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Abstract

We prove upper bounds on deterministic communication complexity in terms of log
of the rank and simple versions of the corruption bound.

Our bounds are a simplified version of the results of Gavinsky and Lovett [8], us-
ing the same set of tools. We also give an elementary proof for the upper bound on
communication complexity in terms of rank proved by Lovett [18].

1 Introduction

1.1 An overview

The notion of communication complexity was introduced by Yao [24] as a discrete
variation of a model of Abelson [1] concerning information transfer in distributive com-
putations. In the basic model, two players Alice and Bob wish to compute together a
discrete boolean function f : I × J → {0, 1}. The players are assumed to have infinite
computational power, and their goal is to minimize the communication between them
during the computation. Alice and Bob first agree on a communication protocol and
then use this protocol to compute the value of the function f on any given pair of
feasible inputs (i, j) ∈ I × J . The inputs are presented to the players in a way that
Alice sees only i and Bob receives j. They then take turns writing bits (0 or 1) on a
blackboard, until both players know the value of f(i, j). The cost of a protocol is the
maximal number of bits the players write on the blackboard during the computation
of f(i, j), over all choices of inputs (i, j) ∈ I × J . The deterministic communication
complexity of f , denoted D(f), is equal to the minimal cost of a protocol for f .

It is sometimes convenient to consider the function f : I × J → {0, 1} as a sign
matrix A, where the rows of A correspond to i ∈ I and the columns correspond to
j ∈ J . The entries of A satisfy Ai,j = 1 if f(i, j) = 0 and Ai,j = −1 if f(i, j) = 1. We
use this matrix notation.

Many variants of the basic communication complexity model of Yao were defined.
The models differ in the type of communication allowed (e.g. deterministic, randomized,
nondeterministic, etc), the number of players, the type of function computed, and more.
The interested reader can see the book of Kushilevitz and Nisan [13] for a thorough
exposition and discussion on the basic models of communication complexity.

The communication complexity literature is mainly concerned with proving lower
bounds, and indeed communication complexity lower bounds are used in various areas
of theoretical computer science such as decision tree complexity, VLSI circuits, space-
time tradeoffs for Turing machines and more. To prove lower bounds in communication
complexity many techniques were developed. One of the early lower bound techniques
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is the rank lower bound of Mehlhorn and Schmidt [19]: Let A be a sign matrix, and
denote by rank(A) the rank of A over the reals, then

log2 rank(A) ≤ D(A).

Since there are many variants of communication complexity and various lower bounds,
it is interesting to fully understand the relation between the different measures of com-
plexity. For this purpose we need to prove upper bounds as well as lower bounds.

Some of the major open questions in communication complexity are of this type,
and in particular the log-rank conjecture. The log-rank conjecture [17, 20] states that
deterministic communication complexity of a sign matrix A and log of the rank of A are
polynomially related. Namely, the conjecture is that there is a constant c such that every
sign matrix A satisfies D(A) ≤ (log rank(A))c. A fairly simple upper bound is D(A) ≤
rank(A), and that was the best known for quite a while. Drawing ideas and tools from [6,
8, 14, 15], Lovett [18] proved the bound D(A) ≤ O(

√

rank(A) log rank(A)), achieving a
first significant breakthrough at this end. On the other end, it is known that the constant
c in the log-rank conjecture must be at least two [9]. This is also a recent breakthrough,
continuing a line of work [3, 22, 21, 20] which gradually constructed matrices with larger
gaps between the log of the rank and the deterministic communication complexity.

Although the gap in our knowledge regarding the log-rank conjecture is very wide,
there are interesting upper bounds on D(A), which include:

1. D(A) ≤ (N0(A) + 1)(N1(A) + 1) [2],

2. D(A) ≤ log rank(A) log rank+(A) [16],

3. D(A) ≤ log(rank(A) + 1)(min{N0(A), N1(A)}+ 1) [16],

4. D(A) ≤ fs(A)(N0(A) + 1) [16].

Here, N1(A) and N0(A) are the nondeterministic and co-nondeterministic communi-
cation complexity of A respectively, rank+(A) is the positive rank of A, and fs(A) is
the maximal size of a fooling set for A. All these complexity measures are known lower
bounds on deterministic communication complexity. See [16] and also [13] for a com-
prehensive survey of these complexity measures and bounds. See [7] for a comparison
between fs(A) and rank(A), and also an extension of the fooling set bound which is
polynomially tight up to a logarithmic additive factor.

In the above bounds, roughly speaking, fs(A) or rank(A) serve as a potential func-
tion, while N0(A) or N1(A) serve as a pool of monochromatic rectangles. Another
upper bound, similar in nature, is given by Nisan and Wigderson [20]. The statement,
as it was phrased in [8], is

Theorem 1 ([20, 8, 18]) Let A be a sign matrix and let rank(A) = r. Assume that
every submatrix B of A contains a monochromatic rectangle of size at least 2−q|B|,
where |B| is the size of B (i.e., the number of entries). Then,

D(A) ≤ O(log2 r + q log r).

In the protocol of Nisan and Wigderson, rank serves like before as a kind of a potential
function. N0(A) and N1(A) on the other hand are replaced by the size of a largest
monochromatic rectangle which appears in their bound as an independent complexity
measure.

Gavinsky and Lovett [8] augmented the above repertoire of upper bounds on deter-
ministic communication complexity. They proved that the deterministic communication
complexity of a sign matrix A is at most O(CC(A) log2 rank(A)), where CC(A) is either
randomized communication complexity, information complexity, or zero-communication
complexity. Thus when the rank of the matrix is low, an efficient nondeterministic pro-
tocol or a randomized protocol, implies an efficient deterministic protocol.
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The core upper bound of [8] is in terms of extended discrepancy and it therefore
implies additional results to those listed above. In fact, as observed by Göös and Watson
[10], extended discrepancy corresponds to a fractional version of approximate majority
covers (see [12] for details). Thus, for example, the bounds of [8] are also valid for
the Merlin Arthur (MA) complexity of A, with error 1/4. In this model the players
first make a nondeterministic guess and then perform a randomized protocol. This has
the nice interpretation that when the rank is low, there is an efficient deterministic
protocol, even compared with protocols combining the power of nondeterminism and
randomization.

The proofs of [8] are based on the protocol of Nisan and Wigderson [20] (Theo-
rem 1). In addition they use a simple and clever lemma relating the size of almost
monochromatic rectangles, in some conditions, to the size of monochromatic ones.

Theorem 2 ([8, 18]) Let A be an m × n sign matrix with rank(A) = r. Assume
that the fraction of 1’s or the fraction of −1’s in A is at most 1

4r . Then A contains a
monochromatic rectangle R such that |R| ≥ mn

8 .

Theorem 1 gives an upper bound on D(A) in terms of the size of monochromatic rect-
angles. Theorem 2 enables to replace the concept of monochromatic rectangles in this
bound by a more relaxed notion.

Our contribution is to point out that the language of corruption bounds is per-
fectly suited for the line of proof described above. This enables to give a simple and
elementary proofs for the results of [8] and [18]. Furthermore, the corruption bound,
which is a central lower bound technique in (randomized) communication complexity,
has proved relations with: randomized communication complexity, information com-
plexity, zero-communication complexity, nondeterministic communication complexity,
MA complexity, and positive rank. The corruption bound therefore provides a uniform
view of previous upper bounds, as well as a natural link to the upper bound of Nisan
and Wigderson which is based on the size of monochromatic rectangles.

1.2 The corruption bound

The heart of the matter is the following definition:

Definition 3 Let A be an m×n sign matrix, and denote by u the uniform distribution
on [m]× [n]. Let v ∈ {−1, 1} be such that u(v) ≤ 1/2.1 For 0 ≤ ρ ≤ 1 define

monoρ(A) = log

(

1

maxR{u(R) : u(v|R) ≤ ρu(v)}

)

,

where the maximum is over all combinatorial rectangles R. Let hmonoρ(A) be the
maximum of monoρ(B) over all submatrices B of A.

Denote the distribution of −1’s and 1’s in A by (α, 1− α), and assume without loss
of generality that α ≤ 1/2. Then roughly speaking, monoρ(A) quantifies the relative
size of a largest submatrix of A in which the frequency changes to (ρα, 1− ρα) or even
more biased. That is, we seek a submatrix for which the frequency of −1’s is smaller
by at least a factor of ρ than their frequency in A. In particular, mono0(A) quantifies
the relative size of a largest submatrix of A containing only 1-entries.

The quantity hmonoρ(A) is a hereditary version of monoρ(A), that is obviously
needed if we wish to show a strong relation with communication complexity which is
hereditary. It is an easy exercise to show that hmono0(A) ≤ D(A) + 1 2 , and the
protocol of Nisan and Wigderson [20] implies that D(A) ≤ O(log2 r+hmono0(A) log r).

1If u(1) = u(−1) then we let v = −1.
2This inequality follows from the fact that every c-bit deterministic communication protocol for A parti-

tions the matrix A into at most 2c monochromatic combinatorial rectangle.
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Therefore, the log-rank conjecture is true if and only if hmono0(A) ≤ (log rank(A))c for
some constant c. This kind of relation though (if true), between the rank of a matrix
and the size of a monochromatic submatrix, is very hard to capture. The contribution
of Theorem 2 is that instead of monochromatic submatrices we can consider the more
relaxed notion hmono1/2(A), that is:

Theorem 4 For every sign matrix A with r = rank(A) it holds that

D(A) ≤ O(hmono1/2(A) log
2 r).

Clearly, monoρ1
(A) ≤ monoρ2

(A) whenever ρ1 ≥ ρ2, thus the above upper bound
via hmono1/2(A) is tighter than the previous bound in terms of hmono0(A) when ig-
noring the log-rank factors. The more important advantage is though that the nature
of hmono1/2(A) makes it easier to relate it to other complexity measures such as ran-
domized communication complexity, information complexity, zero-communication com-
plexity, and more [8]. This enhances the variety of upper bounds on deterministic
communication complexity that are applicable when the rank is small. All these up-
per bounds follow from the relation between hmono1/2(A) and the corruption bound,
explained in Section 4.

Another complexity measure of a sign matrix A that can be tied to hmono1/2(A)
is the discrepancy of A, denoted disc(A), which is defined as follows: Let σ be a
distribution on the entries of A. The discrepancy with respect to σ is:

max
R

|σ(1, R)− σ(−1, R)|,

where the maximum is over all combinatorial rectangles in A. The discrepancy of A is
the minimal discrepancy with respect to σ, over all probability distributions.

The discrepancy is often used to lower bound communication complexity in different
models, and it is also equivalent (up to a constant) to the reciprocal of margin com-
plexity. See [14, 15] for the definitions and proof of the equivalence of these measures.
This equivalence was used in [15] to prove that 1/disc(A) ≤ O(

√

rank(A)).
For a sign matrix A let d = 1/disc(A) and r = rank(A). Lovett [18] proved that A

contains a monochromatic rectangle of size 2−O(d log r)|A|. Combined with the protocol
of Nisan and wigderson (Theorem 1) and the relation between discrepancy and rank,
this proves that deterministic communication complexity is bounded by root of the
rank up to log factors. We give in Section 5 an elementary proof of a slightly different
statement hmono1/2(A) ≤ O(d log d), that gives the same result up to a log factor.

2 Notation

Let A be an m×n sign matrix, and let µ be a probability distribution on [m]× [n]. For
a set of entries E ⊆ [m] × [n], let µ(E) be the sum

∑

(i,j)∈E µ(i, j). A combinatorial

rectangle is a subset S×T of entries, such that S ⊆ [m] and T ⊆ [n]. That is, a combi-
natorial rectangle corresponds to a submatrix of A. With a slight abuse of notation, for
v ∈ {±1} and a combinatorial rectangle R, we denote by µ(v) = µ({(i, j)|Ai,j = v}),
and µ(v,R) = µ({(i, j) ∈ R|Ai,j = v}). We also write µ(v|R) for the probability that
Ai,j = v conditioned upon v ∈ R, which is equal to µ(v,R)/µ(R).
We call a distribution µ on [m]× [n] uniformly-balanced for A, if it satisfies:

• The set of entries (i, j) for which µ(i, j) > 0 is a combinatorial rectangle.

• Ai,j = Ax,y implies that µ(i, j) = µ(x, y), if both are nonzero.

• µ(1) = µ(−1) = 1
2 .

We use uniformly balanced distributions in Section 4 to define a simple version of
the corruption bound and relate it to hmonoρ(A).
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3 The upper bound

To prove Theorem 4 we need a slight variation of Theorem 2.

Claim 5 Let A be an m× n sign matrix with rank(A) = r, and v ∈ {−1, 1}. Assume
that the fraction of −v’s in A is at most 1/10r. Then A contains a v-monochromatic
rectangle R such that |R| ≥ mn

8 .

Proof The proof follows from Theorem 2 by observing that R is too big to contain
only −v entries, as the fraction of −v’s in A is at most 1/10r ≤ 1/10.

Proof [of Theorem 4] First, recall that D(A) ≤ O(log2 r + hmono0(A) log r) by The-
orem 1. Second, the bound hmono0(A) ≤ O(hmono1/10r(A)) follows from Claim 5.
Finally, observe that for every 0 ≤ ρ1, ρ2 ≤ 1 it holds that

hmonoρ1ρ2
(A) ≤ hmonoρ1

(A) + hmonoρ2
(A).

The proof of the above inequality is straightforward from the definition. This makes am-
plification possible, and in particular shows that hmono1/10r(A) ≤ O(log r·hmono1/2(A)).
Combining these inequalities gives the proof.

4 Relation with the corruption bound

We would like to show that hmonoρ(A) is a lower bound for randomized communication
complexity, information complexity, zero-communication complexity, nondeterministic
communication complexity, and positive rank. The simplest way to do that is to relate
it to the corruption/rectangle bound (defined in the sequel) which was proved as a lower
bound for all these complexity measures, and more.

In a way hmonoρ(A) is a very simple version of the corruption bound. When Yao first
used the corruption bound as a lower bound on randomized communication complexity,
his definition was in the spirit of monoρ(A) (See Lemma 3 in [25]). This first bound
did not take into account the fact that one can choose any probability distribution
over the entries of the matrix, and not only the uniform distribution. It is easy to make
monoρ(A) small even for matrices with high randomized communication complexity, for
example by planting a large monochromatic submatrix in a random sign matrix. This
can be fixed by considering the worst probability distribution over the entries of the
matrix, which can for example give zero weight to the large monochromatic submatrix.
The corruption bound is usually defined as follows [4, 23, 12, 5, 11]:

Definition 6 Let A be a sign matrix, 0 ≤ ǫ ≤ 1, and v ∈ {−1, 1}. For a probability
distribution µ on the entries of A, define

size(v)ǫ (A, µ) = max
R

{µ(R) : µ(−v|R) ≤ ǫ},

where the maximum is over all combinatorial rectangles R. Define

corr(v)ǫ (A) = max
µ

log 1/size(v)ǫ (A, µ),

where µ runs over all balanced distributions 3 for A. Finally define

corrǫ(A) = max{corr(1)ǫ (A), corr(−1)
ǫ (A)}.

3A balanced distribution is a distribution for which the probability of −1’s and the probability of 1’s are

bounded from below by a constant.
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We use a simple version of the corruption bound which is similar to the above, only
we maximize over the family of uniformly-balanced distributions (defined in Section 1.2),
instead of all balanced distributions. We denote this variant of the corruption bound
by ubcǫ(A). Obviously ubcǫ(A) ≤ corrǫ(A) for every sign matrix A and 0 ≤ ǫ ≤ 1, as
we maximize over a subfamily of probability distributions.

As we show next, ubcǫ(A) is closely related to hmono2ǫ(A).

Lemma 7 Let A be an m× n sign matrix. Then, for every 0 ≤ ǫ ≤ 1/2 it holds that

hmono2ǫ(A) ≤ ubcǫ(A).

Proof Let u be the uniform distribution on [m]× [n], and denote by µ the uniformly-
balanced distribution for A supported on [m]× [n]. For every entry (i, j) it holds that

Ai,j = −1 ⇒ µ(i, j) =
u(i, j)

2u(−1)
, (1)

Ai,j = 1 ⇒ µ(i, j) =
u(i, j)

2u(1)
.

The proof is very simple, but technical. We therefore first give the basic intuition.
Consider the extreme case where u(1) = u(−1) = 1/2. In this case µ = u and seeking
a combinatorial rectangle with µ(−1|R) ≤ ǫ and large µ(R) is equivalent to seeking a
combinatorial rectangle with u(−1|R) ≤ 2ǫu(−1) and large u(R). Thus in this case the
quantities of interest both for ubcǫ(A) and for hmono2ǫ(A) coincide. Since we consider
uniformly balanced distributions, and normalize the distribution so that the probability
of 1’s and −1’s are equal, the general case is similar. In the general case there is an
advantage towards hmono2ǫ(A) that increases when the imbalance between the number
of 1’s and −1’s increases. The proof is essentially to show that the rectangle R found
for ubcǫ(A) is also good for hmono2ǫ(A). In the first part of the proof below we show
that for this rectangle u(R) ≥ µ(R), and in the second part that u(−1|R) ≤ 2ǫu(−1).

Assume without loss of generality that u(−1) ≤ 1/2, and let ubcǫ(A) = k. Then,
there is a rectangle R such that µ(R) ≥ 2−k and µ(−1|R) ≤ ǫ. Thus

u(R) =
∑

(i,j)∈R

u(i, j)

=
∑

Ai,j=−1,(i,j)∈R

u(i, j) +
∑

Ai,j=1,(i,j)∈R

u(i, j)

=
∑

Ai,j=−1,(i,j)∈R

2u(−1)µ(i, j) +
∑

Ai,j=1,(i,j)∈R

2u(1)µ(i, j)

= 2u(−1)µ(−1, R) + 2u(1)µ(1, R)

= 2µ(R) [u(−1)µ(−1|R) + (1− u(−1)) (1− µ(−1|R))]

= 2µ(R) [1− u(−1)− µ(−1|R) + 2u(−1)µ(−1|R)]

≥ µ(R).

The last step follows from the fact that the function f(x, y) = 1− x− y + 2xy satisfies
f(x, y) ≥ 1/2 for x, y ∈ [0, 1/2]. Recall that u(−1) ≤ 1/2 and µ(−1|R) ≤ ǫ ≤ 1/2. Also

u(−1, R) =
∑

Ai,j=−1,(i,j)∈R

u(i, j)

=
∑

Ai,j=−1,(i,j)∈R

2u(−1)µ(i, j)

= 2u(−1)µ(−1, R)

≤ 2u(−1)ǫµ(R)

≤ 2ǫu(−1)u(R).
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This concludes that mono2ǫ(A) ≤ k since u(R) ≥ µ(R) ≥ 2−k and u(−1|R) ≤ 2ǫu(−1).
Proving similarly for every submatrix B of A gives hmono2ǫ(A) ≤ k.

5 Proof of Theorem 8

Theorem 8 ([18]) Let A be a sign matrix, and let disc(A) = 1/d. Then

hmono1/2(A) ≤ O(d log d).

Proof The proof is essentially observing that discrepancy corresponds to the error in
corruption. Suppose that ubc1/2−1/6d(A) = O(log d), then by Lemma 7 this implies
that hmono1−1/3d(A) ≤ O(log d), and therefore

hmono1/2(A) ≤ O(d log d).

We now prove that ubc1/2−1/6d(A) = O(log d). Let µ be a uniformly-balanced
distribution for A. Since disc(A) = disc(−A) it is enough to prove the existence of
a large combinatorial rectangle satisfying µ(−1|R) ≤ 1

2 − 1
6d . By definition of the

discrepancy, there is a combinatorial rectangle R, such that

|
∑

(i,j)∈R

µ(i, j)Ai,j | ≥
1

d
. (2)

Observe that we can assume that

∑

(i,j)∈R

µ(i, j)Ai,j ≥
1

3d
.

Otherwise, the sum in Equation (2) is negative, and since µ is uniformly-balanced

∑

(i,j)∈R̄

µ(i, j)Ai,j ≥
1

d
,

where R̄ is the complement of R. But R̄ can be partitioned into three combinatorial
rectangles, and thus there is a rectangle R′ such that

∑

(i,j)∈R′

µ(i, j)Ai,j ≥
1

3d
.

Now,
∑

(i,j)∈R µ(i, j)Ai,j = µ(1, R) − µ(−1, R), and µ(R) = µ(1, R) + µ(−1, R).
Therefore,

µ(−1, R) =
1

2
µ(R)−

1

2

∑

(i,j)∈R

µ(i, j)Ai,j

≤
1

2
µ(R)−

1

6d

= (
1

2
−

1

6dµ(R)
)µ(R)

≤ (
1

2
−

1

6d
)µ(R).

This concludes the proof, as obviously µ(R) ≥ 1
d .
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