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Abstract. A graph is k-connected if it has k internally-disjoint paths
between every pair of nodes. A subset S of nodes in a graph G is a k-

connected set if the subgraph G[S] induced by S is k-connected; S is
an m-dominating set if every v ∈ V \ S has at least m neighbors in
S. If S is both k-connected and m-dominating then S is a k-connected

m-dominating set, or (k,m)-cds for short. In the k-Connected m-

Dominating Set ((k,m)-CDS) problem the goal is to find a minimum
weight (k,m)-cds in a node-weighted graph. We consider the case m ≥ k

and obtain the following approximation ratios. For unit disc-graphs we
obtain ratio O(k ln k), improving the ratio O(k2 ln k) of [5,15]. For general
graphs we obtain the first non-trivial approximation ratio O(k2 lnn).

1 Introduction

A graph is k-connected if it has k internally disjoint paths between every pair of
its nodes. A subset S of nodes in a graphG is a k-connected set if the subgraph
G[S] induced by S is k-connected; S is an m-dominating set if every v ∈ V \S
has at least m neighbors in S. If S is both k-connected and m-dominating set
then S is a k-connected m-dominating set, or (k,m)-cds for short. A graph
is a unit-disk graph if its nodes can be located in in the Euclidean plane such
that there is an edge between nodes u and v iff the Euclidean distance between u
and v is at most 1. We consider the following problem for m ≥ k both in general
graphs and in unit-disc graphs.

k-Connected m-Dominating Set ((k,m)-CDS)
Input: A graph G = (V,E) with node weights {wv : v ∈ V } and integers k,m.
Output: A minimum weight (k,m)-cds S ⊆ V .

The case k = 0 is the m-Dominating Set problem. Let αm denote the
best known ratio for m-Dominating Set; currently αm = O(1) in unit-disc
graphs [5] and αm = ln(∆ + m) + 1 < ln∆ + 1.7 in general graphs [4], where
∆ is the maximum degree of the input graph. The (k,m)-CDS problem with
m ≥ k was studied extensively. In recent papers Zhang, Zhou, Mo, and Du [15]
and Fukunaga [5] obtained ratio O(k2 ln k) for the problem in unit-disc graphs.
For unit-disc graphs and k = 2 Zhang et al. [15] also obtained an improved
ratio αm + 5. In a related paper Zhang et al. [16] obtained ratio O(k ln∆) in
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general graphs with unit weights, mentionning that no non-trivial approximation
algorithm for arbitrary weights is known.

Let us say that a graph with a designated set T of terminals and a root node
r is k-(T, r)-connected if it contains k internally-disjoint rt-paths for every
t ∈ T . Our ratios for (k,m)-CDS are expressed in terms of αm and the best
ratio for the following known problem:

Rooted Subset k-Connectivity

Input: A graph G = (V,E) with edge-costs/node-weights, a set T ⊆ V of
terminals, a root node r ∈ V \ T , and an integer k.
Output: A minimum cost/weight k-(T, r)-connected subgraph of G.

Let βk and β′
k
denote the best known ratios for the Rooted Subset k-

Connectivity problem with edge-costs and node-weights, respectively. Cur-
rently, βm = O(1) in unit-disc graphs [5], while in general graphs β2 = 2 [3],
β3 = 6 2

3 [13], and βk = O(k ln k) for k ≥ 4 [11]. We also have β′
k
= O(k2 lnn) by

[11] and the correction of Vakilian [14] to the algorithm and the analysis of [11];
see also [6].

Our main results are summarized in the following theorem.

Theorem 1. Suppose that the m-Dominating Set problem admits ratio αm

and that the Rooted Subset k-Connectivity problem admits ratios βk for

edge-costs and β′
k
for node-weights. Then (k,m)-CDS with m ≥ k admits ratios

αm + β′
k
+ 2(k − 1) = O(k2 lnn) for general graphs and αm + 5βk + 2(k − 1) =

O(k ln k) for unit-disc graphs. Furthermore, (3,m)-CDS on unit-disc graphs ad-

mits ratio αm + 5β3 = αm + 33 1
3 .

Our algorithm uses the main ideas as well as partial results from the papers of
Zhang et al. [15] and Fukunaga [5]. Let us say that a graph G is k-T -connected
if G contains k internally-disjoint paths between every pair of nodes in T . Both
papers [15,5] consider unit-disc graphs and reduce the (k,m)-CDS problem with
m ≥ k to the Subset k-Connectivity problem: given a graph with edge costs
and a subset T of terminals, find a minimum cost k-T -connected subgraph. The
problem admits a trivial ratio |T |2 for both edge-costs and node-weights, while

for |T | > k the best known ratios are |T |
|T |−k

O(k ln k) = O(k2 ln k) for edge-costs

and |T |
|T |−k

O(k2 lnn) = O(k3 lnn) for node-weights [12]; see also [8]. In fact, these

ratios are derived by applying O(k) times the algorithm for the Rooted Subset

k-Connectivity problem. The main reason for our improvement over the ratios
of [15,5] is a reduction to the easierRooted Subset k-Connectivity problem.
For small values of k we present a refined reduction, but for unit disc graphs
and k = 2 the performance of our algorithm and that of [15] coincide, since for
k = 2 and edge-costs both Subset k-Connectivity and Rooted Subset

k-Connectivity admit ratio 2 [3].



2 Proof of Theorem 1

For an arbitrary graph H = (U, F ) and u, v ∈ U let κH(u, v) denote the max-
imum number of internally disjoint uv-paths in H . We say that H is k-in-
connected to r if H is k-(U \ {r}, r)-connected, namely, if κH(v, r) ≥ k every
v ∈ U \ {r}. For A ⊆ U let ΓH(A) denote the set of neigbors of A in H . The
proof of the following known statement can be found in [7], see also [1,2]; part (i)
of the lemma relies on the Maders Undirected Critical Cycle Theorem [9].

Lemma 1. Let Hr be k-in-connected to r and let R = ΓHr
(r).

(i) The graph H = Hr \ {r} can be made k-connected by adding a set J of new

edges on R; furthermore, if J is inclusionwise-minimal then J is a forest.
(ii) Suppose that |R| = k. If k = 2, 3 then Hr is k-connected.

Note that an inclusionwise-minimal edge set J as in Lemma 1(i) can be com-
puted in polynomial time, by starting with J being a clique on R and repeatedly
removing from J an edge e if H ∪ (J \ e) remains k-connected.

A reason why the case m ≥ k is easier is given in the following lemma.

Lemma 2. If a graph H = (V,E) has a k-dominating set T such that H is

k-T -connected then H is k-connected.

Proof. By a known characterization of k-connected graphs, it is sufficient to
show that |V \ (A ∪ B)| ≥ k holds for any subpartition A,B of V such that E
has no edge between A and B. If both A∩T,B∩T are non-empty, this is so since
H is k-T -connected. Otherwise, if say A∩T = ∅, then since T is a k-dominating
set we have |ΓH(A)| ≥ k, and the result follows. ⊓⊔

Finally, we will need the following known fact, c.f. [11].

Lemma 3. Given a pair s, t of nodes in a node-weighted graph G, the problem

of finding a minimum weight node set Pst such that G[Pst] has k internally-

disjoint st-paths admits a 2-approximation algorithm.

For arbitrary k, we will show that the following algorithm achieves the desired
approximation ratio.

Algorithm 1: (G = (V,E), w,m ≥ k)

1 compute an αm-approximate m-dominating set T
2 construct a graph Gr by adding to G a new node r connected to a set

R ⊆ T of k nodes by a set Fr = {rv : v ∈ R} of new edges
3 compute a β′

k
-approximate node set S ⊆ V \ T such that the subgraph Hr

of Gr induced by T ∪ S ∪ {r} is k-(T, r)-connected
4 let H = H \ {r} = G[T ∪ S] and let J be a forest of new edges on R as in

Lemma 1(i) such that the graph H ∪ J is k-connected
5 for every uv ∈ J find a 2-approximate node set Puv such that

G[T ∪ S ∪ Puv] has k internally-disjoint uv-paths; let P =
⋃

uv∈J

Puv

6 return T ∪ S ∪ P



We now prove that the solution computed is feasible.

Lemma 4. The computed solution is feasible, namely, at the end of the algo-

rithm T ∪ S ∪ P is a (k,m)-cds.

Proof. Since T is an m-dominating set, so is any superset of T . Thus the node
set T ∪ S ∪ P returned by the algorithm is an m-dominating set.

It remains to prove that T ∪ S ∪ P is a k-connected set. We first prove that
the graph Hr computed at step 3 is k-in-connected to r. By Menger’s Theorem,
κHr

(v, r) ≥ k iff for all A ⊆ T ∪ S with v ∈ A

|ΓHr\R(A)|+ |A ∩R| ≥ k . (1)

Let ∅ 6= A ⊆ T ∪ S. If A ∩ T 6= ∅ then (1) holds since Hr is k-(T, r)-connected.
If A ∩ S 6= ∅ then |ΓHr\R(A)| ≥ m ≥ k, since T is an m-dominating set and
thus every node in A∩S has at least m neighbors in T . In both cases, (1) holds,
hence Hr is k-in-connected to r.

The graph H∪J is k-connected, which implies that the graph G[T ∪S∪P ] is
(T ∪S)-k-connected and thus T -k-connected. Furthermore, T is a k-dominating
set, since m ≥ k. Applying Lemma 2 on the graph G[T ∪S ∪P ] we get that this
graphs is k-connected, as required. ⊓⊔

Lemma 5. Algorithm 1 has ratio αm + β′
k
+ 2(k − 1).

Proof. Let S∗ be an optimal solution to (k,m)-CDS. Clearly, w(T ) ≤ αmw(S∗) ≤
β′
k
w(S∗). We claim that w(S) ≤ β′

k
w(S∗ \ T ). For this note that S∗ \ T is a fea-

sible solution to the problem considered at step 3 of the algorithm, while S is a
β′
k
-approximate solution. For the same reason, for each uv ∈ J the set S∗\(T∪S)

is a feasible solution to the problem considered at step 5, while the set Puv com-
puted is a 2-approximate solution; thus w(Puv) ≤ 2w(S∗ \ (T ∪S)). Finally, note
that |J | ≤ k − 1, and thus w(P ) ≤ 2(k − 1)w(S∗). The lemma follows. ⊓⊔

This concludes the proof of the case of general k and general graphs. Let us
now consider unit disc graphs. Then we use the following result of [15].

Theorem 2 (Zhang, Zhou, Mo, and Du [15]). Any k-connected unit-disc

graph has a k-connected spanning subgraph of maximum degree at most 5 if

k = 2, and at most 5k if k ≥ 3.

Note that any k-connected graph has minimum degree k. Thus Theorem 2
implies that when searching for a k-connected subgraph in a unit disc graph, one
can convert node-weights to edge-costs while invoking in the ratio only a factor
of 5/2 in the case k = 2 and 5 in the case k ≥ 3. Specifically, given node weights
{wv : v ∈ V } define edge-costs cuv = wu + wv. Then for any subgraph (S, F ) of
G with maximum degree ∆ and minimum degree δ we have:

δw(S) ≤ c(F ) ≤ ∆w(S)



since wv ≥ 0 for all v ∈ V and since

c(F ) =
∑

uv∈E

(wu + wv) =
∑

v∈V

dF (v)wv .

We may use this conversion in some steps of our algorithm, and specifically in
step 3, which concludes the proof of the case of general k and unit-disc graphs.

In the case k = 3 we use a result of Mader [10] that any edge-minimal

k-connected graph has at least (k−1)n+2
2k−1 nodes of degree k. At step 3 of the

algorithm we “guess” such a node r and the 3 edges incident to r in some edge-
minimal optimal solution, remove from G all other edges incident to r, and run
step 3 while omitting steps 4 and 5. By Lemma 1(ii) the graph G[S ∪ T ] will be
already 3-connected.
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