adj(v, u1)], and for each 
r > 1

Ar(X, v, u1, . . . , ur)

:= ∃ur

⎡
⎣X(ur) ∧ adj(v, ur) ∧

∧
1≤i≤r−1

¬(ur = ui)

⎤
⎦ .

Hence for fixed q, k-DOM-T can be solved in polynomial 
time on the family of graphs with clique-width bounded 
by q.

Finally, let us consider the following graph operation: 
for disjoint graphs G and H and v ∈ V (G), G[H/v] denotes 
the graph obtained by the substitution in G of v by H , i.e. 
V (G[H/v]) = V (G) ∪ V (H) − {v} and

E(G[H/v])
= E(H) ∪ {e : e ∈ E(G) and e is not incident with v} ∪

{uw : u ∈ V (H), w ∈ V (G) and

w is adjacent to v in G}.
In [5] it is also proved that cwd(G[H/v]) =

max{cwd(G), cwd(H)} for every pair of disjoint graphs 
G and H and v ∈ V (G). This, together with the fact that 
cwd(Sk) = 1 for every k, imply that, if G is a graph having 
clique-width bounded by q, then G ◦ Sk also is for every 
k, concluding that also {k}-DOM-T can be solved in poly-
nomial time on the family of graphs with clique-width 
bounded by q, for fixed q. �
References

[1] P. Alimonti, V. Kann, Some APX-completeness results for cubic 
graphs, Theor. Comput. Sci. 237 (1–2) (2000) 123–134.

[2] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-
Spaccamela, M. Protasi, Complexity and Approximation, Springer-
Verlag, Berlin, 1999.

[3] H.J. Bandelt, H.M. Mulder, Distance-hereditary graphs, J. Comb. The-
ory, Ser. B 41 (1986) 182–208.

[4] E.J. Cockayne, R.M. Dawes, S.T. Hedetniemi, Total domination in 
graphs, Networks 10 (1980) 211–219.

[5] B. Courcelle, J.A. Makowsky, U. Rotics, Linear time solvable optimiza-
tion problems on graphs of bounded clique width, Theory Comput. 
Syst. 33 (2000) 125–150.

[6] M.C. Golumbic, U. Rotics, On the clique-width of perfect graph 
classes, Lect. Notes Comput. Sci. 1665 (1999) 135–147.

[7] M. Garey, D. Johnson, Computers and Intractability: A Guide to the 
Theory of NP-Completeness, Macmillan Higher Education, 1979.

[8] J. He, H. Liang, Complexity of total {k}-domination and related prob-
lems, Lect. Notes Comput. Sci. 6681 (2011) 147–155.

[9] M.A. Henning, A.P. Kazemi, k-tuple total domination in graphs, Dis-
crete Appl. Math. 158 (2010) 1006–1011.

[10] M.A. Henning, A. Yeo, Total Domination in Graphs, Springer Monogr. 
Math., Springer, New York, 2013.

[11] G. Damiand, M. Habib, C. Paul, A simple paradigm for graph recogni-
tion: application to cographs and distance hereditary graphs, Theor. 
Comput. Sci. 263 (2001) 99–111.

[12] P.L. Hammer, F. Maffray, Completely separable graphs, Discrete Appl. 
Math. 27 (1990) 85–99.

[13] N. Li, X. Hou, On the total {k}-domination number of Cartesian prod-
ucts of graphs, J. Comb. Optim. 18 (2009) 173–178.

[14] S. Oum, P. Seymour, Approximating clique-width and branch-width, 
J. Comb. Theory, Ser. B 96 (2006) 514–528.

[15] D. Pradhan, Algorithmic aspects of k-tuple total domination in 
graphs, Inf. Process. Lett. 112 (2012) 816–822.

http://refhub.elsevier.com/S0020-0190(18)30132-7/bib5643506375626963s1
http://refhub.elsevier.com/S0020-0190(18)30132-7/bib5643506375626963s1
http://refhub.elsevier.com/S0020-0190(18)30132-7/bib415058s1
http://refhub.elsevier.com/S0020-0190(18)30132-7/bib415058s1
http://refhub.elsevier.com/S0020-0190(18)30132-7/bib415058s1
http://refhub.elsevier.com/S0020-0190(18)30132-7/bib626D2D31393836s1
http://refhub.elsevier.com/S0020-0190(18)30132-7/bib626D2D31393836s1
http://refhub.elsevier.com/S0020-0190(18)30132-7/bib636468s1
http://refhub.elsevier.com/S0020-0190(18)30132-7/bib636468s1
http://refhub.elsevier.com/S0020-0190(18)30132-7/bib636D72s1
http://refhub.elsevier.com/S0020-0190(18)30132-7/bib636D72s1
http://refhub.elsevier.com/S0020-0190(18)30132-7/bib636D72s1
http://refhub.elsevier.com/S0020-0190(18)30132-7/bib676F6Cs1
http://refhub.elsevier.com/S0020-0190(18)30132-7/bib676F6Cs1
http://refhub.elsevier.com/S0020-0190(18)30132-7/bib474As1
http://refhub.elsevier.com/S0020-0190(18)30132-7/bib474As1
http://refhub.elsevier.com/S0020-0190(18)30132-7/bib4865s1
http://refhub.elsevier.com/S0020-0190(18)30132-7/bib4865s1
http://refhub.elsevier.com/S0020-0190(18)30132-7/bib686Bs1
http://refhub.elsevier.com/S0020-0190(18)30132-7/bib686Bs1
http://refhub.elsevier.com/S0020-0190(18)30132-7/bib626F6F6Bs1
http://refhub.elsevier.com/S0020-0190(18)30132-7/bib626F6F6Bs1
http://refhub.elsevier.com/S0020-0190(18)30132-7/bib4448502D32303031s1
http://refhub.elsevier.com/S0020-0190(18)30132-7/bib4448502D32303031s1
http://refhub.elsevier.com/S0020-0190(18)30132-7/bib4448502D32303031s1
http://refhub.elsevier.com/S0020-0190(18)30132-7/bib48462D31393930s1
http://refhub.elsevier.com/S0020-0190(18)30132-7/bib48462D31393930s1
http://refhub.elsevier.com/S0020-0190(18)30132-7/bib6C68s1
http://refhub.elsevier.com/S0020-0190(18)30132-7/bib6C68s1
http://refhub.elsevier.com/S0020-0190(18)30132-7/bib4F756D536579s1
http://refhub.elsevier.com/S0020-0190(18)30132-7/bib4F756D536579s1
http://refhub.elsevier.com/S0020-0190(18)30132-7/bib7072s1
http://refhub.elsevier.com/S0020-0190(18)30132-7/bib7072s1

	Complexity of k-tuple total and total {k}-dominations for some subclasses of bipartite graphs
	1 Introduction and preliminaries
	1.1 First results

	2 NP-completeness and inapproximability results
	3 Bipartite distance-hereditary graphs
	References


