Accepted Manuscript

New lower bound on the Shannon capacity of C_{7} from circular graphs

Sven Polak, Alexander Schrijver

PII: \quad S0020-0190(18)30229-1
DOI: https://doi.org/10.1016/j.ipl.2018.11.006
Reference: IPL 5764

To appear in: Information Processing Letters

Received date: 22 August 2018
Revised date: 13 November 2018
Accepted date: 13 November 2018

Please cite this article in press as: S. Polak, A. Schrijver, New lower bound on the Shannon capacity of C_{7} from circular graphs, Inf. Process. Lett. (2018), https://doi.org/10.1016/j.ipl.2018.11.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Highlights

- An independent set of size 367 is given in the fifth strong product power of C_{7}.
- This leads to an improved lower bound on the Shannon capacity of $C_{7}: \Theta\left(C_{7}\right) \geq 367^{1 / 5}>3.2578$.
- The independent set is found by computer, using circular graphs.
- It is used that $t \cdot\left(1,7,7^{2}, 7^{3}, 7^{4}\right) \mid t \in Z_{382} \subseteq Z_{382}^{5}$ is independent in $C_{108,382}^{5}$.

New lower bound on the Shannon capacity of C_{7} from circular graphs

Sven Polak ${ }^{1}$ and Alexander Schrijver ${ }^{1}$

Abstract

We give an independent set of size 367 in the fifth strong product power of C_{7}, where C_{7} is the cycle on 7 vertices. This leads to an improved lower bound on the Shannon capacity of $C_{7}: \Theta\left(C_{7}\right) \geq 367^{1 / 5}>3.2578$. The independent set is found by computer, using the fact that the set $\left\{t \cdot\left(1,7,7^{2}, 7^{3}, 7^{4}\right) \mid t \in \mathbb{Z}_{382}\right\} \subseteq \mathbb{Z}_{382}^{5}$ is independent in the fifth strong product power of the circular graph $C_{108,382}$. Here the circular graph $C_{k, n}$ is the graph with vertex set \mathbb{Z}_{n}, the cyclic group of order n, in which two distinct vertices are adjacent if and only if their distance $(\bmod n)$ is strictly less than k.

Keywords: Shannon capacity, independent set, circular graph, cube packing
MSC 2010: 05C69, 94A24

1 Introduction

For any graph $G=(V, E)$, let G^{d} denote the graph with vertex set V^{d} and edges between two distinct vertices $\left(u_{1}, \ldots, u_{d}\right)$ and $\left(v_{1}, \ldots, v_{d}\right)$ if and only if for all $i \in\{1, \ldots, d\}$ one has either $u_{i}=v_{i}$ or $u_{i} v_{i} \in E$. The graph G^{d} is known as the d-th strong product power of G. The Shannon capacity of G is

$$
\begin{equation*}
\Theta(G):=\sup _{d \in \mathbb{N}} \sqrt[d]{\alpha\left(G^{d}\right)} \tag{1}
\end{equation*}
$$

where $\alpha\left(G^{d}\right)$ denotes the maximum cardinality of an independent set in G^{d}, i.e., a set of vertices no two of which are adjacent. As $\alpha\left(G^{d_{1}+d_{2}}\right) \geq \alpha\left(G^{d_{1}}\right) \alpha\left(G^{d_{2}}\right)$ for any two positive integers d_{1} and d_{2}, by Fekete's lemma [6] it holds that $\Theta(G)=\lim _{d \rightarrow \infty} \sqrt[d]{\alpha\left(G^{d}\right)}$.

The Shannon capacity was introduced by Shannon [13] and is an important and widely studied parameter in information theory (see e.g., $[1,4,9,11,15]$). It is the effective size of an alphabet in an information channel represented by the graph G. The input is a set of letters $V=$ $\{0, \ldots, n-1\}$ and two letters are confusable when transmitted over the channel if and only if there is an edge between them in G. Then $\alpha(G)$ is the maximum size of a set of pairwise non-confusable single letters. Moreover, $\alpha\left(G^{d}\right)$ is the maximum size of a set of pairwise non-confusable d-letter words. Taking d-th roots and letting d go to infinity, we find the effective size of the alphabet in the information channel: $\Theta(G)$.

The Shannon capacity of C_{5}, the cycle on 5 vertices, was already discussed by Shannon in 1956 [13]. It was determined more than twenty years later by Lovász [11] using his famous ϑ function. He proved that $\Theta\left(C_{5}\right)=\sqrt{5}$. The easy lower bound is obtained from the independent set $\{(0,0),(1,2),(2,4),(3,1),(4,3)\}$ in C_{5}^{2} and the ingenious upper bound is given by Lovász's ϑ-function. More generally, for odd n,

$$
\begin{equation*}
\Theta\left(C_{n}\right) \leq \vartheta\left(C_{n}\right)=\frac{n \cos (\pi / n)}{1+\cos (\pi / n)} . \tag{2}
\end{equation*}
$$

[^0]For n even it is not hard to see that $\Theta\left(C_{n}\right)=n / 2$.
The Shannon capacity of C_{7} is still unknown and its determination is a notorious open problem in extremal combinatorics [4, 7]. Many lower bounds have been given by explicit independent sets in some fixed power of $C_{7}[3,12,14]$, while the best known upper bound is $\Theta\left(C_{7}\right) \leq \vartheta\left(C_{7}\right)<$ 3.3177. Here we give an independent set of size 367 in C_{7}^{5}, which yields $\Theta\left(C_{7}\right) \geq 367^{1 / 5}>3.2578$. The best previously known lower bound on $\Theta\left(C_{7}\right)$ is $\Theta\left(C_{7}\right) \geq 350^{1 / 5}>3.2271$, found by Mathew and Östergård [12]. They proved that $\alpha\left(C_{7}^{5}\right) \geq 350$ using stochastic search methods that utilize the symmetry of the problem. In [3], a construction is given of an independent set of size $7^{3}=343$ in C_{7}^{5}. The best known lower bound on $\alpha\left(C_{7}^{4}\right)$ is 108 , by Vesel and Žerovnik [14]. See Table 1 for the currently best known bounds on $\alpha\left(C_{7}^{d}\right)$ for small d.

d	1	2	3	4	5
$\alpha\left(C_{7}^{d}\right)$	3	10^{a}	33^{d}	$108^{e}-115^{b}$	$367^{f}-401^{c}$

Table 1: Bounds on $\alpha\left(C_{7}^{d}\right)$. Key:
${ }^{a}{ }^{\alpha} \alpha\left(C_{n}^{2}\right)=\left\lfloor\left(n^{2}-n\right) / 4\right\rfloor[3$, Theorem 2]
${ }^{b} \alpha\left(C_{n}^{d}\right) \leq \alpha\left(C_{n}^{d-1}\right) n / 2$ [3, Lemma 2]
${ }^{c} \alpha\left(G^{d}\right) \leq \vartheta(G)^{d}$ by Lovász [11]
${ }^{d}$ Baumert et al. [3]
${ }^{e}$ Vesel and Žerovnik [14]
${ }^{f}$ this paper, see the Appendix for the explicit independent set.
For comparison, $\alpha\left(C_{7}^{3}\right)^{1 / 3}=33^{1 / 3} \approx 3.2075, \alpha\left(C_{7}^{4}\right)^{1 / 4} \geq 108^{1 / 4} \approx 3.2237$ and the previously best known lower bound on $\alpha\left(C_{7}^{5}\right)^{1 / 5}$ is $350^{1 / 5} \approx 3.2271$. Now we know that $\alpha\left(C_{7}^{5}\right) \geq 367>$ 3.2578^{5}.

The paper is organized as follows. In Section 2 we will examine the circular graphs $C_{k, n}$. We give a construction that yields independent sets in certain $C_{k, n}^{d}$, and we give an explicit description of an independent set S of size 382 in the graph $C_{108,382}^{5}$. This independent set does not translate directly to an independent set in C_{7}^{5}. However, in Section 3 we describe how one can obtain an independent set of size 367 in C_{7}^{5} from S, by adapting S, removing vertices and adding new ones. This independent set is given explicitly in the Appendix.

2 Circular Graphs

For two integers a, b, let $[a, b]$ denote the set $\{a, a+1, \ldots, b\}$. For $k, n \in \mathbb{Z}$ with $n \geq 2 k$, the circular graph $C_{k, n}$ is the graph with vertex set \mathbb{Z}_{n}, the cyclic group of order n, in which two distinct vertices are adjacent if and only if their distance $(\bmod n)$ is strictly less than k. In other words, it is the circulant graph on \mathbb{Z}_{n} with generating set $[1, k-1]$, which means that $V=\mathbb{Z}_{n}$ and $E=\{\{u, v\} \mid u-v \in[1, k-1]\}$. So $C_{2, n}=C_{n}$ and $C_{k, n}$ has vertex set $V\left(C_{n}\right)=\mathbb{Z}_{n}$. A closed formula for $\vartheta\left(C_{k, n}\right)$, Lovász's upper bound on $\Theta\left(C_{k, n}\right)$, is given in [2].

Note that by definition there is an edge between two distinct vertices x, y of $C_{k, n}^{d}$ if and only if there is an $i \in[1, d]$ such that $x_{i}-y_{i}(\bmod n)$ is either strictly smaller than k or strictly larger than $n-k$. For distinct u, v in \mathbb{Z}_{n}^{d}, define their distance to be the maximum over the distances of u_{i} and $v_{i}(\bmod n)$, where i ranges from 1 to d. The minimum distance $d_{\min }(D)$ of a set $D \subseteq \mathbb{Z}_{n}^{d}$ is the minimum distance between any pair of distinct elements of D. (If $|D|=1$, set $d_{\min }(D)=\infty$.) Then $d_{\min }(D) \geq k$ if and only if D is independent in $C_{k, n}^{d}$.

A homomorphism from a graph $G_{1}=\left(V_{1}, E_{1}\right)$ to a graph $G_{2}=\left(V_{2}, E_{2}\right)$ is a function $f: V_{1} \rightarrow V_{2}$ such that if $i j \in E_{1}$ then $f(i) f(j) \in E_{2}$ (in particular, $\left.f(i) \neq f(j)\right)$. If there exists a homomorphism $f: G_{1} \rightarrow G_{2}$ we write $G_{1} \rightarrow G_{2}$. For any graph G, we write \bar{G} for the complement of G. If $\bar{G} \rightarrow \bar{H}$, then $\alpha(G) \leq \alpha(H)$ and $\Theta(G) \leq \Theta(H)$. The circular graphs have the property that $\overline{C_{k^{\prime}, n^{\prime}}} \rightarrow \overline{C_{k, n}}$ if and only if $k^{\prime} / n^{\prime} \leq k / n[5]$. So if $k^{\prime} / n^{\prime} \leq k / n$, then $\alpha\left(C_{k^{\prime}, n^{\prime}}^{d}\right) \leq \alpha\left(C_{k, n}^{d}\right)$ (for any d) and $\Theta\left(C_{k^{\prime}, n^{\prime}}\right) \leq \Theta\left(C_{k, n}\right)$. Moreover, $\alpha\left(C_{k, n}^{d}\right)$ and $\Theta\left(C_{k, n}\right)$ only depend on the fraction n / k.

An independent set in $C_{k, n}^{d}$ gives an independent set in $C_{\lceil 2 n / k\rceil}^{d}$, since $\overline{C_{k, n}} \rightarrow \overline{C_{2,\lceil 2 n / k\rceil}}$. Explicitly, consider the elements of \mathbb{Z}_{n} as integers between 0 and $n-1$ and replace each element i by $\lfloor 2 i / k\rfloor$, and consider the outcome as an element of $\mathbb{Z}_{[2 n / k\rceil}$. This gives indeed a homomorphism $\overline{C_{k, n}} \rightarrow \overline{C_{2,\lceil 2 n / k\rceil}}$ as the image of any two elements with distance at least k has distance at least 2 .

First, we will give an independent set of size 382 in $C_{108,382}^{5}$. As $382 / 108>7 / 2$ this does not directly give an independent set in $C_{2,7}^{5}$. However, in Section 3 we try to adapt the independent set, remove some words and add as many new words as possible to obtain a large independent set in C_{7}^{5}.

Proposition 2.1. The set $S:=\left\{t \cdot\left(1,7,7^{2}, 7^{3}, 7^{4}\right) \mid t \in \mathbb{Z}_{382}\right\} \subseteq \mathbb{Z}_{382}^{5}$ is independent in $C_{108,382}^{5}$.
Proof. If $x, y \in S$ then also $x-y \in S$. So it suffices to check that for all nonzero $x \in S$:

$$
\begin{equation*}
\exists i \in[1,5] \text { such that } x_{i} \in[108,274] . \tag{3}
\end{equation*}
$$

Let $x=t \cdot\left(1,7,7^{2}, 7^{3}, 7^{4}\right) \in S$ be arbitrary, with $0 \neq t \in \mathbb{Z}_{382}$. For $t \in[108,274]$ clearly (3) holds with $i=1$ (as then $x_{i}=t \in[108,274]$). Also we have $[275,381]=-[1,107]$, so it suffices to verify (3) for $t \in[1,107]$. Note that for $t \in[16,39]$ one has $108 \leq 7 t \leq 274$, so (3) is satisfied with $i=2$. Also note that $69 \cdot 7 \equiv 101(\bmod 382)$. So for $t \in[70,93]$ one has $7 t \equiv 101+7(t-69)$ $(\bmod 382) \in[108,274]$, i.e., (3) is satisfied with $i=2$. For the remaining $t \in[1,107]$, please take a glance at Table 2. In each row, in each of the three subtables, there is at least one entry in $[108,274]$. This completes the proof.

1	7	49	343	109	45	315	295	155	321	65	73	129	139	209
2	14	98	304	218	46	322	344	116	48	66	80	178	100	318
3	21	147	265	327	47	329	11	77	157	67	87	227	61	45
4	28	196	226	54	48	336	60	38	266	68	94	276	22	154
5	35	245	187	163	49	343	109	381	375	69	101	325	365	263
6	42	294	148	272	50	350	158	342	102					
7	49	343	109	381	51	357	207	303	211	94	276	22	154	314
8	56	10	70	108	52	364	256	264	320	95	283	71	115	41
9	63	59	31	217	53	371	305	225	47	96	290	120	76	150
10	70	108	374	326	54	378	354	186	156	97	297	169	37	259
11	77	157	335	53	55	3	21	147	265	98	304	218	380	368
12	84	206	296	162	56	10	70	108	374	99	311	267	341	95
13	91	255	257	271	57	17	119	69	101	100	318	316	302	204
14	98	304	218	380	58	24	168	30	210	101	325	365	263	313
15	105	353	179	107	59	31	217	373	319	102	332	32	224	40
					60	38	266	334	46	103	339	81	185	149
40	280	50	350	158	61	45	315	295	155	104	346	130	146	258
41	287	99	311	267	62	52	364	256	264	105	353	179	107	367
42	294	148	272	376	63	59	31	217	373	106	360	228	68	94
43	301	197	233	103	64	66	80	178	100	107	367	277	29	203
44	308	246	194	212										

Table 2: Part of the verification that S is independent in $C_{108,382}^{5}$.
The authors found the above independent set when looking for answers to the following question.
For n, d, q, what is the minimum distance $k(n, d, q)$ of $\left\{t \cdot\left(1, q, \ldots, q^{d-1}\right) \mid t \in \mathbb{Z}_{n}\right\} \subseteq \mathbb{Z}_{n}^{d}$?
The independent set from Proposition 2.1 was found by computer (with $n \geq 350$ and $d=5$ such that $n / k(n, d, q)$ is close to $7 / 2)$. Question (4) seems not easy to solve in general.

3 Description of the method

Here we describe how to use the independent set from Proposition 2.1 to find an independent set of size 367 in C_{7}^{5}. The procedure is as follows.
(i) Start with the independent set S in $C_{108,382}^{5}$ from Proposition 2.1.
(ii) Add the word $(40,123,40,123,40) \bmod 382$ to each word in S.
(iii) Replace each letter i, which we now consider to be an integer between 0 and 381 and not anymore an element in \mathbb{Z}_{382}, in each word from S by $\lfloor i / 54.5\rfloor$. Now we have a set of words S^{\prime} with only symbols in $[0,6]$ in it, which we consider as elements of \mathbb{Z}_{7}.
(iv) Remove each word $u \in S^{\prime}$ for which there is a $v \in S^{\prime}$ such that $u v \in E\left(C_{7}^{5}\right)$ from S^{\prime}, i.e., we remove u if there is a $v \in S^{\prime}$ with $v \neq u$ such that $u_{i}-v_{i} \in\{0,1,6\}$ for all $i \in[1,5]$. We denote the set of words which are not removed from S^{\prime} by this procedure by M. The computer finds $|M|=327$. Note that M is independent in C_{7}^{5}.
(v) Find the best possible extension of M to a larger independent set in C_{7}^{5}. To do this, consider the subgraph G of C_{7}^{5} induced by the words x in \mathbb{Z}_{7}^{5} with the property that $M \cup\{x\}$ is independent in C_{7}^{5}. This graph is not large, in this case it has 71 vertices and 85 edges, so a computer finds a maximum size independent set I in G quickly. The computer finds $|I|=\alpha(G)=40$, so we can add 40 words to M. Write $R:=M \cup I$. Then $|R|=327+40=367$ and R is independent in C_{7}^{5}.

The maximum size independent set I in the graph G in (v) was found using Gurobi [8]. In steps (ii) and (iii), many possibilities for adding a constant word and for the division factor were tried, but no independent set of size 368 or larger was found. Also, the independent set R of size 367 did not seem to be easily extendable. A local search was performed, showing that there exists no triple of words from R such that if one removes these three words from R, four words can be added to obtain an independent set of size 368 in C_{7}^{5}.
Remark 3.1. One other new bound on $\alpha\left(C_{n}^{d}\right)$ was obtained (for $n \leq 15$ and $d \leq 5$) using independent sets of the form from (4). With $n=4009, d=5$ and $q=27$, we found $k(n, d, q)=$ 729. As $n /(k(n, d, q))=4009 / 729<11 / 2$, this directly yields the new lower bound $\alpha\left(C_{11}^{5}\right) \geq$ 4009. The previously best known lower bound is $\alpha\left(C_{11}^{5}\right) \geq 3996$ from [12]. However, the new lower bound on $\alpha\left(C_{11}^{5}\right)$ does not imply a new lower bound on $\Theta\left(C_{11}\right)$. It is known that $\Theta\left(C_{11}\right) \geq$ $\alpha\left(C_{11}^{3}\right)^{1 / 3}=148^{1 / 3}>5.2895$ (cf. [3]), which is larger than $4009^{1 / 5}$.

Appendix: explicit code

The following 367 words form an independent set in C_{7}^{5}, which proves the new bound $\Theta\left(C_{7}\right) \geq$ $367^{1 / 5}>3.2578$. It is the set R from Section 3 .

Acknowledgements

The authors want to thank Bart Litjens, Bart Sevenster, Jeroen Zuiddam and the two anonymous referees for very useful comments.

References

[1] N. Alon, The Shannon capacity of a union, Combinatorica, 18 (1998), 301-310.
[2] C. Bachoc, A. Pêcher, A. Thiéry, On the theta number of powers of cycle graphs, Combinatorica, 33 (2013), 297-317.
[3] L. Baumert, R. McEliece, E. Rodemich, H. Rumsey, R. Stanley, H. Taylor, A combinatorial packing problem, Computers in Algebra and Number Theory, American Mathematical Society, Providence, RI (1971), 97-108.
[4] T. Bohman, A limit theorem for the Shannon capacities of odd cycles I, Proceedings of the American Mathematical Society, 131 (2003), 3559-3569.
[5] J.A. Bondy, P. Hell, A note on the star chromatic number, Journal of Graph Theory, 14 (1990), 479-482.
[6] M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Mathematische Zeitschrift, 17 (1923), 228-249.
[7] C.D. Godsil, Problems in algebraic combinatorics, Electronic Journal of Combinatorics, 2 (1995), 1-20.
[8] Gurobi Optimization, LLC, Gurobi Optimizer Reference Manual, 2018, http://www.gurobi.com.
[9] W.H. Haemers, On some problems of Lovász concerning the Shannon capacity of a graph, IEEE Transactions on Information Theory, 25 (1979), 231-232.
[10] M. Jurkiewicz, M. Kubale, K. Turowski, Some lower bounds on the Shannon capacity, Journal of Applied Computer Science, 22 (2014), 31-42.
[11] L. Lovász, On the Shannon capacity of a graph, IEEE Transactions on Information Theory, 25 (1973), 1-7.
[12] K.A. Mathew, P.R.J. Östergård, New lower bounds for the Shannon capacity of odd cycles, Designs, Codes and Cryptography, 84 (2017), 13-22.
[13] C.E. Shannon, The zero-error capacity of a noisy channel, IRE Transactions on Information Theory, 2 (1956), 8-19.
[14] A. Vesel, J. Žerovnik, Improved lower bound on the Shannon capacity of C_{7}, Information Processing Letters, 81 (2002), 277-282.
[15] J. Zuiddam, The asymptotic spectrum of graphs and the Shannon capacity, arXiv 1807.00169 (2018).

[^0]: ${ }^{1}$ Korteweg-De Vries Institute for Mathematics, University of Amsterdam. E-mail: s.c.polak@uva.nl, a.schrijver@uva.nl. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement №339109.

