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Abstract

We consider the k-error linear complexity of a new binary sequence of period
p2, proposed in the recent paper “New generalized cyclotomic binary sequences
of period p2”, by Z. Xiao et al., who calculated the linear complexity of the se-
quences (Designs, Codes and Cryptography, 2017, https://doi.org/10.1007/s10623-
017-0408-7). More exactly, we determine the values of k-error linear complexity
over F2 for almost k > 0 in terms of the theory of Fermat quotients. Results
indicate that such sequences have good stability.

Keywords: cryptography, pseudorandom binary sequences, k-error linear com-
plexity, generalized cyclotomic classes, Fermat quotients.
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1 Introduction

Cyclotomic and generalized cyclotomic classes are widely adopted in cryptography.
They play an important role in the design of pseudorandom sequences. The typical
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examples are the Legendre sequences derived from cyclotomic classes modulo an odd
prime and the Jacobi sequences derived from generalized cyclotomic classes modulo
a product of two odd distinct primes. The generalized cyclotomic classes modulo a
general number (such as a prime-power) are also paid attention in the literature, see
the related works such as [2, 9, 10, 16, 18, 19] and references therein.

Recently, a new family of binary sequences were introduced by Xiao, Zeng, Li and
Helleseth [17] via defining the generalized cyclotomic classes modulo p2 for odd prime
p. Now we introduce the way of defining generalized cyclotomic classes modulo p2.

Let p− 1 = ef and g be a primitive root1 modulo p2. The generalized cyclotomic
classes for 1 ≤ j ≤ 2 is defined by

D
(pj ,f)
0 , {gkfp

j−1

(mod pj) : 0 ≤ k < e}

and

D
(pj ,f)
l , glD

(pj ,f)
0 = {gl · gkfp

j−1

(mod pj) : 0 ≤ k < e}, 1 ≤ l < fpj−1.

Then The authors of [17] chose even f and an integer b ∈ Z : 0 ≤ b < fp to define a
new p2-periodic binary sequence (sn):

sn =

{

0, if n (mod p2) ∈ C0,
1, if n (mod p2) ∈ C1,

(1)

where

C0 =

f−1
⋃

i=f/2

pD
(p)
i+b (mod f) ∪

pf−1
⋃

i=pf/2

D
(p2)
i+b (mod pf)

and

C1 =

f/2−1
⋃

i=0

pD
(p,f)
i+b (mod f) ∪

pf/2−1
⋃

i=0

D
(p2,f)
i+b (mod pf) ∪ {0}.

The notation pD
(p,f)
j above means that pD

(p,f)
j = {pv : v ∈ D

(p,f)
j }. They determined

the linear complexity (see below for the notion) of the proposed sequences (sn) for
f = 2r for some integer r ≥ 1.

Theorem 1. ( [17, Thm. 1]) Let (sn) be the binary sequence of period p2 defined in
Eq.(1) with f = 2r (integer r > 0) and any b for defining C0 and C1. If 2(p−1)/f 6≡ 1
(mod p2), then the linear complexity of (sn) is

LCF2((sn)) =

{

p2 − (p− 1)/2, if 2 ∈ D
(p,f)
0 ,

p2, if 2 6∈ D
(p,f)
0 .

1For our purpose, we will choose g such that the fermat quotient qp(g) = 1, see the notion in
Sect. 2.
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The linear complexity is an important cryptographic characteristic of sequences
and provides information on the predictability and thus unsuitability for cryptogra-
phy. Here we give a short introduction of the linear complexity of periodic sequences.
Let F be a field. For a T -periodic sequence (sn) over F, we recall that the linear
complexity over F, denoted by LCF((sn)), is the least order L of a linear recurrence
relation over F

sn+L = cL−1sn+L−1 + . . .+ c1sn+1 + c0sn for n ≥ 0,

which is satisfied by (sn) and where c0 6= 0, c1, . . . , cL−1 ∈ F. Let

S(X) = s0 + s1X + s2X
2 + . . .+ sT−1X

T−1 ∈ F[X ],

which is called the generating polynomial of (sn). Then the linear complexity over F
of (sn) is computed by

LCF((sn)) = T − deg
(

gcd(XT − 1, S(X))
)

, (2)

see, e.g. [8] for details.
For a sequence to be cryptographically strong, its linear complexity should be

large, but not significantly reduced by changing a few terms. This directs to the notion
of the k-error linear complexity. For integers k ≥ 0, the k-error linear complexity over
F of (sn), denoted by LCF

k ((sn)), is the smallest linear complexity (over F) that can be
obtained by changing at most k terms of the sequence per period, see [15], and see [11]
for the related even earlier defined sphere complexity. Clearly LCF

0 ((sn)) = LCF((sn))
and

T ≥ LCF

0 ((sn)) ≥ LCF

1 ((sn)) ≥ . . . ≥ LCF

w((sn)) = 0

when w equals the number of nonzero terms of (sn) per period, i.e., the weight of (sn).

The main contribution of this work is to determine the k-error linear complexity of
(sn) in Eq.(1) for any even number f (including f = 2r considered in [17]). The main
results are presented in the following two theorems. The proofs appear in Section 4.
Some necessary lemmas are introduced in Section 3. A crucial tool for the proof is
the Fermat quotients, which is introduced in Section 2.

Theorem 2. (Main theorem) Let (sn) be the binary sequence of period p2 defined in
Eq.(1) with even f and any b for defining C0 and C1. If 2 is a primitive root modulo
p2, then the k-error linear complexity of (sn) satisfies

LCF2

k ((sn)) =































p2, if k = 0,
p2 − 1, if 1 ≤ k < (p− 1)/2,
p2 − p, if (p− 1)/2 ≤ k < (p2 − p)/2,
p− 1, if k = (p2 − p)/2,
1, if k = (p2 − 1)/2,
0, if k ≥ (p2 + 1)/2,
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if p ≡ 3 (mod 8), and

LCF2
k ((sn)) =







































p2, if k = 0,
p2 − 1, if 1 ≤ k < (p− 1)/2,

p2 − p+ 1, if k = (p− 1)/2,
p2 − p, if (p+ 1)/2 ≤ k < (p2 − p)/2,

p, if k = (p2 − p)/2,
1, if k = (p2 − 1)/2,
0, if k ≥ (p2 + 1)/2,

if p ≡ 5 (mod 8).

2 Fermat quotients

In this section, we interpret that the construction of (sn) in Eq.(1) is related to Fermat
quotients. Certain similar constructions can be found in [3–7, 13].

For integers u ≥ 0, the Fermat quotient qp(u) is the value in {0, 1, . . . , p− 1} at u
defined by

qp(u) ≡
up−1 − 1

p
(mod p),

where gcd(u, p) = 1, if p|u we set qp(u) = 0, see [14].
Thanks to the facts that

{

qp(u+ ℓp) ≡ qp(u)− ℓu−1 (mod p),
qp(uv) ≡ qp(u) + qp(v) (mod p),

(3)

for gcd(u, p) = 1 and gcd(v, p) = 1, we define

Dl = {u : 0 ≤ u < p2, gcd(u, p) = 1, qp(u) = l}, 0 ≤ l < p.

In fact, together with the second equation in (3) and the primitive root g modulo p2

with qp(g) = 12, we have

Dl = {gl+ip (mod p2) : 0 ≤ i < p− 1}, 0 ≤ l < p.

So according to the definition of D
(p2,f)
l in Sect. 1, we see that

Dl =

f−1
⋃

i=0

D
(p2,f)
l+ip , 0 ≤ l < p. (4)

The Dl’s and Eq.(3) help us to study the k-error linear complexity of (sn) in Eq.(1)
in this work.

2Such g always exists.
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3 Auxiliary lemmas

In this section, we present some necessary lemmas needed in the proofs. In the sequel,
the notation |Z| denotes the cardinality of the set Z.

Lemma 1. Let Dl be defined for 0 ≤ l < p by Fermat quotients as in Sect.2. Then
we have for 0 ≤ l < p,

{n mod p : n ∈ Dl} = {1, 2, . . . , p− 1}.

Proof. Since Dl = {gl+ip (mod p2) : 0 ≤ i < p− 1} for 0 ≤ l < p, we get

{gl+ip (mod p) : 0 ≤ i < p− 1} = {gl+i (mod p) : 0 ≤ i < p− 1},

which completes the proof.

Lemma 2. Let Dl be defined for 0 ≤ l < p by Fermat quotients as in Sect.2. Let
v ∈ {1, 2, . . . , p − 1} and Vv = {v, v + p, v + 2p, . . . , v + (p − 1)p}. Then for each
0 ≤ l < p, we have |Vv ∩Dl| = 1.

Proof. By the first equation in Eq.(3), if qp(v + i1p) = qp(v + i2p) = l for 0 ≤
i1, i2 < p, that is qp(v)− i1v

−1 ≡ qp(v)− i2v
−1 (mod p), then i1 = i2.

Lemma 3. Let D
(pj ,f)
l be defined for 0 ≤ l < fpj−1 with even f and 1 ≤ j ≤ 2 as in

Sect.1. Then we have for any 0 ≤ l < fp

{u (mod p) : u ∈ D
(p2,f)
l } = D

(p,f)
l (mod f).

Proof. It is clear.

Lemma 4. Let D
(pj ,f)
l be defined for 0 ≤ l < fpj−1 with even f and 1 ≤ j ≤ 2 as

in Sect.1. Let v ∈ {1, 2, . . . , p − 1} and Vv = {v, v + p, v + 2p, . . . , v + (p − 1)p}. If

v ∈ D
(p,f)
ℓ for some 0 ≤ ℓ < f , we have for any 0 ≤ l < p

∣

∣

∣
Vv ∩D

(p2,f)
l+ip

∣

∣

∣
=

{

1, if i ≡ l − ℓ (mod f),
0, otherwise,

where 0 ≤ i < f .

Proof. For each 0 ≤ l < p, we have by Lemma 2 |Vv ∩ Dl| = 1. Then by Eq.(4)
there exists some i0 : 0 ≤ i0 < f such that

|Vv ∩D
(p2,f)
l+i0p

| = 1.

Now we determine i0. Let u ∈ Vv ∩D
(p2,f)
l+i0p

. We check that

u ≡ v (mod p), u (mod p) ∈ D
(p,f)
l+i0p (mod f)
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by Lemma 3, hence we get ℓ ≡ l + i0p ≡ l + i0 (mod f), that is i0 ≡ l − ℓ (mod f).
We complete the proof.

For any integer b, let

Qb =

f/2−1
⋃

i=0

D
(p,f)
i+b (mod f) ⊆ {1, 2, . . . , p− 1}, Nb = {1, 2, . . . , p− 1} \ Qb. (5)

We see that |Qb| = |Nb| = (p− 1)/2.

Lemma 5. Let D
(pj ,f)
l be defined for 0 ≤ l < fpj−1 with even f and 1 ≤ j ≤ 2, and

let C0 and C1 be defined with any integer b as in Sect.1. Let v ∈ {1, 2, . . . , p− 1} and
Vv = {v, v + p, v + 2p, . . . , v + (p− 1)p}.

(1). If v ∈ Qb, which is defined in Eq.(5), we have

|Vv ∩ C0| = (p− 1)/2, |Vv ∩ C1| = (p+ 1)/2.

(2). If v ∈ Nb, which is defined in Eq.(5), we have

|Vv ∩ C0| = (p+ 1)/2, |Vv ∩ C1| = (p− 1)/2.

Proof. It follows from Lemma 4.

Define polynomials in F2[X ]

d
(pj ,f)
l (X) =

∑

n∈D
(pj,f)
l

Xn (6)

for 0 ≤ l < fpj−1 and 1 ≤ j ≤ 2. Let θ ∈ F2 be a primitive p-th root of unity and

ωb =

f/2−1
∑

i=0

d
(p,f)
i+b (mod f)(θ) =

∑

n∈Qb

θn ∈ F2.

It is easy to see that

ωb+f/2 =
∑

n∈Nb

θn and ωb + ωb+f/2 = 1.

Lemma 6. Suppose that 2 is a primitive root modulo p. Let θ ∈ F2 be a primitive
p-th root of unity and ωb =

∑

n∈Qb

θn. Then ωb 6∈ F2 for any integer b.
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Proof. Write
W

(1)
b (X) =

∑

n∈Qb

Xn, W
(2)
b (X) =

∑

n∈Nb

Xn.

Then we have 1 < deg(W
(1)
b (X)) 6= deg(W

(2)
b (X)) ≤ p− 1.

Suppose that ωb = 0 for some integer b, we have for all i : 0 ≤ i < p− 1

W
(1)
b (θ2

i

) = W
(1)
b (θ)2

i

= 0

and
1 +W

(2)
b (θ2

i

) = (1 +W
(2)
b (θ))2

i

= (1 + ωb+f/2)
2i = (ωb)

2i = 0,

which tell us that both W
(1)
b (X) and 1 +W

(2)
b (X) have p − 1 many solutions, since

2 is a primitive root modulo p. This contradicts to that one of deg(W
(1)
b (X)) and

deg(1 +W
(2)
b (X)) is smaller than p− 1.

A similar proof can also lead to a contradiction if ωb = 1. We complete the
proof.

For any non-zero polynomial h(X) ∈ F2[X ], the weight of h(X) is referred to as
the number of non-zero coefficients of h(X).

Lemma 7. Suppose that 2 is a primitive root modulo p. Let θ ∈ F2 be a primitive p-th
root of unity and ωb =

∑

n∈Qb

θn for any integer b. For any non-constant polynomial

h(X) ∈ F2[X ] with h(θ) = ωb, we have wt(h(X)) ≥ (p− 1)/2.

Proof. By Lemma 6 we see that ω ∈ F2 \ F2. First, we can choose h(X) ∈ F2[X ]

such that h(X) = W
(1)
b (X) =

∑

n∈Qb

Xn, then we have h(θ) = W
(1)
b (θ) = ωb. In this

case wt(h(X)) = (p− 1)/2.
Second, suppose that there is an h0(X) ∈ F2[X ] such that wt(h0(X)) < (p− 1)/2

and h0(θ) = ωb. Let h0(X) ≡ h0(X) (mod Xp−1) with deg(h0) < p and let H0(X) =

h0(X) + W
(1)
b (X), the degree of which is < p. Clearly H0(X) is non-zero since

h0(X) 6= W
(1)
b (X), since the weight of W

(1)
b (X) is (p − 1)/2. Then we derive that

H0(θ) = 0 and H0(θ
2i) = 0 for 1 ≤ i < p − 1. Since 2 is a primitive root modulo p,

we see that
(1 +X +X2 + . . .+Xp−1)|H0(X),

i.e., due to deg(H0(X)) < p, we have H0(X) = 1+X+X2+. . .+Xp−1, from which we

get h0(X) = 1 +W
(2)
b (X) and wt(h0(X)) = (p+ 1)/2. Therefore, wt(h0) ≥ wt(h0) =

(p+ 1)/2, a contradiction.

Now we turn to prove our main result.

7



4 Proof of the main theorem

(Proof of Theorem 2). From the construction (1), we see that the weight of (sn)
is (p2 − 1)/2 + 1, i.e., there are (p2 − 1)/2 + 1 many 1’s in one period. Changing all
terms of 0’s of (sn) will lead to the constant 1-sequence, whose linear complexity is
1. And changing all terms of 1’s will lead to the constant 0-sequence. So we always
assume that k < (p2 − 1)/2.

The generating polynomial of (sn) is of the form

S(X) = 1 +

pf/2−1
∑

i=0

d
(p2,f)
i+b (mod pf)(X) +

f/2−1
∑

i=0

d
(p,f)
i+b (mod f)(X

p) ∈ F2[X ], (7)

where d
(pj ,f)
l (X) is defined in Eq.(6). We first recall the linear complexity of (sn) that

LCF2
0 ((sn)) = p2 for f = 2r (r ≥ 1) from [17, Thm.1] and for even f from [12, Thm.8].
Then we suppose k > 0. Let

Sk(X) = S(X) + e(X) ∈ F2[X ] (8)

be the generating polynomial of the sequence obtained from (sn) by changing exactly
k terms of (sn) per period, where e(X) is the corresponding error polynomial with k
many monomials. We note that Sk(X) is a nonzero polynomial due to k < (p2−1)/2.
We will consider the common roots of Sk(X) and Xp2 − 1, i.e., the roots of the form
βn (n ∈ Zp2) for Sk(X), where β ∈ F2 is a primitive p2-th root of unity. The number
of the common roots will help us to derive the values of k-error linear complexity of
(sn) by Eq.(2).

Case I: k < (p2 − p)/2.
On the one hand, we assume that Sk(β

n0) = 0 for some n0 ∈ Z
∗
p2 = {1 ≤ n <

p2| gcd(p, n) = 1}. Since 2 is a primitive root modulo p2, for each n ∈ Z
∗
p2, there

exists a 0 ≤ jn < (p− 1)p such that n ≡ n02
jn (mod p2). Then we have

Sk(β
n) = Sk(β

n02jn ) = Sk(β
n0)2

jn

= 0,

that is, all (p2 − p) many elements βn with n ∈ Z
∗
p2 are roots of Sk(X). Hence we

have
Φ(X)|Sk(X) in F2[X ],

where
Φ(X) = 1 +Xp +X2p + . . .+X(p−1)p ∈ F2[X ],

the roots of which are exactly βn for n ∈ Z
∗
p2 . Let

Sk(X) ≡ Φ(X)π(X) (mod Xp2 − 1). (9)
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Since deg(Sk(X)) = deg(Φ(X)) + deg(π(X)) < p2, we see that π(X) should be one
of the following:

π(X) = 1; π(X) = Xv1 +Xv2 + . . .+Xvt ; π(X) = 1 +Xv1 +Xv2 + . . .+Xvt ;

where 1 ≤ t < p and 1 ≤ v1 < v2 < . . . < vt < p. Then the exponent of each monomial
in Φ(X)π(X) forms the set {lp : 0 ≤ l ≤ p− 1} or {vj + lp : 1 ≤ j ≤ t, 0 ≤ l ≤ p− 1}
or {lp, vj + lp : 1 ≤ j ≤ t, 0 ≤ l ≤ p− 1} for different π(X) above.

(i). If π(X) = 1, we see that by (7)-(9)

e(X) =

pf/2−1
∑

j=0

d
(p2,f)
b+j (mod pf)(X) +

∑

n∈Nb

Xnp

which implies that k = (p2 − 1)/2, where Nb is in Eq.(5).
(ii). If π(X) = Xv1 +Xv2 + . . .+Xvt , we let

I = {v1, v2, . . . , vt}, J = {1, 2, . . . , p− 1} \ I

and let z = |I ∩ Qb|. We have |J ∩ Qb| = (p − 1)/2 − z, |I ∩ Nb| = t − z and
|J ∩ Nb| = (p− 1)/2− t + z. For Vv = {v + ℓp : 0 ≤ ℓ < p}, by Lemma 5 we derive
that

e(X) =
∑

v∈I∩Qb

∑

n∈Vv∩C0

Xn +
∑

v∈J∩Qb

∑

n∈Vv∩C1

Xn

+
∑

v∈I∩Nb

∑

n∈Vv∩C0

Xn +
∑

v∈J∩Nb

∑

n∈Vv∩C1

Xn + 1 +
∑

n∈Qb

Xnp,

which implies that

k = z · (p− 1)/2 + ((p− 1)/2− z) · (p+ 1)/2 + (t− z) · (p+ 1)/2
+((p− 1)/2− t+ z) · (p− 1)/2 + 1 + (p− 1)/2

= (p2 − 1)/2 + 1 + t− 2z.

We can check that −(p− 1)/2 ≤ t− 2z ≤ (p− 1)/2. Then k ≥ (p2 − p)/2 + 1.
(iii). For π(X) = 1 +Xv1 +Xv2 + . . .+Xvt , we can get similarly

e(X) =
∑

v∈I∩Qb

∑

n∈Vv∩C0

Xn +
∑

v∈J∩Qb

∑

n∈Vv∩C1

Xn

+
∑

v∈I∩Nb

∑

n∈Vv∩C0

Xn +
∑

v∈J∩Nb

∑

n∈Vv∩C1

Xn +
∑

n∈Nb

Xnp,

and k = (p2 − 1)/2 + t− 2z. As in (ii), we have k ≥ (p2 − p)/2.
So putting everything together, if k < (p2 − p)/2, we always have Sk(β

n) 6= 0 for
all n ∈ Z

∗
p2 .

9



On the other hand, we note first that p ≡ −3 (mod 8) or p ≡ 3 (mod 8) when 2
is a primitive root modulo p2. From Eq.(7) we have by Lemmas 1 and 5

S(X) ≡ 1 +
p− 1

2

p−1
∑

n=1

Xn +
∑

n∈Qb

Xn +
p− 1

2
(mod Xp − 1).

So let θ = βp, we get for 0 ≤ i < p

Sk(β
ip) = Sk(θ

i) = e(θi) + S(θi)

= e(θi) +

{

(p2 + 1)/2, if i = 0,
1 +

∑

n∈Qb

θni, if 1 ≤ i < p,

= e(θi) +







1, if i = 0,

1 +
∑

n∈Qb+ℓ

θn, if i ∈ D
(p,f)
ℓ , 0 ≤ ℓ < f,

= e(θi) +

{

1, if i = 0,

1 + ωb+ℓ(= ωb+ℓ+f/2), if i ∈ D
(p,f)
ℓ , 0 ≤ ℓ < f,

(10)

where ωb =
∑

n∈Q

θn. We want to look for an e(X) with the least wt(e(X)) such that

e(1) = 1 and e(θi) = ωb+ℓ+f/2 for i ∈ D
(p,f)
ℓ . These help us to calculate the number

of roots for Sk(X) of the form βip (0 ≤ i < p).
First, we consider the case 1 ≤ k < (p − 1)/2. If e(X) is with 1 ≤ wt(e(X)) <

(p − 1)/2, we have e(1) = wt(e(X)) and e(θi) 6= ωb+ℓ+f/2 for 1 ≤ i < p by Lemma
7. So we can use any monomial e(X) (i.e., wt(e(X)) = 1) to deduce Sk(β

0) = 0 but
Sk(β

ip) 6= 0 for 1 ≤ i < p. So by Eq.(2) we derive

LCF2

(p−3)/2((sn)) = LCF2
1 ((sn)) = p2 − 1.

Second, we consider the case k = (p−1)/2. Let e(X) satisfy wt(e(X)) = (p−1)/2
and e(X) ≡

∑

n∈Nb

Xn (mod Xp − 1). Then we have e(1) = (p− 1)/2 and

e(θi) =
∑

n∈Nb

θni =
∑

n∈Nb+ℓ

θn = ωb+ℓ+f/2 for 1 ≤ i < p,

if i ∈ D
(p,f)
ℓ for 0 ≤ ℓ < f . For such e(X), it indicates that Sk(β

0) = (p + 1)/2 and
Sk(β

ip) = 0 for 1 ≤ i < p. Hence

LCF2

(p−1)/2((sn)) =

{

p2 − p+ 1, if p ≡ −3 (mod 8),
p2 − p, if p ≡ 3 (mod 8).

Furtherly, for the case when p ≡ 5 (mod 8), we choose an e(X) satisfying wt(e(X)) =
(p + 1)/2 and e(X) ≡ 1 +

∑

n∈Qb

Xn (mod Xp − 1). Then we derive Sk(β
ip) = 0 for

0 ≤ i < p and hence

LCF2

(p+1)/2((sn)) = p2 − p, if p ≡ −3 (mod 8).
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Case II: k = (p2 − p)/2.
Now we consider the case k = (p2 − p)/2. From (iii) above, only that I = Qb is

useful for us, in this case t = z = (p− 1)/2 and

e(X) =
∑

v∈Qb

∑

n∈Vv∩C0

Xn +
∑

v∈Nb

∑

n∈Vv∩C1

Xn +
∑

n∈Nb

Xnp,

which can guarantee Sk(β
n) = 0 for all n ∈ Z

∗
p2 . We also check that by Lemma 5

e(βip) = e(θi) = p−1
2

∑

n∈Qb

θni + p−1
2

∑

n∈Nb

θni + p−1
2

= p−1
2

(

∑

n∈Qb

θni +
∑

n∈Nb

θni

)

+ p−1
2

= p−1
2

+ p−1
2

= p− 1 = 0

for 1 ≤ i < p and e(β0) = e(1) = (p − 1)/2. Then from Eq.(10), we get Sk(β
0) =

(p+ 1)/2 and Sk(β
ip) 6= 0 for 1 ≤ i < p. So we have

LCF2

(p2−p)/2((sn)) = p− δ,

where δ = 1 if p ≡ 3 (mod 8) and δ = 0 if p ≡ −3 (mod 8).

Case III: k > (p2 − p)/2.
If k = (p2 − 1)/2, after changing the k many 0’s in (sn), we get the 1-sequence,

whose linear complexity is 1. And if k > (p2− 1)/2, we can get the 0-sequence whose
linear complexity is 0. We complete the proof.

We remark that, it seems difficult for us to determine the values of LCF2
k ((sn)) for

(p2 − p)/2 < k < (p2 − 1)/2 here, but it is at most p (or p− 1).

5 A lower bound

We have the following lower bound on the k-error linear complexity when 2 is not a
primitive root modulo p2.

Theorem 3. Let (sn) be the binary sequence of period p2 defined in Eq.(1) with even
f and any b for defining C0 and C1. If 2p−1 6≡ 1 (mod p2), then the k-error linear
complexity of (sn) satisfies

LCF2

k ((sn)) ≥ λp for 0 ≤ k < (p2 − p)/2,

where 1 < λ < p is the order of 2 modulo p.
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Proof. First we show the order of 2 modulo p2 is λp. Under the assumption
on 2p−1 6≡ 1 (mod p2), we see that the order of 2 modulo p2 is of the form mp for
some 1 ≤ m ≤ p − 1 and m|(p − 1). Then λ|m from 1 ≡ 2mp ≡ 2m (mod p) since
2mp ≡ 1 (mod p2), and m|λ from 2λp ≡ 1 (mod p2) since otherwise we write for some
1 ≤ ǫ < p

2λp ≡ 1 + ǫp (mod p2),

from which we derive

1 ≡ (2λp)m/λ ≡ (1 + ǫp)m/λ ≡ 1 +
ǫmp

λ
(mod p2).

However ǫm
λ

6≡ 0 (mod p), a contradiction.
Second, the fact k < (p2 − p)/2 implies that there do exist an n0 ∈ Z

∗
p2 such that

Sk(β
n0) 6= 0, where Sk(X), as before, is the generating polynomial of the sequence

obtained from (sn) by changing exactly k terms per period. Since otherwise, k ≥
(p2 − p)/2 according to Case I in the proof of Theorem 2.

Thus there are at least λp many n ∈ {n02
j mod p2 : 0 ≤ j < λp} such that

Sk(β
n) 6= 0. Then the result follows.

Theorem 3 covers almost all primes. As far as we know, the primes satisfying
2p−1 ≡ 1 (mod p2) are very rare. It was shown that there are only two such primes3,
1093 and 3511, up to 6× 1017 [1].

Finally, we draw a conclusion that we have determined the values of the k-error
linear complexity of a new generalized cyclotomic binary sequence of period p2 dis-
cussed recently in the journal Designs, Codes and Cryptography. Results indicate
that such sequences have large linear complexity and the linear complexity does not
significantly decrease by changing a few terms.
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